SUBGROUP $SU(8)/Z_2$ OF COMPACT SIMPLE LIE GROUP E_7 AND NON-COMPACT SIMPLE LIE GROUP $E_{7(7)}$ OF TYPE E_7

ICHIRO YOKOTA

It is known that there exist four simple Lie groups of type E_7 up to local isomorphism, one of them is compact and the others are non-compact. We have shown that in [3], [4] the group

$$E_7 = \{ \alpha \in \operatorname{Iso}_{\mathcal{C}}(\mathfrak{P}^{\mathcal{C}}, \mathfrak{P}^{\mathcal{C}}) \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q, \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \}$$

is a simply connected compact simple Lie group of type E_7 and in [5], [7] the groups

$$E_{7(-25)} = \{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{P}, \mathfrak{P}) \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q \},$$

$$E_{7(-5)} = \{ \alpha \in \operatorname{Iso}_{C}(\mathfrak{P}^{C}, \mathfrak{P}^{C}) \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q, \langle \alpha P, \alpha Q \rangle_{\sigma} = \langle P, Q \rangle_{\sigma} \}$$

are connected non-compact simple Lie groups of type $E_{7(-25)}$, $E_{7(-5)}$ respectively, and their polar decompositions are given by

$$E_{7(-25)} \simeq (U(1) \times E_6) / \mathbb{Z}_3 \times \mathbb{R}^{54},$$

 $E_{7(-5)} \simeq (SU(2) \times Spin(12)) / \mathbb{Z}_2 \times \mathbb{R}^{64}.$

In this paper, first we find a subgroup in E_7 which is isomorphic to the group $SU(8)/\mathbb{Z}_2$. Next we show that the group

$$E_{7(7)} = \{ \alpha \in \text{Iso}_R(\mathfrak{P}', \mathfrak{P}') \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q \}$$

is a connected non-compact simple Lie group of type $E_{7(7)}$ with the center $z(E_{7(7)}) = \{1, -1\}$ and its polar decomposition is given by

$$E_{7(7)} \simeq SU(8)/\mathbf{Z}_2 \times \mathbf{R}^{70}$$
.

Our main method used in this paper is to give homomorphisms $\psi : SU(8) \rightarrow E_7$ and $\psi : SU(8) \rightarrow E_{7(7)}$ explicitly.

I. Subgroup $SU(8)/\mathbb{Z}_2$ of compact simple Lie group E_7

1. Preliminaries

1.1. Cayley algebras \mathfrak{G} , \mathfrak{G}^c and exceptional Jordan algebras \mathfrak{F} , \mathfrak{F}^c . Let $\mathfrak{G} = H \oplus He$ (H is the quaternionic field) denote the Cayley algebra over the field R of real numbers with the multiplication

$$(a+be)(c+de) = (ac-\bar{d}b) + (b\bar{c}+da)e$$

and $\mathfrak{C}^c = \{x_1 + ix_2 \mid x_1, x_2 \in \mathfrak{C}\}$ its complexification with respect to the field C of complex numbers.

Let
$$\Im = \{X \in M(3, \mathbb{C}) \mid X^* = X\} = \left\{ \begin{bmatrix} \xi_1 & x_3 & \bar{x}_2 \\ \bar{x}_3 & \xi_2 & x_1 \\ x_2 & \bar{x}_1 & \xi_3 \end{bmatrix} \middle| \xi_i \in \mathbf{R}, x_i \in \mathbb{C} \right\}$$

denote the exceptional Jordan algebra with the multiplication

$$X \circ Y = (XY + YX)/2$$

and $\mathfrak{F}^c = \{X_1 + iX_2 \mid X_1, X_2 \in \mathfrak{F}\}$ its complexification. In \mathfrak{F} and \mathfrak{F}^c , inner products $(X, Y), \langle X, Y \rangle$, the crossed product $X \times Y$, the trilinear form (X, Y, Z) and the determinant $\det X$ are defined respectively by

$$(X, Y) = \operatorname{tr}(X \circ Y), \qquad \langle X, Y \rangle = (\tau X, Y) = (\overline{X}, Y),$$

$$X \times Y = (2X \circ Y - \operatorname{tr}(X)Y - \operatorname{tr}(Y)X + (\operatorname{tr}(X)\operatorname{tr}(Y) - \operatorname{tr}(X \circ Y))E),$$

$$(X, Y, Z) = (X, Y \times Z), \qquad \det X = (X, X, X)/3$$

where $\tau: \mathfrak{J}^c \to \mathfrak{J}^c$ denotes the complex conjugation : $\tau(X_1 + iX_2) = X_1 - iX_2$, X_1 , $X_2 \in \mathfrak{J}$ (τX is also denoted by \overline{X}) and E the 3×3 unit matrix. (The other $n \times n$ unit matrix will be also denoted by E).

In \Im and \Im^c we adopt the following notations:

$$E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad E_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad E_{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$F_{1}(x) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & x \\ 0 & \bar{x} & 0 \end{bmatrix}, \quad F_{2}(x) = \begin{bmatrix} 0 & 0 & \bar{x} \\ 0 & 0 & 0 \\ x & 0 & 0 \end{bmatrix}, \quad F_{3}(x) = \begin{bmatrix} 0 & x & 0 \\ \bar{x} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Then the table of the crossed products among them are given by

$$\begin{cases} E_{i} \times E_{i} = 0, & E_{i} \times E_{i+1} = E_{i+2}/2, \\ E_{i} \times F_{i}(x) = -F_{i}(x)/2, & E_{i} \times F_{j}(x) = 0, & i \neq j, \\ F_{i}(x) \times F_{i}(y) = -(x, y)E_{i}, & F_{i}(x) \times F_{i+1}(y) = F_{i+2}(x\overline{y})/2 \end{cases}$$

where indexes are considered as mod 3.

Finally we define a linear involution $\gamma: \mathfrak{F} \to \mathfrak{F}$ (resp. $\mathfrak{F}^c \to \mathfrak{F}^c$) by

$$\gamma \begin{bmatrix} \xi_1 & a_3 + b_3 e & \bar{a}_2 - b_2 e \\ \gamma \begin{bmatrix} \bar{a}_3 - b_3 e & \bar{\xi}_2 & a_1 + b_1 e \\ a_2 + b_2 e & \bar{a}_1 - b_1 e & \bar{\xi}_3 \end{bmatrix} = \begin{bmatrix} \xi_1 & a_3 - b_3 e & \bar{a}_2 + b_2 e \\ \bar{a}_3 + b_3 e & \bar{\xi}_2 & a_1 - b_1 e \\ a_2 - b_2 e & \bar{a}_1 + b_1 e & \bar{\xi}_3 \end{bmatrix}$$

where $\xi_i \in \mathbf{R}$ (resp. \mathbf{C}), $a_i, b_i \in \mathbf{H}$ (resp. \mathbf{H}^c (the complexification of \mathbf{H})).

1.2. Compact Lie group E_6 and subgroup $(E_6)_{\rho}$. We have shown in [8] that the group

$$E_6 = \{ \alpha \in \operatorname{Iso}_{\mathcal{C}}(\mathfrak{F}^c, \mathfrak{F}^c) \mid \det \alpha X = \det X, \langle \alpha X, \alpha Y \rangle = \langle X, Y \rangle \}$$

= $\{ \alpha \in \operatorname{Iso}_{\mathcal{C}}(\mathfrak{F}^c, \mathfrak{F}^c) \mid \tau \alpha \tau(X \times Y) = \alpha X \times \alpha Y, \langle \alpha X, \alpha Y \rangle = \langle X, Y \rangle \}$

is a simply connected compact simple Lie group of type E_6 and therefore its Lie algebra

$$e_6 = \{ \phi \in \text{Hom}_{\mathcal{C}}(\mathfrak{F}^c, \mathfrak{F}^c) \mid (\phi X, X, X) = 0, \langle \phi X, Y \rangle = -\langle X, \phi Y \rangle \}$$
 is a compact simple Lie algebra of type E_6 .

We have also found in [8] a subgroup of type C_4 in the group E_6 . For later use we review this subgroup. Let $\Im(4, \mathbf{H}) = \{X \in M(4, \mathbf{H}) \mid X^* = X\}$ denote the vector space of all 4×4 quaternionic Hermitian matrices and $\Im(4, \mathbf{H})^c = \{X_1 + iX_2 \mid X_1, X_2 \in \Im(4, \mathbf{H})\}$ its complexification. In $\Im(4, \mathbf{H})$ and $\Im(4, \mathbf{H})^c$, Jordan multiplications $X \circ Y$ are defined by $X \circ Y = (XY + YX)/2$. Put $\Im(4, \mathbf{H})_0 = \{X \in \Im(4, \mathbf{H}) \mid \operatorname{tr}(X) = 0\}$ and let $\Im(4, \mathbf{H})_0^c = \{X \in \Im(4, \mathbf{H})^c \mid \operatorname{tr}(X) = 0\} = \{X_1 + iX_2 \mid X_1, X_2 \in \Im(4, \mathbf{H})_0\}$ be the complexification of $\Im(4, \mathbf{H})_0$. Now, we define a mapping $g : \Im^c \to \Im(4, \mathbf{H})_0^c$ by

$$g\left(\begin{bmatrix} \xi_{1} & a_{3} + b_{3}e & \bar{a}_{2} - b_{2}e \\ \bar{a}_{3} - b_{3}e & \xi_{2} & a_{1} + b_{1}e \\ a_{2} + b_{2}e & \bar{a}_{1} - b_{1}e & \xi_{3} \end{bmatrix} + i\begin{bmatrix} \eta_{1} & c_{3} + d_{3}e & \bar{c}_{2} - d_{2}e \\ \bar{c}_{3} - d_{3}e & \eta_{2} & c_{1} + d_{1}e \\ c_{2} + d_{2}e & \bar{c} - d_{1}e & \eta_{3} \end{bmatrix}\right)$$

$$= \begin{bmatrix} \lambda_{1} & -d_{1} & -d_{2} & -d_{3} \\ -\bar{d}_{1} & \lambda_{2} & a_{3} & \bar{a}_{2} \\ -\bar{d}_{2} & \bar{a}_{3} & \lambda_{3} & a_{1} \\ -\bar{d}_{3} & a_{2} & \bar{a}_{2} & \lambda_{4} \end{bmatrix} + i\begin{bmatrix} \mu_{1} & b_{1} & b_{2} & b_{2} \\ \bar{b}_{1} & \mu_{2} & c_{3} & \bar{c}_{2} \\ \bar{b}_{2} & \bar{c}_{3} & \mu_{3} & c_{1} \\ \bar{b}_{3} & c_{2} & \bar{c}_{1} & \mu_{4} \end{bmatrix}$$

where ξ_i , $\eta_i \in \mathbf{R}$, a_i , b_i , c_i , $d_i \in \mathbf{H}$ and $\lambda_1 = (\xi_1 + \xi_2 + \xi_3)/2$, $\lambda_2 = (\xi_1 - \xi_2 - \xi_3)/2$, $\lambda_3 = (\xi_2 - \xi_1 - \xi_3)/2$, $\lambda_4 = (\xi_3 - \xi_1 - \xi_2)/2$, $\mu_1 = (\eta_1 + \eta_2 + \eta_3)/2$, $\mu_2 = (\eta_1 - \eta_2 - \eta_3)/2$, $\mu_3 = (\eta_2 - \eta_1 - \eta_3)/2$, $\mu_4 = (\eta_3 - \eta_1 - \eta_2)/2$. And we define a conjugate linear involutive transformation of \mathfrak{F}^C by

$$\rho = \tau \gamma = \gamma \tau.$$

Lemma 1 (1)([8, Lemma 17]). The mapping $g: \mathfrak{F}^c \to \mathfrak{F}(4, H)_0{}^c$ is a C-isomorphism satisfying

$$g(X \times Y) = g(\gamma X) \circ g(\gamma Y) - ((\gamma X, Y)/4)E$$

where E is the 4×4 unit matrix.

(2) Put $(\mathfrak{J}^c)_{\rho} = \{X \in \mathfrak{J}^c \mid \rho X = X\}$. Then g induces an **R**-isomorphism

$$g: (\mathfrak{J}^c)_{\rho} \to \mathfrak{J}(4, H)_0.$$

We have shown in [8, Theorem 18] that a subgroup $(E_6)_{\rho}$ of E_6

$$(E_6)_{\rho} = \{ \alpha \in E_6 \mid \rho \alpha = \alpha \rho \}$$

is isomorphic to the group $Sp(4)/\mathbb{Z}_2$ (where $Sp(4) = \{A \in M(4, H) \mid A^*A = E\}$ is the symplectic group and $\mathbb{Z}_2 = \{E, -E\}$) by the correspondence

$$\varphi: Sp(4) \to (E_6)_{\rho}, \quad \varphi(C)X = g^{-1}(C(gX)C^*), \quad X \in \mathfrak{F}^C$$

with $Ker \varphi = \mathbb{Z}_2$. Therefore its Lie algebra

$$(e_6)_{\rho} = \{\phi \in e_6 \mid \rho\phi = \phi\rho\}$$

is isomorphic to the symplectic Lie algebra $\mathfrak{sp}(4) = \{C \in M(4, \mathbf{H}) \mid C^* = -C\}$ by the correspondence

$$d\varphi: \mathfrak{gp}(4) \to (\mathfrak{e}_6)_{\rho}, \quad d\varphi(C)X = g^{-1}(C(gX) - (gX)C), \quad X \in \mathfrak{J}^c.$$

Finally, we note that the complexification Lie algebra e_6^c of e_6 :

$$e_6^c = \{ \phi \in \operatorname{Hom}_c(\mathfrak{F}^c, \mathfrak{F}^c) \mid (\phi X, X, X) = 0 \}$$

is a simple Lie algebra over C of type E_6 . And, for A, $B \in \mathfrak{F}^c$, $A \vee B \in \mathfrak{e}_6^c$ is defined by

$$(A \lor B)X = ((B, X)/2)A + ((A, B)/6)X - 2B \times (A \times X), X \in \mathfrak{F}^{c}.$$

1.3. Compact Lie group E_7 and its Lie algebra e_7 . Let \mathfrak{P}^c be a 56 dimensional vector space over C defined by

$$\mathfrak{P}^c = \mathfrak{J}^c \oplus \mathfrak{J}^c \oplus C \oplus C.$$

In \mathfrak{P}^c , the positive definite inner product $\langle P, Q \rangle$ and the skew-symmetric inner product $\{P, Q\}$ are defined respectively by

$$\langle P, Q \rangle = \langle X, Z \rangle + \langle Y, W \rangle + \bar{\xi} \zeta + \bar{\eta} \omega,$$

 $\{P, Q\} = (X, W) - (Y, Z) + \xi \omega - \eta \zeta$

for $P = (X, Y, \xi, \eta), Q = (Z, W, \zeta, \omega) \in \mathfrak{P}^{c}$.

For $\phi \in e_6^c$, A, $B \in \mathfrak{J}^c$ and $\nu \in C$, we define a linear transformation $\Phi(\phi, A, B, \nu)$ of \mathfrak{F}^c by

$$\begin{split} \varPhi(\phi,\ A,\ B,\ \nu) \begin{bmatrix} X \\ Y \\ \xi \\ \eta \end{bmatrix} &= \begin{bmatrix} \phi - (\nu/3)1 & 2B & 0 & A \\ 2A & \phi' + (\nu/3)1 & B & 0 \\ 0 & A & \nu & 0 \\ B & 0 & 0 & -\nu \end{bmatrix} \begin{bmatrix} X \\ Y \\ \xi \\ \eta \end{bmatrix} \\ &= \begin{bmatrix} \phi X - (\nu/3)X + 2B \times Y + \eta A \\ 2A \times X + \phi' Y + (\nu/3)Y + \xi B \\ (A,\ Y) + \nu \xi \\ (B,\ X) - \nu \eta \end{bmatrix} \end{split}$$

where $\phi' \in \mathfrak{e}_6{}^c$ denotes the skew-transpose of ϕ with respect to the inner product $(X, Y) : (\phi X, Y) + (X, \phi' Y) = 0$. For $P = (X, Y, \xi, \eta)$, $Q = (Z, W, \xi, \omega) \in \mathfrak{P}^c$, we define a linear transformation $P \times Q$ of \mathfrak{P}^c by

$$P \times Q = \Phi(\phi, A, B, \nu), \begin{cases} \phi = -(X \vee W + Z \vee Y)/2, \\ A = -(2Y \times W - \xi Z - \zeta X)/4, \\ B = (2X \times Z - \eta W - \omega Y)/4, \\ \nu = ((X, W) + (Z, Y) - 3(\xi \omega + \zeta \eta))/8. \end{cases}$$

And we define a submanifold \mathfrak{M}^c of \mathfrak{P}^c , called Freudenthal manifold, by

$$\mathfrak{M}^{c} = \{ P \in \mathfrak{P}^{c} \mid P \times P = 0, \ P \neq 0 \}$$

$$= \{ P = (X, Y, \xi, \eta) \in \mathfrak{P}^{c} \middle| \begin{array}{l} X \vee Y = 0, \ X \times X = \eta Y \\ Y \times Y = \xi X, \ (X, Y) = 3\xi \eta, \end{array} P \neq 0 \}.$$

Now, as stated in the introduction, a simply connected compact simple Lie group of type E_7 is given by

$$E_7 = \{ \alpha \in \operatorname{Iso}_{\mathcal{C}}(\mathfrak{P}^c, \mathfrak{P}^c) \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q, \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \}$$

$$= \{ \alpha \in \operatorname{Iso}_{\mathcal{C}}(\mathfrak{P}^c, \mathfrak{P}^c) \mid \alpha \mathfrak{M}^c = \mathfrak{M}^c, \{ \alpha P, \alpha Q \} = \{ P, Q \}, \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \}$$
and its Lie algebra is

$$e_7 = \{ \boldsymbol{\Phi}(\phi, A, -\overline{A}, \nu) \in \operatorname{Hom}_{\mathcal{C}}(\mathfrak{P}^c, \mathfrak{P}^c) \mid \phi \in e_6, A \in \mathfrak{F}^c, \nu \in \mathcal{C}, \bar{\nu} = -\nu \}.$$

The group E_7 contains a subgroup

$$\widetilde{E}_6 = \{ \alpha \in E_7 \mid \alpha(0, 0, 1, 0) = (0, 0, 1, 0) \}$$

which is isomorphic to the group E_6 by the coorespondence

$$E_6 \ni \alpha \longleftrightarrow \alpha = \begin{bmatrix} \alpha & 0 & 0 & 0 \\ 0 & \tau \alpha \tau & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \in \widetilde{E_6} \subset E_7$$

([3] Proposition 2). From now on, we identify the group E_6 with the group \widetilde{E}_6 .

2. Subgroup $(E_7)_{\rho}$ of E_7 and its Lie algebra $(e_7)_{\rho}$

We define a conjugate linear involution ρ of \mathfrak{P}^c (used the same notation ρ in \mathfrak{F}^c) by

$$\rho(X, Y, \xi, \eta) = (\rho X, \rho Y, \overline{\xi}, \overline{\eta})$$

and we shall investigate a subgroup $(E_7)_{\rho}$ of E_7

$$(E_7)_{\rho} = \{ \alpha \in E_7 \mid \rho \alpha = \alpha \rho \}.$$

For this purpose, we give some preliminaries [8].

The quaternionic field $\mathbf{H} = \mathbf{C} \oplus j\mathbf{C}$ is isomorphic to the space $\mathfrak{G} = \{ \mathbf{x} \in M(2, \mathbf{C}) \mid \mathbf{x}\mathbf{j} = \mathbf{j}\mathbf{x} \}$, where $\mathbf{j} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, as an algebra by the correspondence $k : \mathbf{H} \to \mathfrak{H}$,

$$k(a+jb) = \begin{bmatrix} a & -\overline{b} \\ b \cdot & \overline{a} \end{bmatrix} \quad a, \ b \in C.$$

This mapping k is naturally extended to the mappings

$$k: M(4, \mathbf{H}) \to M(8, \mathbf{C}), \qquad k: M(4, \mathbf{H})^{\mathbf{C}} \to M(8, \mathbf{C})$$

 $k \begin{pmatrix} x_{st} \end{pmatrix} = \begin{pmatrix} k(x_{st}) \end{pmatrix}, k \begin{pmatrix} x_{st} + iy_{st} \end{pmatrix} = \begin{pmatrix} k(x_{st}) + ik(y_{st}) \end{pmatrix}$

 x_{st} , $y_{st} \in H$, respectively. (In the latter equation, i in the left side is the complexification unit of $\mathfrak{F}(4, H)^c$ and i in the right side is the imaginary unit of the field C).

Let $SU(8) = \{A \in M(8, C) \mid A*A = E, \det A = 1\}$ be the special unitary group. The symplectic group Sp(4) is often regarded as a subgroup of SU(8) by

$$Sp(4) = k(Sp(4)) = \{A \in SU(8) \mid AJ^{t}A = J\}, \quad J = \begin{bmatrix} \mathbf{j} & 0 & 0 & 0 \\ 0 & \mathbf{j} & 0 & 0 \\ 0 & 0 & \mathbf{j} & 0 \\ 0 & 0 & 0 & \mathbf{j} \end{bmatrix}$$

Lemma 2. Any element D of the special unitary Lie algebra $\mathfrak{Su}(8) = \{D \in M(8, C) \mid D^* = -D, \operatorname{tr}(D) = 0\}$ is represented by the form

$$D = k(C) + ik(B)$$
 $C \in \mathfrak{sp}(4), B \in \mathfrak{J}(4, \mathbf{H})_0.$

Proof. For $D \in \mathfrak{gu}(8)$, put $C_1 = (D - J\overline{D}J)/2$ and $B_1 = -i(D + J\overline{D}J)/2$, then

$$D = C_1 + iB_1$$
: $C_1^* = -C_1$, $C_1 J = J\overline{C}_1$, $B_1^* = B_1$, $B_1 J = J\overline{B}_1$, $tr(B_1) = 0$.
So, $C = k^{-1}(C_1)$ and $B = k^{-1}(B_1)$ are required ones.

Proposition 3. The Lie algebra $(e_7)_{\rho}$ of the group $(E_7)_{\rho}$ is

$$\begin{aligned} (\mathfrak{e}_7)_{\rho} &= \{ \boldsymbol{\mathcal{O}} \in \mathfrak{e}_7 \mid \rho \boldsymbol{\mathcal{O}} = \boldsymbol{\mathcal{O}} \rho \} \\ &= \{ \boldsymbol{\mathcal{O}}_{\rho}(\phi, A) \in \mathfrak{e}_7 \mid \phi \in \mathfrak{e}_6, \ \rho \phi = \phi \rho, \ A \in \mathfrak{F}^C, \ \rho A = A \} \\ &= \{ \boldsymbol{\mathcal{O}}_{\rho}(d\varphi(C), \ g^{-1}B) \in \mathfrak{e}_7 \mid C \in \mathfrak{sp}(4), \ B \in \mathfrak{F}(4, \ \boldsymbol{H})_0 \}. \end{aligned}$$

where $\Phi_{\rho}(\phi, A) = \Phi(\phi, A, -\gamma A, 0)$. The Lie bracket $[\Phi_1 \ \Phi_2]$ in $(e_7)_{\rho}$ is given by

$$[\Phi_{\rho}(\phi_1, A_1), \Phi_{\rho}(\phi_2, A_2)] = \Phi_{\rho}(\phi, A)$$

where

$$\phi = [\phi_1, \phi_2] - 2A_1 \vee \overline{A}_2 + 2A_2 \vee \overline{A}_1, \quad A = \phi_1 A_2 - \phi_2 A_1.$$

And $(e_7)_{\rho}$ is isomorphic to the special unitary Lie algebra $\mathfrak{Su}(8)$ by the correspondence

$$k(C) + ik(B) \in \mathfrak{su}(8) \xrightarrow{d\psi} \Phi_{\rho}(d\varphi(C), g^{-1}B) \in (\mathfrak{e}_7)_{\rho}$$

where $C \in \mathfrak{sp}(4)$, $B \in \mathfrak{J}(4, \mathbf{H})_0$.

Proof. The first statements are easily shown. We shall show that $d\psi: \mathfrak{gu}(8) \to (\mathfrak{e}_7)_{\rho}$ is an isomorphism. (This is the direct consequence of the following section 4, however, here, we will give the direct proof).

- (1) For C_1 , $C_2 \in \mathfrak{sp}(4)$, $[k(C_1), k(C_2)] = k[C_1, C_2] \rightarrow \Phi_{\rho}(d\varphi[C_1, C_2], 0) = [\Phi_{\rho}(d\varphi(C_1), 0), \Phi_{\rho}(d\varphi(C_2), 0)].$
- (2) For $C \in \mathfrak{gp}(4)$, $B \in \mathfrak{J}(4, \mathbf{H})_0$, $[k(C), ik(B)] = ik[C, B] \to \Phi_{\rho}(0, g^{-1}[C, B]) = \Phi_{\rho}(0, d\varphi(C)(g^{-1}B)) = [\Phi_{\rho}(d\varphi(C), 0), \Phi_{\rho}(0, g^{-1}B)].$
- (3) For B_1 , $B_2 \in \mathfrak{J}(4, H)_0$, $[ik(B_1), ik(B_2)] = -k[B_1, B_2] \rightarrow \Phi_{\rho}(-d\varphi [B_1, B_2], 0)$. On the other hand, (put $A_1 = g^{-1}B_1$, $A_2 = g^{-1}B_2$)

$$[\boldsymbol{\Phi}_{\rho}(0, g^{-1}B_1), \boldsymbol{\Phi}_{\rho}(0, g^{-1}B_2)] = [\boldsymbol{\Phi}_{\rho}(0, A_1), \boldsymbol{\Phi}_{\rho}(0, A_2)]$$

$$= \boldsymbol{\Phi}_{\rho}(-2A_1 \vee \overline{A}_2 + 2A_2 \vee \overline{A}_1, 0)$$

where
$$g((2A_1 \vee \overline{A}_2 - 2A_2 \vee \overline{A}_1)X)$$
 $X \in \mathfrak{J}^c$
 $= g((2A_1 \vee \gamma A_2 - 2A_2 \vee \gamma A_1)X)$
 $= g((\gamma A_2, X)A_1 + ((A_1, \gamma A_2)/3)X - 4\gamma A_2 \times (A_1 \times X)$
 $-((\gamma A_1, X)A_2 + ((A_2, \gamma A_1)/3)X - 4\gamma A_1 \times (A_2 \times X)))$
 $= (\gamma A_2, X)gA_1 + ((A_1, \gamma A_2)/3)gX - 4gA_2 \circ g(\gamma A_1 \times \gamma X) + (A_2, A_1 \times X)E)$
 $-((\gamma A_1, X)gA_2 + ((A_2, \gamma A_1)/3)gX - 4gA_1 \circ g(\gamma A_2 \times \gamma X) + (A_1, A_2 \times X)E))$
 $= (\gamma A_2, X)B_1 - 4B_2 \circ (B_1 \circ gX - ((\gamma A_1, X)/4)E)$
 $-((\gamma A_1, X)B_2 - 4B_1 \circ (B_2 \circ gX - ((\gamma A_2, X)/4)E))$
 $= 4B_1 \circ (B_2 \circ gX) - 4B_2 \circ (B_1 \circ gX)$
 $= B_1B_2(gX) + B_1(gX)B_2 + B_2(gX)B_1 + (gX)B_2B_1$
 $-(B_2B_1(gX) + B_2(gX)B_1 + B_1(gX)B_2 + (gX)B_1B_2)$
 $= [B_1, B_2](gX) - (gX)[B_1, B_2] = g((d\varphi[B_1, B_2])X).$

Therefore we have $\Phi_{\rho}(-d\varphi[B_1, B_2], 0) = [\Phi_{\rho}(0, g^{-1}B_1), \Phi_{\rho}(0, g^{-1}B_2)].$ Thus Proposition 3 has been proved.

3. C-isomorphism χ between \mathfrak{P}^c and $\mathfrak{S}(8, C) \oplus \mathfrak{S}(8, C)$

Let $\mathfrak{S}(8, C)$ denote the 28 dimensional vector space over C of all 8×8 complex skew-symmetric matrices:

$$\mathfrak{S}(8, \ C) = \{ S \in M(8, \ C) \mid {}^{t}S = -S \}.$$

We give a C-isomorphism $\chi: \mathfrak{P}^C \to \mathfrak{S}(8, C) \oplus \mathfrak{S}(8, C)$ by $\gamma = h\epsilon \tilde{g}\gamma_2$

where γ_2 , \tilde{g} , ε , h are C-isomorphisms defined by

 $\gamma_2: \mathfrak{P}^c \to \mathfrak{P}^c, \ \gamma_2(X, Y, \xi, \eta) = (X, \gamma Y, \xi, \eta),$ $\tilde{g}: \mathfrak{P}^c \to \mathfrak{J}(4, H)^c \oplus \mathfrak{J}(4, H)^c,$ $\tilde{g}(X, Y, \xi, \eta) = (gX - (\xi/2)E, gY - (\eta/2)E).$

 $\varepsilon: \mathfrak{J}(4, H)^c \oplus \mathfrak{J}(4, H)^c \to \mathfrak{J}(4, H)^c \oplus \mathfrak{J}(4, H)^c, \ \varepsilon(M+iN, M'+iN')$ = (M+iM', N+iN'), where $M, N, M', N' \in \mathfrak{J}(4, H)$,

 $h: \mathfrak{J}(4, H)^c \oplus \mathfrak{J}(4, H)^c \to \mathfrak{S}(8, C) \oplus \mathfrak{S}(8, C), \ h(K, L) = (k(K)J, k(L)J).$

Remark. put $(\mathfrak{P}^c)_{\rho} = \{P \in \mathfrak{P}^c \mid \rho P = P\}$. Then the complexification $((\mathfrak{P}^c)_{\rho})^c = \{P_1 + iP_2 \mid P_1, P_2 \in (\mathfrak{P}^c)_{\rho}\}$ is \mathfrak{P}^c . Now, the restriction $\chi' = \chi \mid (\mathfrak{P}^c)_{\rho} : (\mathfrak{P}^c)_{\rho} \to \mathfrak{S}(8, C)$ of χ is

 $\chi'(P) = \chi'(X, Y, \xi, \eta) = k(gX - (\xi/2)E)J + ik(g(\gamma Y) - (\eta/2)E)J, P \in (\mathfrak{B}^c)_{\rho}$ and the original χ is the complexification of this χ' .

4. Homomorphism $\psi : SU(8) \rightarrow (E_7)_{\rho}$

We define a homomorphism $\psi : SU(8) \to (E_7)_{\rho}$ by

$$\psi(A)P = \chi^{-1}(A(\chi(P))^t A), \quad P \in \mathfrak{P}^c.$$

First of all, we must show $\psi(A) \in (E_7)_\rho$ for $A \in SU(8)$. To show this, it suffices to prove for their Lie algebras (because SU(8) is connected), that is, the differential homomorphism $d\psi: \mathfrak{Su}(8) \to \operatorname{Hom}_{\mathcal{C}}(\mathfrak{P}^c, \mathfrak{P}^c)$ of ψ defined by

$$d\psi(D)P = \chi^{-1}(D(\chi(P)) + (\chi(P))^t D), \quad P \in \mathfrak{P}^C$$

coincides with the mapping $d\psi : \mathfrak{gu}(8) \to (\mathfrak{e}_7)_{\rho}$ defined in Proposition 3.

(1) For D=k(C), $C\in\mathfrak{sp}(4)$, $(X,\ Y,\ \xi,\ \eta)\in\mathfrak{P}^c$, $d\psi(k(C))(X,\ Y,\ \xi,\ \eta)$ is

$$\begin{bmatrix} X \\ Y \\ \xi \\ \eta \end{bmatrix} \xrightarrow{\gamma_2} \begin{bmatrix} X \\ \gamma Y \\ \xi \\ \eta \end{bmatrix} \xrightarrow{\tilde{g}} \begin{bmatrix} gX - (\xi/2)E \\ g(\gamma Y) - (\eta/2)E \end{bmatrix} \xrightarrow{\text{put}} \begin{bmatrix} M + iN \\ M' + iN' \end{bmatrix}, \ M, \ N, \ M', \ N' \in \Im(4, \ H),$$

$$\stackrel{\varepsilon}{\to} \begin{bmatrix} M+iM' \\ N+iN' \end{bmatrix} \stackrel{h}{\to} \begin{bmatrix} k(M+iM')J \\ k(N+iN')J \end{bmatrix} \rightarrow \begin{bmatrix} k(C)k(M+iM')J+k(M+iM')J^tk(C) \\ k(C)k(N+iN')J+k(N+iN')J^tk(C) \end{bmatrix} \\
= \begin{bmatrix} k(C(M+iM'))J+k((M+iM')C^*)J \\ k(C(N+iN'))J+k((N+iN')C^*)J \end{bmatrix} \stackrel{h^{-1}}{\to} \begin{bmatrix} C(M+iM')+(M+iM')C^* \\ C(N+iN')+(N+iN')C^* \end{bmatrix}$$

Thus we have $d\psi(k(C) = \Phi_{\rho}(d\varphi(C), 0)$.

 $d\psi(ik(B))(0, 0, 1, 0)$ is

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{\tilde{g}\gamma_{2}} \begin{bmatrix} -E/2 \\ 0 \end{bmatrix} \xrightarrow{\varepsilon} \begin{bmatrix} -E/2 \\ 0 \end{bmatrix} \xrightarrow{h} \begin{bmatrix} -J/2 \\ 0 \end{bmatrix} \xrightarrow{-1} \begin{bmatrix} -(ik(B)J + Ji^{t}k(B))/2 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} -ik(B)J \\ 0 \end{bmatrix} \xrightarrow{h^{-1}} \begin{bmatrix} -iB \\ 0 \end{bmatrix} \xrightarrow{\varepsilon^{-1}} \begin{bmatrix} 0 \\ -B \end{bmatrix} \xrightarrow{\tilde{g}^{-1}} \begin{bmatrix} 0 \\ -A \\ 0 \\ 0 \end{bmatrix} \xrightarrow{-1} \begin{bmatrix} 0 \\ A \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 2A & 0 & A \\ 2A & 0 & A & 0 \\ 0 & A & 0 & 0 \\ A & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \boldsymbol{\varphi}_{\rho}(0, A) \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

And $d\psi(ik(B))(X, 0, 0, 0)$ is

$$\begin{bmatrix} X \\ X \\ 0 \\ 0 \\ 0 \end{bmatrix} \underbrace{ \underbrace{ \text{put} } }_{0} \begin{bmatrix} \begin{bmatrix} \xi_1 & a_3 + b_3e & \bar{a}_2 - b_2e \\ \bar{a}_3 - b_3e & \xi_2 & a_1 + b_1e \\ a_2 + b_2e & \bar{a}_1 - b_1e & \xi_3 \end{bmatrix} + i \begin{bmatrix} \eta_1 & c_3 + d_3e & \bar{c}_2 - d_2e \\ \bar{c}_3 - d_3e & \eta_2 & c_1 + d_1e \\ c_2 + d_2e & \bar{c}_2 - d_1e & \eta_3 \end{bmatrix} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

 $=-2(p, d_1)+2i(p, b_1)$.

$$\begin{split} \vec{\underline{\mathcal{E}}} & \left[\begin{bmatrix} \lambda_1 - d_1 - d_2 - d_3 \\ -\bar{d}_1 & \lambda_2 & a_3 & \bar{a}_2 \\ -\bar{d}_2 & \bar{a}_3 & \lambda_3 & a_1 \\ -\bar{d}_3 & a_2 & \bar{a}_1 & \lambda_4 \end{bmatrix} + i \begin{bmatrix} \mu_1 & b_1 & b_2 & b_3 \\ \bar{b}_1 & \mu_2 & c_3 & \bar{c}_2 \\ \bar{b}_2 & \bar{c}_3 & \mu_3 & c_1 \\ \bar{b}_3 & c_2 & \bar{c}_1 & \mu_4 \end{bmatrix} \right] \underbrace{=}_{\text{Dut}} \begin{bmatrix} M + iN \\ 0 \end{bmatrix} \\ \vec{b} & \begin{bmatrix} M \end{bmatrix} \vec{h} \begin{bmatrix} k(M)J \\ k(N)J \end{bmatrix} \rightarrow \begin{bmatrix} ik(B)k(M)J + k(M)Ji^*k(B) \\ ik(B)k(N)J + k(N)Ji^*k(B) \end{bmatrix} = \begin{bmatrix} ik(BM + MB)J \\ ik(BN + NB)J \end{bmatrix} \\ \vec{b}^{-1} & \begin{bmatrix} i(BM + MB) \\ i(BN + NB) \end{bmatrix} \stackrel{\mathcal{E}^{-1}}{\rightarrow} \begin{bmatrix} (BM + MB) + i(BN + NB) \end{bmatrix} \\ = \begin{bmatrix} 2(p, d_1) - \hat{c}_1p - pa_3 - p\bar{a}_2 \\ -\hat{c}_1\bar{p} & 2(p, d_1) & \bar{p}d_2 & \bar{p}d_3 \\ -a_3\bar{p} & \bar{d}_2p & 0 & 0 \\ -a_2\bar{p} & \bar{d}_3p & 0 & 0 \end{bmatrix} + i \begin{bmatrix} -2(p, b_1) - \eta_1p - pc_3 - p\bar{c}_2 \\ -\eta_1\bar{p} & -2(p, b_1) - \bar{p}b_2 - \bar{p}b_3 \\ -\bar{c}_3\bar{p} & -\bar{b}_3p & 0 & 0 \end{bmatrix} \\ \vec{d}_3p - (pc_3)e & \eta_1pe & 0 & -\eta_1pe \\ -2(p, d_1) + 2i(p, b_1) & 0 & -\xi_1pe \\ -2(p, d_1) + 2i(p, b_1) & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\eta_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\eta_1pe & 0 & -\xi_1pe \\ -2(p, d_1) + 2i(p, b_1) & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\eta_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\eta_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & 0 & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & -\xi_1pe & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_1pe & -\xi_1pe & -\xi_1pe \\ -\bar{b}_3p - (pa_3)e & -\xi_$$

Similarly, we have
$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \to \mathcal{Q}_{\rho}(0, A) \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 and $\begin{bmatrix} 0 \\ Y \\ 0 \\ 0 \end{bmatrix} \to \mathcal{Q}_{\rho}(0, A) \begin{bmatrix} 0 \\ Y \\ 0 \\ 0 \end{bmatrix}$. Thus

we have $d\psi(ik(B)) = \Phi_{\rho}(0, A) = \Phi_{\rho}(0, g^{-1}B)$.

(3) For other generators of $\mathfrak{Su}(8)$, that is, for D=ik(B), B=gA, where $A=iF_{j}(pe)$, $p\in H$, j=2, 3, $A=E_{1}-E_{j}$, j=2, 3 and $A=F_{j}(p)$, $P\in H$, j=1,2,3, we have also

$$d\psi(ik(B)) = \Phi_{\rho}(0, g^{-1}B)$$

by the straightforward calculations as the above (1), (2).

All together (1),(2),(3), we see that the homomorphism $\psi: SU(8) \to (E_7)_{\rho}$ is well-defined.

5. Isomorphism $(E_7)_{\rho} \cong SU(8)/\mathbb{Z}_2$

Our aim of this section is to prove that $\psi: SU(8) \to (E_7)_{\rho}$ is onto.

Lemma 4. For $a \in \mathbb{R}$, the linear transformation of \mathfrak{P}^c defined by

$$\alpha_{i}(a) = \begin{bmatrix} 1 + (\cos|a| - 1)p_{i} & (2a/|a|)\sin|a|E_{i} & 0 & -(a/|a|)\sin|a|E_{i} \\ -(2a/|a|)\sin|a|E_{i} & 1 + (\cos|a| - 1)p_{i} & (a/|a|)\sin|a|E_{i} & 0 \\ 0 & -(a/|a|)\sin|a|E_{i} & \cos|a| & 0 \\ (a/|a|)\sin|a|E_{i} & 0 & 0 & \cos|a| \end{bmatrix}$$

(if a = 0, then $(a/|a|)\sin|a|$ means 0) belongs to the group $\psi(SU(8))$, i = 1, 2, 3, where the mapping $p_i: \Im^c \to \Im^c$ is defined by

$$p_{i} \begin{bmatrix} \xi_{1} & x_{3} & \bar{x}_{2} \\ \bar{x}_{3} & \xi_{2} & x_{1} \\ x_{2} & \bar{x}_{1} & \xi_{3} \end{bmatrix} = \begin{bmatrix} \xi_{1} & \delta_{i3}x_{3} & \delta_{i2}\bar{x}_{2} \\ \delta_{i3}\bar{x}_{3} & \xi_{2} & \delta_{i1}x_{1} \\ \delta_{i2}x_{2} & \delta_{i1}\bar{x}_{1} & \xi_{3} \end{bmatrix}$$

(where δ_{is} is the Kronecker's delta) and the action of $\alpha_i(a)$ on \mathfrak{P}^{C} is defined as similar to that of $\Phi(\phi, A, B, \nu)$ in §1.3.

Proof. For $\Phi_{\rho}(0, -aE_i) \in d\psi(\mathfrak{Su}(8))$, we have $a_i(a) = \exp \Phi_{\rho}(0, -aE_i)$, hence $a_i(a) \in \psi(SU(8))$, i = 1, 2, 3.

We define a subspace $(\mathfrak{M}^{C})_{\rho}$ of \mathfrak{B}^{C} by

$$(\mathfrak{M}^{\mathcal{C}})_{\rho} = \{ P \in \mathfrak{M}^{\mathcal{C}} \mid \rho P = P \}.$$

Lemma 5. Any element $P \in (\mathfrak{M}^c)_{\rho}$ can be transformed in a real diagonal form by a certain element $\alpha \in \psi(SU(8))$:

 $\alpha P = (X, Y, \xi, \eta), \quad X, Y \text{ are real diagonal forms and } \xi, \eta \in \mathbf{R}.$ Moreover we can choose $\alpha \in \psi(SU(8))$ so that $\xi > 0$.

Proof. Let $P=(X,Y,\xi,\eta)\in(\mathbb{M}^C)_\rho$. First assume that $\xi\neq 0$. Then $\rho Y=Y,\ \bar{\xi}=\xi,\ \bar{\eta}=\eta$ and $X=(Y\times Y)/\xi$. Since $g(\gamma Y)\in\mathfrak{F}(4,H)_0$ (Lemma 1 (2)), we can choose $C\in Sp(4)$ so that $C(g(\gamma Y))C^*$ is real diagonal, so $\gamma\phi(C)\gamma Y=g^{-1}(C(g(\gamma Y)C^*))$ has a real diagonal form. In this case, $\varphi(C)X=\varphi(C)((Y\times Y)/\xi)=(\gamma\varphi(C)\gamma Y\times\gamma\varphi(C)\gamma Y)/\xi$ is also real diagonal, hence $\psi(C)P$ is a diagonal form. In the case of $\eta\neq 0$, the statement is also valid. Next we consider the case P=(X,Y,0,0).

$$Y \neq 0$$
. Choose $C \in Sp(4)$ such that $\gamma \varphi(C) \gamma Y = \begin{bmatrix} \eta_1 & 0 & 0 \\ 0 & \eta_2 & 0 \\ 0 & 0 & \eta_3 \end{bmatrix}$, $\eta_i \in \mathbf{R}$.

Since $\gamma \varphi(C) \gamma Y \neq 0$, we may assume $\eta_1 \neq 0$. Operate $\alpha_1(-\pi/2) \in \psi(SU(8))$ of Lemma 4 on $\psi(C)P$. Then

$$\alpha_1(-\pi/2)\psi(C)P = (*, *, \eta_1, *).$$

So, we can reduce to the first case $\xi \neq 0$. In the case of P = (X, Y, 0, 0), $X \neq 0$, the statement is also valid. If $\xi < 0$, then operate $\alpha_1(\pi)$ on αP . Then ξ becomes a positive number. Noting $\alpha_3(-\pi/2)\alpha_2(\pi/2)\alpha_1(\pi/2)(0, 0, 0, 1) = (0, 0, 1, 0)$, then we can always reduce to the case $\xi \neq 0$. Thus Lemma 5 is proved.

Now, we shall prove that $\psi: SU(8) \to (E_7)_{\rho}$ is onto. For a given $\alpha \in (E_7)_{\rho}$, consider an element $P = \alpha(0, 0, 1, 0) \in (\mathfrak{M})_{\rho}$. From Lemma 5, there exists $\beta \in \psi(SU(8))$ such that

$$\beta P = \left((1/\xi) \begin{bmatrix} \eta_2 \eta_3 & 0 & 0 \\ 0 & \eta_3 \eta_1 & 0 \\ 0 & 0 & \eta_1 \eta_2 \end{bmatrix}, \begin{bmatrix} \eta_1 & 0 & 0 \\ 0 & \eta_2 & 0 \\ 0 & 0 & \eta_3 \end{bmatrix}, \ \xi, \ (\eta_1 \eta_2 \eta_3)/\xi^2 \right), \ \xi > 0, \ \eta_i \in \mathbf{R}.$$

Then the condition $\langle P, P \rangle = 1$ is

$$(1+(|\eta_1|/\xi)^2)(1+(|\eta_2|/\xi)^2)(1+(|\eta_3|/\xi)^2)=1/\xi^2.$$

Choose $r_i \in \mathbb{R}$, $\pi/2 > r_i \ge 0$, such that $\tan r_i = |\eta_i|/\xi$, i = 1, 2, 3. Then we have

$$\xi = \cos r_1 \cos r_2 \cos r_3$$
.

Put $a_i = (\eta_i/|\eta_i|)r_i$ (if $\eta_i = 0$, then $(\eta_i/|\eta_i|)r_i$ means 0), i = 1, 2, 3. Then we have

$$\beta P = \alpha_3(a_3)\alpha_2(a_2)\alpha_1(a_1)(0, 0, 1, 0)$$

(cf. [3, Theorem 9]), that is,

$$\alpha_1(a_1)^{-1}\alpha_2(a_2)^{-1}\alpha_3(a_3)^{-1}\beta\alpha(0, 0, 1, 0) = (0, 0, 1, 0).$$

Hence $\tilde{\alpha} = \alpha_1(\alpha_1)^{-1}\alpha_2(\alpha_2)^{-1}\alpha_3(\alpha_3)^{-1}\beta\alpha \in E_6$, moreover $\rho\tilde{\alpha} = \tilde{\alpha}\rho$, therefore

$$\tilde{\alpha} = \alpha_1(\alpha_1)^{-1}\alpha_2(\alpha_2)^{-1}\alpha_3(\alpha_3)^{-1}\beta\alpha \in (E_6)_{\rho} = \varphi(S\rho(4)) \subset \psi(SU(8)).$$

Since $a_i(a_i)$ and $\beta \in \psi(SU(8))$, α is also $\alpha \in \psi(SU(8))$, that is, ψ is onto. Finally, $\text{Ker } \psi = \{E, -E\}$ is easily obtained. Thus we have the following theorem which was our first aim.

Theorem 6. The subgroup $(E_7)_{\rho} = \{\alpha \in E_7 \mid \rho\alpha = \alpha\rho\}$ of the group E_7 is isomorphic to the group $SU(8)/\mathbb{Z}_2$, where $\mathbb{Z}_2 = \{E, -E\}$.

II. Lie group $E_{7(7)}$

6. Preliminaries

6.1. Split Cayley algebra \mathfrak{C}' and split exceptional Jordan algebra \mathfrak{F}' . Let $\mathfrak{C}' = H \oplus He$ denote the split Cayley algebra with the multiplication

$$(a+be)(c+de) = (ac+\bar{d}b)+(b\bar{c}+da)e.$$

And let $\mathfrak{J}' = \{X \in \mathcal{M}(3, \mathfrak{C}') \mid X^* = X\}$ denote the split exceptional Jordan algebra with the multiplication $X \circ Y = (XY + YX)/2$. In \mathfrak{J}' also, the inner product $(X, Y) = \operatorname{tr}(X \circ Y)$, the crossed product $X \times Y$, the trilinear form $(X, Y, Z)' = (X, Y \times Z)'$, and the determinant $\det X = (X, X, X)'/3$ are defined as same as in \mathfrak{J} and \mathfrak{J}^c . Moreover we define a positive definite inner product (X, Y) in \mathfrak{J}' by

$$(X, Y) = (X, \gamma Y)' = (\gamma X, Y)'$$

where $\gamma: \mathfrak{J}' \to \mathfrak{J}'$ is the involution defined as $\gamma: \mathfrak{J} \to \mathfrak{J}$ in §1.1.

6.2. Lie group $E_{6(6)}$ and subgroup $(E_{6(6)})_K$. We have shown in [6] that the group

$$E_{6(6)} = \{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{J}', \mathfrak{J}') \mid \det \alpha X = \det X \}$$

is a connected non-compact simple Lie group of type $E_{6(6)}$ and found a subgroup of type C_4 in $E_{6(6)}$. To find this subgroup, we used a mapping $f: \mathfrak{J}' \to \mathfrak{J}(4, \mathbf{H})_0$,

$$f\begin{bmatrix} \xi_1 & a_3 + b_3 e & \overline{a}_2 - b_2 e \\ \overline{a}_3 - b_3 e & \xi_2 & a_1 + b_1 e \\ a_2 + b_2 e & \overline{a}_1 - b_1 e & \xi_3 \end{bmatrix} = \begin{bmatrix} \lambda_1 & b_1 & b_2 & b_3 \\ \overline{b}_1 & \lambda_2 & a_3 & \overline{a}_2 \\ \overline{b}_2 & \overline{a}_3 & \lambda_3 & a_1 \\ \overline{b}_3 & a_2 & \overline{a}_1 & \lambda_4 \end{bmatrix}$$

where $\xi_i \in \mathbb{R}$, a_i , $b_i \in \mathbb{H}$ and $\lambda_1 = (\xi_1 + \xi_2 + \xi_3)/2$, $\lambda_2 = (\xi_1 - \xi_2 - \xi_3)/2$, $\lambda_3 = (\xi_2 - \xi_1 - \xi_3)/2$, $\lambda_4 = (\xi_3 - \xi_1 - \xi_2)/2$.

Lemma 7 ([6, Lemma 1]). The mapping $f: \mathfrak{J}' \to \mathfrak{J}(4, H)_0$ is a **R**-isomorphism satisfying

$$f(X \times Y) = f(\gamma X) \circ f(\gamma Y) - ((X, Y)/4)E$$
.

Now, we have shown that a subgroup $(E_{6(6)})_K$ of $E_{6(6)}$

$$(E_{6(6)})_K = E_{6(6)} \cap O(\mathfrak{J}') = \{ \alpha \in E_{6(6)} \mid (\alpha X, \alpha Y) = (X, Y) \}$$

is isomorphic to the group $Sp(4)/\mathbb{Z}_2$ by the correspondence

$$\varphi: Sp(4) \longrightarrow (E_{6(6)})_{K'} \quad \varphi(C)X = f^{-1}(C(fX)C^*), \quad X \subseteq \mathfrak{J}'$$

with $Ker\varphi = \mathbb{Z}_2 = \{E, -E\}$. Therefore its Lie algebra

$$(\mathfrak{e}_{6(6)})_K = \{ \phi \in \mathfrak{e}_{6(6)} \mid (\phi X, Y) = -(X, \phi Y) \}.$$

is isomorphic to $\mathfrak{sp}(4)$ by the correspondence

$$d\varphi: \operatorname{\mathfrak{Sp}}(4) \longrightarrow (\mathfrak{e}_{6(6)})_{K'} \quad d\varphi(C)X = f^{-1}(C(fX) - (fX)C), \quad X \in \mathfrak{J}'.$$

Finally, we note that, for A, $B \in \mathfrak{J}'$, $A \vee B \in \mathfrak{e}_{6(6)}$ is defined by $(A \vee B)X = ((B, X)')/2)A + ((A, B)')/6)X - 2B \times (A \times X)$, $X \in \mathfrak{J}'$ analogously as $A \vee B \in \mathfrak{e}_6{}^C$ in §1.2.

7. Lie group $E_{7(7)}$

Let \mathfrak{P}' be a 56 dimensional vector space over \mathbf{R} defined by

$$\mathfrak{P}'=\mathfrak{J}'\oplus\mathfrak{J}'\oplus R\oplus R.$$

In \mathfrak{P}' , the symmetric inner product (P, Q)', the skew-symmetric inner product $\{P, Q\}'$ and one more positive definite inner product (P, Q) are defined respectively by

$$(P, Q)' = (X, Z)' + (Y, W)' + \xi \zeta + \eta \omega,$$

 $\{P, Q\}' = (X, W)' - (Y, Z)' + \xi \omega - \eta \zeta,$
 $(P, Q) = (X, Z) + (Y, W) + \xi \zeta + \eta \omega$

for $P = (X, Y, \xi, \eta), Q = (Z, W, \zeta, \omega) \in \mathfrak{P}'$.

For $\phi \in e_{6(6)}$, $A, B \in \mathcal{J}$ and $\nu \in \mathbf{R}$, a linear transformation $\Phi(\phi, A, B, \nu)$ of \mathcal{Y} is defined by

$$\Phi(\phi, A, B, \nu) \begin{bmatrix} X \\ Y \\ \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \phi X - (\nu/3)X + 2B \times Y + \eta A \\ 2A \times X + \phi' Y + (\nu/3)Y + \xi B \\ (A, Y)' + \nu \xi \\ (B, X)' - \nu \eta \end{bmatrix}$$

where $\phi' \in \mathfrak{e}_{6(6)}$ denotes the skew-transpose of ϕ with respect to the inner product $(X, Y)': (\phi X, Y)' + (X, \phi' Y)' = 0$. For $P, Q \in \mathfrak{P}'$, a linear transformation

$$P \times Q = \mathcal{O}(\phi, A, B, \nu)$$

of \mathfrak{P}' is analogously defined as $P \times Q$ in \mathfrak{P} or \mathfrak{P}^c (use (X, Y)' instead of (X, Y)) and define a submanifold \mathfrak{M}' of \mathfrak{P}' by

$$\mathfrak{M}' = \{ P \in \mathfrak{P}' \mid P \times P = 0, \ P \neq 0 \}.$$

Now, we define a group $E_{7(7)}$ by

$$E_{7(7)} = \{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{P}', \mathfrak{P}') \mid \alpha \mathfrak{M}' = \mathfrak{M}', \{ \alpha P, \alpha Q \}' = \{ P, Q \}' \}.$$

(Later, we see that this group $E_{7(7)}$ is connected (Theorem 13), therefore it may be also defined by (see [4])

$$E_{7(7)} = \{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{P}', \mathfrak{P}') \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q \}. \}$$

The Lie algebra $e_{7(7)}$ of the group $E_{7(7)}$ is

$$e_{7(7)} = \{ \phi(\phi, A, B, \nu) \in \text{Hom}_{R}(\mathfrak{P}', \mathfrak{P}') \mid \phi \in e_{6(6)}, A, B \in \mathfrak{F}', \nu \in R \}$$

(see [2],[3]). Since the complexification of the Lie algebra $e_{7(7)}$ is $e_7 e_7$, the group $E_{7(7)}$ is a simple Lie group of type E_7 .

The group $E_{7(7)}$ contains a subgroup

$$\tilde{E}_{6(6)} = \left\{ \alpha \in E_{7(7)} \middle| \begin{array}{l} \alpha(0, 0, 1, 0) = (0, 0, 1, 0) \\ \alpha(0, 0, 0, 1) = (0, 0, 0, 1) \end{array} \right\}$$

which is isomorphic to the group $E_{6(6)}$ by the correspondence

$$E_{6(6)} \ni \alpha \longleftrightarrow \alpha = \begin{bmatrix} \alpha & 0 & 0 & 0 \\ 0 & \alpha^{-1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \in \tilde{E}_{6(6)} \subset E_{7(7)}$$

where ' α is the transpose of $\alpha \in E_{6(6)}$ with respect to the inner product $(X, Y)': (\alpha X, Y)' = (X, '\alpha Y)'$.

In order to investigate the group $E_{7(7)}$, we consider a subgroup $(E_{7(7)})_K$ of $E_{7(7)}$:

$$(E_{7(7)})_K = E_{7(7)} \cap O(\mathfrak{P}') = \{\alpha \in E_{7(7)} \mid (\alpha P, \alpha Q) = (P, Q)\}$$

Proposition 8. The Lie algebra $(e_{7(7)})_K$ of the group $(E_{7(7)})_K$ is

$$\begin{aligned} (e_{7(7)})_{K} &= \{ \boldsymbol{\Phi} \in e_{7(7)} \mid (\boldsymbol{\Phi}P, \ Q) = -(P, \ \boldsymbol{\Phi}Q) \} \\ &= \{ \boldsymbol{\Phi}'(\boldsymbol{\phi}, \ A) \in e_{7(7)} \mid \boldsymbol{\phi} \in (e_{6(6)})_{K}, \ A \in \mathfrak{F}' \} \\ &= \{ \boldsymbol{\Phi}'(d\varphi(C), \ f^{-1}B) \in e_{7(7)} \mid C \in \mathfrak{sp}(4), \ B \in \mathfrak{F}(4, \ \boldsymbol{H})_{0} \} \end{aligned}$$

where $\Phi'(\phi, A) = \Phi(\phi, A, -\gamma A, 0)$. And it is isomorphic to the special unitary Lie algebra $\mathfrak{gu}(8)$ by the correspondence

$$k(C) + ik(B) \in \mathfrak{gu}(8) \xrightarrow{d\psi} \Phi'(d\varphi(C), f^{-1}B) \in (\mathfrak{e}_{7(7)})_K$$

where $C \in \mathfrak{sp}(4)$, $B \in \mathfrak{J}(4, \mathbf{H})_0$.

Proof. The proof is similar to that of Proposition 3 by using Lemma 7.

8. R-isomorphism χ between \mathfrak{B}' and $\mathfrak{S}(8, C)$

We give an **R**-isomorphism $\chi: \mathfrak{P}' \to \mathfrak{S}(8, \mathbb{C})$ by

$$\chi = h \varepsilon \tilde{f} \gamma_2$$

(cf. Remark of §3), where γ_2 , \tilde{f} , ε , h are R-isomorphisms defined by

$$\gamma_2: \mathfrak{P}' \to \mathfrak{P}', \ \gamma_2(X, Y, \xi, \eta) = (X, \gamma Y, \xi, \eta),$$

 $\tilde{f}: \mathfrak{P}' \to \mathfrak{J}(4, \mathbf{H}) \oplus \mathfrak{J}(4, \mathbf{H}), \ \tilde{f}(X, Y, \xi, \eta) = (fX - (\xi/2)E, fY - (\eta/2)E),$

$$\varepsilon: \Im(4, \mathbf{H}) \oplus \Im(4, \mathbf{H}) \rightarrow \Im(4, \mathbf{H})^{C}, \ \varepsilon(M, N) = M + iN,$$

 $h: \Im(4, H)^{C} \to \Xi(8, C), \ h(L) = k(L)J.$

9. Homomorphism $\psi: SU(8) \rightarrow (E_{7(7)})_K$

We define a homomorphism $\psi: SU(8) \to (E_{7(7)})_K$ by

$$\psi(A)P = \chi^{-1}(A(\chi(P))^t A) \qquad P \in \mathfrak{P}'.$$

To show that $\psi(A) \in (E_{7(7)})_K$ for $A \in SU(8)$, it suffices to prove for their Lie algebras, that is, the differential homomorphism $d\psi : \mathfrak{Su}(8) \to \operatorname{Hom}_R(\mathfrak{P}', \mathfrak{P}')$ of ψ :

$$d\psi(D)P = \gamma^{-1}(D(\gamma(P)) + \gamma(P)^{t}D) \qquad P \in \mathfrak{A}'$$

coincides with the mapping $d\psi : \mathfrak{gu}(8) \to (\mathfrak{e}_{7(7)})_K$ defined in Proposition 8. However the proof is the same as the proof of the section 4.

10. Isomorphism $(E_{7(7)})_K \cong SU(8)/\mathbb{Z}_2$

We shall show that $\psi: SU(8) \to (E_{7(7)})_K$ is onto. For this purpose, if we prepare the following three lemmas, we can attain our aim by using the same way as the section 5.

Lemma 9. For $a \in \mathbb{R}$, linear transformations $\alpha_i(a)$ of \mathfrak{P}' defined analogously as Lemma 4 belongs to $\psi(SU(8))$, i = 1, 2, 3.

Lemma 10. Any element $P \in (\mathfrak{M}')_K = \{P \in \mathfrak{M}' \mid (P, P) = 1\}$ can be transformed in a diagonal form by a certain element $a \in \psi(SU(8))$:

 $aP = (X, Y, \xi, \eta)$ X, Y are diagonal forms, $\xi > 0, \eta \in \mathbb{R}$.

Lemma 11. If $\alpha \in (E_{7(7)})_K$ satisfies $\alpha(0, 0, 1, 0) = 0, 0, 1, 0)$, then $\alpha(0, 0, 0, 1) = (0, 0, 0, 1)$.

Now, since it is easy to see that the kernel of $\psi: SU(8) \to (E_{7(7)})_K$ is $\{E, -E\}$, thus we have

Proposition 12. The group $(E_{7(7)})_K = \{\alpha \in E_{7(7)} \mid (\alpha P, \alpha Q) = (P, Q)\}$ is isomorphic to the group $SU(8)/\mathbb{Z}_2$, where $\mathbb{Z}_2 = \{E, -E\}$.

11. Polar decomposition of $E_{7(7)}$

We define a linear transformation ι' of \mathfrak{P}' by

$$\iota'(X, Y, \xi, \eta) = (Y, -X, \eta, -\xi).$$

Then $\iota' \in E_{7(7)}$, $\iota'^2 = -1$ and $\{P, Q\}' = -(\iota P, Q)' = (P, \iota Q)'$ for $P, Q \in \mathfrak{P}'$. Therefore put

$$v = \gamma \iota' = \iota' \gamma$$

Then $v \in E_{7(7)}$, $v^2 = -1$ and we have

$$\{P, Q\}' = -(vP, Q) = (P, vQ), \qquad P, Q \in \mathfrak{P}'.$$

To give a polar decomposition of the group $E_{7(7)}$, we prepare

Lemma 13. The group $E_{7(7)}$ is an algebraic subgroup of the general linear group $GL(56, \mathbf{R}) = \operatorname{Iso}_{\mathbf{R}}(\mathfrak{P}', \mathfrak{P}')$ and satisfies the condition that $\alpha \in E_{7(7)}$ implies ${}^{t}\alpha \in E_{7(7)}$, where ${}^{t}\alpha$ is the transpose of α with respect to the inner product $(P, Q) : (\alpha P, Q) = (P, {}^{t}\alpha Q)$.

Proof. Since $('\alpha P, Q) = (P, \alpha Q) = \{vP, \alpha Q\}' = \{\alpha^{-1}vP, Q\}' = -(v\alpha^{-1}vP, Q)'$ for $\alpha \in E_{7(7)}$, we have

$${}^{t}\alpha = -v\alpha^{-1}v \in E_{7(7)}.$$

And it is obvious that the group $E_{7(7)}$ is algebraic, because it is defined by algebraic relations $\alpha \mathfrak{M}' = \mathfrak{M}'$, $\{\alpha P, \alpha Q\}' = \{P, Q\}'$.

Using Chevalley's lemma ([1, Lemma 2, p. 201]), we have a homeomorphism

$$E_{7(7)} \simeq (E_{7(7)} \cap O(\mathfrak{P}')) \times \mathbf{R}^d$$

 $\simeq SU(8)/\mathbf{Z}_2 \times \mathbf{R}^d$ (Proposition 12).

Since $E_{7(7)}$ is a simple Lie group of type E_7 , the dimension of $E_{7(7)}$ is 133. Hence the dimension d of the Euclidean part and the Cartan index i of $E_{7(7)}$ are calculated respectively as follows:

$$d = \dim E_{7(7)} - \dim SU(8) = 133 - 63 = 70,$$

 $i = \dim E_{7(7)} - 2\dim SU(8) = 133 - 2 \times 63 = 7.$

Thus we have the following theorem which was our second aim.

Theorem 14. The group $E_{7(7)}$ is homeomorphic to the topological product of the group $SU(8)/\mathbb{Z}_2$ and a Euclidean space \mathbb{R}^{70} :

$$E_{7(7)} \simeq SU(8)/\mathbf{Z}_2 \times \mathbf{R}^{70}$$
.

In particular, $E_{7(7)}$ is a connected non-compact simple Lie group of type $E_{7(7)}$.

12. Center $z(E_{7(7)})$ of $E_{7(7)}$

Theorem 15. The center $z(E_{7(7)})$ of the group $E_{7(7)}$ is the cyclic group of order 2:

$$z(E_{7(7)}) = \{1, -1\}.$$

Proof. Let $\alpha \in z(E_{7(7)})$. From the commutativity with $v \in E_{7(7)}$, we have ${}^{\prime}\alpha = -v\alpha^{-1}v = -vv\alpha^{-1} = \alpha^{-1}$. Hence $\alpha \in (E_{7(7)})_{K'}$ therefore there exists $A \in SU(8)$ such that $\alpha = \psi(A)$. Furthermore

 $\alpha \in z((E_{7(7)})_K) = z(\psi(SU(8)))$ (z(G) denotes always the center of a group G and in this case we have)

=
$$\psi(z(SU(8)))$$

= $\psi\{p^{i}E, i = 0, 1, 2, \dots, 7\}, p = e^{i\pi^{i}4}$
= $\psi\{E, pE, p^{2}E, p^{3}E\}$
= $\{1, -v, -1, v\}$ (because $\psi(pE) = -v$).

However, $v_r - v$ are not contained in $z(E_{7(7)})$. In fact, for $r \in \mathbb{R}$, $r \neq 0$, define a linear transformation r of \mathfrak{P}' by

$$r(X, Y, \xi, \eta) = (r^{-1}X, rY, r^3\xi, r^{-3}\eta).$$

Then $r \in E_{7(7)}$ and $rv \neq vr$, $r(-v) \neq (-v)r$ for $r \neq 1$, because $rv(0, 0, 1, 0) = r(0, 0, 0, -1) = (0, 0, 0, -r^{-3})$, $vr(0, 0, 1, 0) = v(0, 0, r^{3}, 0) = (0, 0, 0, -r^{3})$. Thus we have $z(E_{7(7)}) = \{1, -1\}$.

REFERENCES

- [1] C. CHEVALLEY: Theory of Lie Groups I, Princeton Univ. Press, 1946.
- [2] H. FREUDENTHAL: Beziehungen der E₇ und E₈ zur Oktavenebene I, Nedel. Akad. Weten., Proc. Ser. A, 57, (1954), 218—230.

- [3] T. IMAI and I. YOKOTA: Simply connected compact simple Lie group $E_{7(-133)}$ of type E_{7i} J. Math. of Kyoto Univ. 21 (1981), 383—395.
- [4] T. IMAI and I. YOKOTA: Another definitions of exceptional simple Lie groups of type $E_{7(-25)}$ and $E_{7(-133)}$, J. Fac. Sci., Shinshu Univ. 15 (1980), 47-52.
- [5] T. IMAI and I. YOKOTA: Non-compact simple Lie group $E_{7(-25)}$ of type E_7 , J. Fac. Sci. Shinshu Univ. 15 (1980), 1-18.
- [6] О. Shukuzawa and I. Yokota: Non-compact Simple Lie Group $E_{6(6)}$ of Type E_6 , J. Fac. Sci., Shinshu Univ. 14 (1979), 1–13.
- [7] O. YASUKURA and I. YOKOTA: Subgroup (SU(2) × Spin(12))/Z₂ of compact simple Lie group E₇ and non-compact simple Lie group E_{7,σ} of type E₇₍₋₅₎, Hiroshima Math. J. 12 (1982), 59-76.
- [8] I. YOKOTA: Simply connected compact simple Lie group $E_{6(-78)}$ of type E_{6} and its involutive automorphisms, J. Math. of Kyoto Uuiv. 20 (1980), 447–473.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
SHINSHU UNIVERSITY

(Received September 29, 1981)