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SUBGROUP SU(8)/Z: OF COMPACT SIMPLE LIE
GROUP E7 AND NON-COMPACT SIMPLE LIE
GROUP Exm OF TYPE E;

IcHirO YOKOTA

It is known that there exist four simple Lie groups of type E; up to
local isomorphism, one of them is compact and the others are non-compact.
We have shown that in [3], [4] the group

E; = {a € Isoc(RE, BO) | a(PXQ)a™! = aPXaQ, <aP, aQ> = <P, Q>}

is a simply connected compact simple Lie group of type £, and in [5], [7].
the groups

Er 25y = {@ € Isor(B, P) | a(PXQ)a™' =aP X aQ),
Exn-s={a<SIsoc(BC, RE) | dl PX Q)a™' = aP X aQ, <aP, a@Q>s=<P, Q>s)

are connected non-compact simple Lie groups of type Ey-25, E7-s) respec-
tively, and their polar decompositions are given by

Er-2s = (U(1) X Eg)/ Z3 X R*,
FErs = (SU(Z)XSpm(lZ))/ZZXRG“

In this paper, first we find a subgroup in E; which is isomorphic to
the group SU(8)/Z.. Next we show that the group

Exn={a € Isor (B, ¥) | a(PxQ)a' = aP X aQ)}

is a connected non-compact simple Lie group of type E77 with-the center
2(E7n) = {1, —1} and its polar decomposition is given by

Ezq = SU(B)/Z>x R™.

Our main method used in this paper is to give homomorphisms ¢ : SU(8)
— E; and ¢ : SU(8) — Eux explicitly.

I. Subgroup SU(8)/Z: of compact simple Lie group E7
1. Preliminaries

1.1. Cayley algebras €, €€ and exceptional Jordan algebras &, 3¢.
Let € = H @ He (H is the quaternionic field) denote the Cayley algebra
over the field R of real numbers with the multiplication
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(a+be)(c+de) = (ac—db)+(bc+ da)e

and € = {x;+ix: | x1. x2 € €} its complexification with respect to the

field C of complex numbers.
&L x3 X2
[X‘a & M}
x2 % &

denote the exceptional Jordan algebra with the multiplication
XY =(XY+YX)/2

and 3¢ ={X,+:X; | X), Xz € &} its complexification. In ¥ and 3¢, inner
products (X, Y), <X, Y, the crossed product X X Y, the trilinear form
(X, Y, Z) and the determinant detX are defined respectively by

(X, V)=t(XY) <X =X Y)=(X Y),
XXY=0@XY—tr(X)Y —tr( V)X +(tr(X)tr( V) —tr(X = Y))E),
(X, Y Z)=(X YxZ), detX=(X X X)/3

where 7 : 3¢ — Q€ denotes the complex conjugation : (X +iX2) = Xi—
iXs, X1, X2 €% (rX is also denoted by X) and E the 3X3 unit matrix.
(The other #x » unit matrix will be also denoted by E).

In § and 3¢ we adopt the following notations :

Let 3={Xe M@, €| X*=X)=

5,- = R, Xi = @J

1 00 000 0 0 0
E/=|0 0 0, E2=|0 1 0f, Es=|0 0 0},
0 0 0 000 0 01
0 00 0 0 x 0 x 0
Flx)=|0 0 x|, Fx)=|0 0 0| Fx)=|x 0 .
0 £ 0 x 00 0 00
Then the table of the crossed products among them are given by
E:XE; =0, EXEi = E,‘+2//2,
EIXFl(x) = _Fl'(;":)/Z? Elx FJ(x) = 01 Z + j:
Fx)xFi(y) = —(x, ¥)E,, Fix)X Fia(y) = Fio2(53)/2

where indexes are considered as mod 3.
Finally we define a linear involution y : 3 — & (resp. §¢ — &) by

&t as+bze a,—bse & as—bze @+ bee
Y| G3— bse & a1+ bie| =|a+bse & a1 —be
as+bie a,—be &3 az—bie a,+bie &3

where & € R (resp. C), a;, b: € H (resp. H¢ (the complexification of H)).
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1.2. Compact Lie group Es and subgroup (Es)o. We have shown in
[8] that the group

Es = {a € Is0c(3€, 3€) | detaX = detX, <aX, aY> =<X, Y>}
={a € Is0¢(3C. J€) | rar(X X Y) = aX XaY, <aX, aY)>=<X, V)}

is a simply connected compact simple Lie group of type Es and therefore
its Lie algebra

es = {¢ € Hom(3€. 3€) | (X X, X)=0. (X, V> = (X, ¢}

is a compact simple Lie algebra of type Es.

We have also found in [8] a subgroup of type C, in the group FEs.
For later use we review this subgroup. Let 3(4, H) ={X € M{, H) |
X* = X} denote the vector space of all 4 X4 quaternionic Hermitian ma-
trices and J(4, H)¢ = {Xi+iXz | X1, X: € 3(4, H)} its complexification.
In 3(4, H) and $(4, H)C, Jordan multiplications X o Y are defined by Xo Y
=(XY+YX)/2. Put 34, Hy={XeE34, H)| tr(X) =0} and let
J4, Hp={X €3, H)F | tr(X) =0} = {Xi+iX: | X1, X> € J4, H)}
be the complexification of 3(4. H). Now. we define a mapping g : 3¢—
4, H)of by

& as+bse a—be 7 c3tdie Cr—dae
gl | as—bse & a+belti| Ga—dse 72 ca+de
as+be a —bhe & Cc2+dre C—die 73

A —d —d: —ds m by by by

. —d Az as a: 1 b2 c3 &
= ph A +i1| -
—z{z as A3 a éz C3 M3 €1
—ds az as A4 bs c2 T pa

where &, 7. € R, a;, b;, ¢, di€ H and A = (E1+&+8)/2. A= (&
—&—8)/2, ls=(&2—&E—8&)/2. A= (&E—E—E)/2, i = (m+ n2+13)/2,
M2 = (771—772—773)/2 M3 = (712—771— 03)/2, M4 = (7)3—771“772)/2. And we
define a conjugate linear involutive transformation of J¢ by

o=1Iy=7r

Lemma 1 (1)([8, Lemma 17]). The mapping g : I¢— (4, H)o€ is
a C-isomorphism satisfying
gXXY)=g(yX)eg(rY)-((X, Y)/HE

where E is the 4X4 unit matrix,
(2) Put(3€)o={X€E3°| pX=X}. Then g induces ari R-isomorphism
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g : (39.— 34, H).
We have shown in [8, Theorem 18] that a subgroup (Es)e of Es
(Ee)o=1{a € Es | pa = ap}

is isomorphic to the group Sp(4)/Z, (where Sp(4) ={A € MU, H) | A*A
= E} is the symplectic group and Z, = {E, —E}) by the correspondence

¢ Spd)— (Es)e, #(C)X = g7 (C(gX)C*), X €3¢
with Kerg = Z,. Therefore its Lie algebra

(e6)o ={p E es | 0p = po)
is isomorphic to the symplectic Lie algebra gp(4) ={C € M4, H) | C* =
— C} by the correspondence
dp : 8p(4) = (e6)s. dp(C)X = g7/(C(gX)—(gX)C), X € 3°.
Finally, we note that the complexification Lie algebra es¢ of eg :
es® = {# € Homc(3¢, 39 | (#X, X, X) = 0}

is a simple Lie algebra over C of type Es. And, for A, B&€ 3¢, AV B
€ s is defined by

(AV B)X =((B. X)/2)A+((A, B)/6)X —2BX(AXX), X e&3°.

1.3. Compact Lie group E; and its Lie algebra ez, Let R¢ be a
96 dimensional vector space over C defined by
PE=JIDI*DCOC.
In R, the positive definite inner product <P, @) and the skew-symmetric
inner product {P. @} are defined respectively by
(P, @ =<KX, Z>+KY, W>+EL+ jw,
{P. Q=X W)—(Y, Z)+Ew—nt
for P=(X Y & 7). Q=(Z W { w)E B
For ¢ € ¢6¢, A, B €3 and v € C, we define a linear transformation
(¢, A, B. v) of RE by

X1 [e—(v/3)1 2B 0 ANX

2A ‘+ 1B 0|y

o(¢. A. B, v) ? =1 % ¢ é”/g) o o |le
7 | B 0 0 —vlil»n

[pX —(v/3)X+2BX Y+pA
2AX X+ Y+(v/3)Y+EB
(A, Y)+vé
(B. X)—vy
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where ¢ & ¢¢¢ denotes the skew-transpose of ¢ with respect to the inner
product (X, V) : (¢X. Y)+(X ¢Y)=0. For P=(X Y & 7), Q=(Z
W, & w) & B¢, we define a linear transformation PX Q of L€ by

p=—(XVW+ZVY)2,
A= -QYXW—-£&Z—-¢X)/4,
B=0Q2XXZ—3yW—-wY)/4,
v= (X W)+(Z Y)—3(fw+{n))/8.
And we define a submanifold MCof RC, called Freudenthal manifold, by
ME={PEPC | PxP=0, P+0}

XVY=0 XXX=3Y
YXY=£X (X Y)=3&p

Now, as stated in the introduction, a simply connected compact simple
Lie group of type E-; is given by

E; ={aE1s0c (LB, RO | a(PX Q)a! = aPXaQ.{aP. aQ)> = <P, @}
= {@ € Is0c(RE, BE) | eME = ME, {aP, aQ} = {P. Q}.{aP, a@Qd =<P, Q>}

and its Lie algebra is
er={0(p, A, —A, v) E Homc(RC. BO) | pEes, AEIC, vEC, 1=~}
The group E7 contains a subgroup
Es={a€ E; | a0, 0,1, 0)= (0, 0, 1, 0)}

which is isomorphic to the group Eg by the coorespondence

PxQ =4, A. B, v),

=(P=(X. Y. & nEBC P =0}

a 0 0 0

0 rar 0 O ~
E65a°—>a—0 0 1 06E6CE7

0 0 0 1

([3] Proposition 2). From now on, we identify the group Eg; with the
group K.

2. Subgroup (E7), of E7 and its Lie algebra (es),
We define a conjugate linear involution p of ¢ (used the same nota-
tion e in °¢) by

olX, Y, & 1) = (oX, oY, & 7)
and we shall investigate a subgroup (E7). of E7
(E7)e ={a € E; | pa= ap).

For this purpose, we give some preliminaries [8].
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The quaternionic field H = C @ jC is isomorphic to the space - =
{xe M2, C)| xj = jx}, where j = [(1) _(1)] as an algebra by the cor-

respondence & : H— 9,
k(a+jb) = [“ _b_] a bEC
b- a

This mapping % is naturally extended to the mappings
k: M4, H)— M@8, C), kMU, H— M8, C)
/e( Xst )=< k(xs2) ) k( Xstt Vst )=( k(xs0)+iH(yse) )

Xst, ¥s: € H, respectively. (In the latter equation, 7 in the left side is the
complexification unit of 3(4, H)¢ and 7 in the right side is the imaginary
unit of the field C).

Let SUQ®)={A€ M(8, C)| A*A=E, detA= 1} be the special unitary
group. The symplectic group Sp(4) is often regarded as a subgroup of
SU(8) by

Sp(4) = k(Sp4)) = (A€ SU®) | AT'A=]}, =

oo o N
[ -
o N ©
~ o oo

Lemma 2. Any element D of the special unitary Lie algebra 3u(8) =
{(De M@, C) | D*= —D, tr(D) = 0} is represented by the form

D = E(CY+ik(B) C € 3p(4), B < 34, H),.
Proof. For DE su(8), put C,=(D—JDJ)/2 and B, = —i(D+JDJ)/2,

then
D= C+iBs Cl* =-0, CJ :fél, Bl* =B, B,/ = fgl. tT(Bl) =0.

So, C = £~1(C,) and B = £~ (B,) are required ones.

Proposition 3. 7The Lie algebra (e1)o of the group (Eq)e is

(er)e = {0 Ee7 | 0@ = @p}
={0u(p, A)E e7 | ¢ Eee, pp = o, AE I, pA = A}
= {0,(de(C), g7'B) E ¢, | C € 3p(4), B € I, H)o}).
where Oo(p, A) = O($, A, —7A, 0). The Lie bracket (@1 @:] in (e7)s
is given by
[¢p(¢1, Al), d)p(¢2‘ Ae)] = wp(‘ﬁ, A)
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where
¢ = [, $2]-2A,V As+2A;V A, A= $1Ar—$ A,

And (e7)e is isomorphic to the special unitary Lie algebra 3u(8) by the
correspondence

R(C)+ik(B) € 8u(®) 2L 0u(dp(C), 271 B) € (e1)s
where C € 8p(4), BE 34, H)o.

Proof. The first statements are easily shown. We shall show that
dy - 3u(8) — (e7), is an isomorphism. (This is the direct consequence of
the following section 4, however, here, we will give the direct proof).

(1) For Ci, C2 € 2p(d), [£(Cy), k(Co)] = R[C), Co]l— @uldo G, G,
0) = [d)p(d(&‘(cl)- 0), @p(dqo(Cg), 0)]

(2) For C € sp(4), BE 4, H)o. [£(C), ik(B)] = ik[C. B]— @4(0,
g7 C, B]) = 0,0, de(C)(g'B)) = [@s(de(C), 0), @0, g7 'B)].

(3) For By, B: €34, H)o,[ik(B)), th(B2)]=—k[B1, B:] = @o( —do
[B], 'BQ], 0) On the other hand, (put A[ = g_.lB]. Az = g_le )

(050, £7'B1), @u(0, g7 Ba)] = [04(0. A1), @0, Ar)]
= @p(—ZAl Vv A2+2A2 \% El, 0)

where g((2A, V A—24; VvV A)X) Xe3c

=g((24, V yA2 =24, V YA)X)

= g((7A2, X)A I +((A1, 742)/3) X —4yAs X (A, X X)
—((7A1, X)Ax+((A2, r4)/3)X —47A 1 x(A:X X))

= (yAs, X)gA +((A1, rA2)/3)gX—4gAz2°g(rA1 X 7xX)+(A2, AiX X)E)
—((yA1, X)gA2+((Az2, YA1)/3)gX—42A1°g(yA X yX)+(A1. AeXX)E))

= (yAz, X)Bi—4B;°(B1>gX—((yA.. X)/E)
~((yAu. X)B2—4B1°(BsogX —((7A42, X)/DE))

= 4B,(B2>gX)—4By°(Bi°gX)

= BiBx(gX) + Bi(gX) B+ B(gX) B +(gX)B: B
—(B:B\(gX)+ Bx(gX) B+ Bi(gX) B2 +(gX) B\ Bz)

= [Bi, B.)(gX)—(gX)[ B\, Bz] = g((del B\, B:})X).

Therefore we have Q@o.(—dg[B:, B:], 0) = [@.(0, g7'B1), 00, g7'B,)].
Thus Proposition 3 has been proved.

3. C-isomorphism x between ¢ and E(8, C) D &(8, C)
Let &(8, C) denote the 28 dimensional vector space over C of all
8X 8 complex skew-symmetric matrices :

&8, C)={SeM@8 C)|'S=—-S}.
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We give a C-isomorphism x : R€— &(8, C) @ &(8, C) by
X = hegr»
where 7., & €, h are C-isomorphisms defined by

72t BE-BE, X, ¥, & 7)) =(X 7Y, & 7),

g: V-4, H)* DI, H),
(X Y & n) = (eX—(&/2)E, gY—(3/2)E),

e: 34 H)CD X4, HC— X4, HYCDIU, H)E, e(M+iN, M'+iN)
=(M+iM', N+iN'), where M. N M'. N € 34, H),

h:3U, HPDIU, H) - 38 C)D S, C), (K, L)=(k(K)], E(L))).

Remark. put (R€),={PERC|pP=P}. Then the complexification
((BO) ) ={P+iP, | P1, P, € (BC),} is RE. Now, the restriction y =
2| (Bp : (B9)— &(8, C) of x is
2(P)=x(X Y, & n) = k(gX—(&/2)E)]+ik(g(yY)—(2/2)E)], PE (B€),

and the original y is the complexification of this .

4, Homomorphism ¢ : SU(8)— (Er).
We define a homomorphism ¢ : SU(8) — (£7)» by

p(AP = x 1 (A(x(P))A), P& BC
First of all, we must show ¥{A) € (E;), for A€ SU(8). To show this,
it suffices to prove for their Lie algebras (because SU(8) is connected),

that is, the differential homomorphism d¥ : 2u(8) — Homc(BC. BC) of ¢
defined by

dy(D)P = x (D(x(P))+(x(P))'D). P& R°
coincides with the mapping @¥ : 8u(8) — (e;), defined in Proposition 3.
(1) For D=k(C), CE€8pl4). (X, Y, & 1) EBC, dy(k(CINX, Y. &
n) is
X X

Al i P N R RS
7 7
£ [M +iM'] h [k(M +z’M')J] . [k(C)k(M+z‘M')]+ k(M+iM’)]‘/e(C)]

N+iN' ] LRN+iNT ] L RCRN +iNT+ RN +iN)] #(C)

B [k( C(M+iM)+E(M+ z’M')C*)]] ! [C(M+ iM)+(M+ iM')C*]
T LA(C(N+IN)T+E((N+IN)CH] C(N+iN)+(N+iN)C*
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et [C(M+zN)—(M+z'N)CWZ[ C(gX —(&/2)E)—(gX —(£/2)E)C) ]
CM +iN)— (M +iN)C] | Cle(yY)—(2/2)E)—(g(rY)—(2/2)E)C

g '(C(gX)—(eX)C) de(C)X
=[ C(gX)—(gX)C ]_g_—', g (Clg(rY)—(e(rY)C) | ro"! | 7dp(C)rY
Clg(r1))—(g(zY)C 0 0

L 0 0
de(C)X do(C) 0 0 0|[X X
| wde(C)rY | 0 de(C)r 0 0| Y| _ Y
= 0 = 0 0 0 0 E = @p(d¢(C), 0) 5 .
0 0 0 0 04l 7 7

Thus we have d¥(£(C) = @.(de(C), 0).

0 —p 0 0
. -5 0 0 0 )
(2) For D=ik(B), B=gA= 0 0 0 0,A=zF.(pe),peH,
0 00 0
dy(ik(B))(0, 0, 1, 0) is
0
0| &» [—E/Z]_e’ [—E/Z]ﬁ [—1/2]_, [—(ik(B)JHi‘k(B))/Z]
17 { o 0 0 0
0
0 0
_ ‘—ik(B)]]ﬂ[—iB]g[ 0 ]gr-l —A A
I 0 -B 0 0
0 0
[0 2A 0 A0 0
124 0 A oo 0
10 A 00 1_4"’(0’4)1
A 0 0 0]0 0
And dy(E(B))X, 0, 0, 0) is
[ ] | & as+ bse a— bre m cst+dse Ga—dael]
X as— bye & a1+ bie|+i| cGz—dse 72 ca+die
put az+bre a\—be &3 c2t+dre C2—die 73
0 0
0 0
o] | 0
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/1.1_ —'d] —dz —d [_11 bl bz ba
g —di Ak a @ ey b w2 €3 C2|| pu [M‘H'N}
= —d_z a A a 1_32 G o oal|l ™ 0
—ds a2 a1 A4 by ¢ €1 pa
i 0
£ _M] i [k(M)]]_) {ik(B)k(M)]-f'k(M)]i‘k(B)] _ [ik(BM-I-MB)]]
| N kR(N)J ik(BYR(NY+E(N)Jitk(B) ik(BN +NB)]
ﬂ [i(BM+MB)]i { 0 :|
{(BN+ NB) (BM+MB)+i(BN+ NB)
) 0
2(p, aﬁ) —&ip —1?613 —ba: [—2(p, [_?1) —mp —pcs —pea
= —r,flii 2(17_, di) pdr  pds e —mp —2(p. by) —pb: — pbs
—asp  dop 0 0 —c3p —bop 0 0
| —a2p  dsp 0 0 | —cp  —bp 0 0
0
_2(17, d))  pda—(pcde pds+{pes)e [ —=2(p, b)) —phat+(paz)e —pbs—(paz)e
g {21)4'([)52)6’ 0 —mpe |+i|—bp—(paz)e 0 &ibe
dsp—(pcs)e mpe 0 | — bsp+ (pas)e —&ipe 0
0
\_ —2(p, di)+2i(p, b)) |
_ 0 .\
2Ap, d)  bda+(pca)e pds—(pcsde —2(p, b)) —pb—(pazde —pbst{pas)e
drip—(pcz)e 0 nbe +i| —bep+(paz)e 0 —&ipe
! dip+(pc)e  —mpe 0 —bsp—(paz)e Erper 0
. 0
—2(p, d)+2i(p, b)
[0 0 24 0 Al|llX X
** |2AXX| _|2A 0 A 0|0} _ 0 sk
= 0 =10 4 0 ollol™ 0.0, A) ol (**, in fact,
| (A, X) A 0 0 oJfo 0

2AX X = 2iF 1 (pe) X (Dh(&Ei+ F ait bie))+iXii(p:Ei+ Fici+die)))
= {(— & Fu(pe)—2(p, b))E1+ Fs((pe)(az+ bre))+ Fa(as+ bze)(pe)))
—(—mFi(pe)—2(p, d)E\+ Fs((pe)(cat dze))+ Fol(cs+ dse)(pe)))
= (2p, d)Ei+mFi(pe)+ Fadsp+(pcs)e)+ Fa(bda+(pcz)e))
+i(—2(p, bB)E1— & F\(pe)— Faobap+(pas)e) — Fs(pbo+(paze)),
(A, X)=QiF\(pe), (D (&E:+Flait b:e))+iXii(n:Ei+ Fi(cit+d:e))))
= —2(p, d1)+2i(p, b)).
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- @0(0‘ A)

1] 1
we have dy(ik(B)) = 0.0, A) = 0,(0, g7'B).
(3) For other generators of 2u(8), that is. for D = ik(B), B = gA,
where A= iFi(pe), pEH. j=23 A=E —E;, j=2,3and A= Fip),
Pe H j=1, 2, 3, we have also

dy(ik(B)) = @.(0, g7'B)

by the straightforward calculations as the above (1), (2).
All together (1).(2).(3). we see that the homomorphism ¢ : SU(8) —
(E7)e is well-defined.

and — 0,0, A) . Thus

0
.. 0
Similarly, we have 0

o O O
OO%O
OO%O

5. Isomorphism (E;), = SU(8)/Z;
QOur aim of this section is to prove that ¢ : SU(8) — (E7). is onto.

Lemma 4. For a € R, the linear transformation of BC defined by

1+{(coslal—1)p; (2af|lal)sinlalE; 0 —(aflal)sinla| £,
ala) = —2aflal)sinla|E; 1+ (cos|al—1)p; (a/lal)sin|a|E: 0
! 0 —(aflal)sinle|E; cos|al .0
(aflal)sin|al £; 0 0 cos|a|

(if a =0, then (af|al)sin|a| means 0) belongs to the group ¥(SU(8)), i =1,
2. 3, where the mapping p::3¢— IC is defined by

& x3 X &1 Oixs Ok
bi| Xz & x| =

is¥s & Sax
X2 X1 & Opx2 O0n%1 &

(where Sis is the Kronecker's delta) and the action of afa) on BC is
defined as similar to that of ®(¢, A, B, v) in §1.3.

Proof. For @.(0,—aE;) € dy(3u(8)), we have a;(a) =exp 0,(0, — aE;)
hence a{a) € ¢(SUB)), i =1, 2, 3.
We define a subspace (9€), of BE by

(M), = {PE MC| pP = P}.

’

Lemma 5. Any element P < (MC), can be transformed in a real
diagonal form by a certain element a € y(SU(8)):
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aP=(X. Y & 7). X Y are real diagonal forms and & n < R.
Moreover we can choose a € ¢(SU(8)) so that € > 0.

Proof. Let P=(XY, & n)& (MC),. First assume that £+ 0. Chen
oY=Y =& p=p5 and X =(YxY)/& Since g(vY) € 4, H),
(Lemma 1 (2)), we can choose C & Sp(4) so that Clg(»Y))C* is real
diagonal, so y¢(C)rY = g '(C(g(yY)C¥*)) has a real diagonal form. In
this case, p(C)X = o(CH(Y X Y)/&) = (rp(C)rY X ye(C)rY)/& is also
real diagonal, hence ¢(C)P is a diagonal form. In the case of 5 #+ 0, the
statement is also valid. Next we consider the case P = (X, Y. 0, 0),

m 0 0
Y #0. Choose C € Sp(4) such that yo(C)yY =|0 7 0| mn<ER.
0 0 73

Since yp(C)7yY #+ 0. we may assume 7; 0. Operate ai(—n/2) € ¢(SU(8))
of Lemma 4 on ¥(C)P. Then
a(—n/2)Y(C)P = (*, *, 1, *).

So, we can reduce to the first case £ # 0. In the case of P =(X, Y, 0, 0),
X =+ 0, the statement is also valid. If £ < 0, then operate a{(7) on aP.
Then & becomes a positive number. Noting as(—n/2)ax(n/2)a(x/2)(0, 0,
0, 1) =1(0,0,1,0), then we can always reduce to the case & # 0. Thus
Lemma 5 is proved.

Now, we shall prove that ¢:SU(8)— (£7), is onto. For a given
a € (E7)s, consider an element P = (0, 0, 1. 0) (M),. From Lemma
5, there exists 8 € ¢(SU(8)) such that

mns 0 0 mo0 0
gp=(Wel 0 mm 0 |0 % 0| & mw/e?) >0 neR
0 0 m7p 0 0 7

Then the condition <P, P>=1is

(1+(ml/8)°) A+ (22l/ DA +(12:l/€)%) = 1/ €%

Choose »; € R, n/2 > r; =2 0, such that tan»; = |9/& i=1,2,3. Then
we have

& = COS#1C0S72C0S73.
Put a; = (7:/|n)7r: (if 7:= 0, then (9:/|7:4)»; means 0), i =1, 2, 3. Then
we have
BP = as(as)a(az)m(ay) (0, 0, 1, 0)
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(cf. [3, Theorem 9]). that is,
a(a)  aolas) tas(as) ™ Ba(0, 0, 1. 0) = (0, 0, 1, ).
Hence @ = o («)) 'aol @) ' as(as) ' Ba € Es. moreover pd@ = dp. therefore
@ = a(m) ' alaz) " as(as)Y ' Ba € (Es)o = ¢(Sp(4)) C ¢ {(SU(8)).
Since a@{a;) and 8 € Y(SU(8)). ais also @ € ¢(SU(8)), that is, ¢ is onto.

Finally, Kery = {E, —E} is easily obtained. Thus we have the
following theorem which was our first aim.

Theorem 6. The subgroup (E7)o = {a € E: | pa = ap} of the group
Ez is isomorphic to the group SU(8)/Z», where Z, = {E, — E}.

II. Lie group E»
6. Preliminaries

6.1. Split Cayley algebra € and split exceptional Jordan algebra 3.
Let € = H @ He denote the split Cayley algebra with the multiplication

(a+be)(c+de) =(ac+db)+(b¢ + da)e.
And let ' ={X € M(3, €)| X* = X} denote the split exceptional Jordan
algebra with the multiplication XY = (XY+ YX)/2. In X also, the
inner product (X, Y) = tr(X°Y), the crossed product X X Y. the trilinear
form (X, Y. Z) = (X, YXZ), and the determinant detX = (X, X, X)/3
are defined as same as in J and J€. Moreover we define a positive
definite inner product (X, ¥) in J by

(X V=X r¥Y)=0X YY)

where y : ¥ — Q' is the involution defined as 7 : 3 — 3J in §1.1.

6.2. Lie group Ees and subgroup (Ees)x. We have shown in [6]
that the group

Eeer = {a € Isor(Y, J) | deteX = detX}

is a connected non-compact simple Lie group of type Egse and found a
subgroup of type C; in Ese). To find this subgroup, we used a mapping
f:Y—31, H),,

A b by b

by A as @

b @ A& a

by a2 @ A

& as+bse @— bre
f| as— bse &2 atbe|=
ax+ be a,—be &3
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where &, E R, «;, b;€ H and A\ = (§+ 56+ 8)/2, b =(5&—&—E3)/2, s =
(&:=&1—&3)/2. s = (&= &1 — &)/2.

Lemma 7 ([6, Lemma 11). The mapping f:¥— 3, H)y is «a
R-isomorphism satisfying

AXXY) = f(rX)f(yY)-((X, Y)/4)E.
Now, we have shown that a subgroup (Eae)x of Ese
(Esw)k = Eser N O) = {e € Eser | (aX, aY) = (X. Y))
is isomorphic to the group Sp(4)/Z» by the correspondence
¢:Sp(4) — (Esw)rr  9(O)X =fH(CUX)C*)., X€EYT
with Kerp = Z, = {E, —E}. Therefore its Lie algebra
(cow)k = (¢ E e | (X, V) = —(X. ¢Y)}.
is isomorphic to ép(4) by the correspondence
de :8p(4) — (el dp(O)X = fFFHCFX)-(fX)C), X €EV.
Finally, we note that, for 4, BE Y, AV B E ese is defined by

(AV B)X =((B. X))/2)A+({(A, B))/6)X—2BX(AxX), X €Y analo-
gously as AV BE€ ¢ Cin §1.2.

7. Lie group Em
Let ®" be a 56 dimensional vector space over R defined by

W=IDIOROR.

In P, the symmetric inner product (P. @), the skew-symmetric inner
product {P. @} and one more positive definite inner product (P. @) are
defined respectively by

(P, Q)Y = (X, ZY+(Y, W)+ &6+ o,
(P, Q) =(X WY—(Y, Z)+&w— 17§,
(P, Q)= (X, Z)+(Y. W)+ &+ nw
for P=(X Y. & 7). Q=(Z W ¢ 0)ER.
For ¢ € ¢4, A, BE Y and v € R, a linear transformation @(¢, A, B, v)
of ¥ is defined by
X pX—(v/3)X+2BX Y+7nA
Y| |2AXX+#Y+(/IY+EB
£ (A, YY+ue
7 (B, X)—vy
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where ¢ € ¢g6 denotes the skew-transpose of ¢ with respect to the inner
product (X, Y):(¢X, Y)Y+(X, ¢Y)=0. For P, Q€% a linear
transformation

PxQ = @(¢. A B, v)

of ¥ is analogously defined as P X @ in R or BC (use (X. V) instead of (X,
Y)) and define a submanifold MM of ¥ by

W ={PER|PXP=0, P=+0).
Now, we define a group E77 by
Ewn ={a € Isor(R. W) | oW =W {oP, aQ) = {P, Q}}.

(Later, we see that this group Ez7 is connected (Theorem 13). therefore
it may be also defined by (see [4])

Exn = {a € Isor(R. )| a(PXQ)a™! = aP X aQ})
The Lie algebra e of the group E+ is
enn = {@(p, A, B. v) € Homg(B, ¥)| ¢ E eoern A, BEY, vE R}

(see [2][3]). Since the complexification of the Lie algebra ezs is ¢7€
the group E7 is a simple Lie group of type E-.
The group E»x contains a subgroup

a(0, 0, 1. 0) = (0, 0, 1, 0)}

» = [ P
Es {a Ea 0. 0, 0, )= (0. 0, 0, 1)

which is isomorphic to the group Eew by the correspondence

(@ 0 00
0 ' 00 ~
Eepy Da—a= 0 0 10 € Feoesy C E7ny
0 0 01

where ‘@ is the transpose of ¢ € Es with respect to the inner product
(X, YV:i(eX, Y)=(X aY).

In order to investigate the group Ezx, we consider a subgroup (E7¢»)x
of Ern:

(Ezn)k = Exn N OR) = {a € Eun | (aP, aQ) = (P. Q)}

Proposition 8. The Lie algebra (exn)x of the group (Exn)k s

(er)x = {@ E ezny | (OP, Q) = —(P, 0Q))}
={0(¢, A) Eernl| ¢ E (eaw)k, AET)
= {(0(dp(C), f'B)E exn| C € 30(4), BEI(4, H)o)
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where @' (¢, A) = O(p, A, —vA, 0). And it is isomorphic to the special
unitary Lie algebra 3w(8) by the correspondence
. d ,
R(C)+ik(B) € 3u(8) Lo 0'(dp(C), /' B) € (e
where C € 2p(4), BE 34, H),.

Proof. The proof is similar to that of Proposition 3 by using Lemma 7.

8. R-isomorphism y between %" and &(8, C)
We give an R-isomorphism x: % — &(8, C) by
x = hefre
(cf. Remark of §3). where 73, f €, h are R-isomorphisms defined by

2P =%, X YL p)=(X Y & 7))
F¥ =34 H)YD I, H), AX. Y, & n)=UX—(&2)E, fY—(9/2)E),
e: 34, HY® X4, H)— 34, H)C, M, N) = M+iN,
h:3d, H)C— &8, C), (L) = k(L)].

9. Homomorphism ¢ : SU(8) — (Eun)k
We define a homomorphism ¢ : SU(8) — (E7n)x by

(AP = x '(A(x(P)'A) PE Y.
To show that ¥(A) € (Ewn)x for A& SU(8), it suffices to prove for
their Lie algebras, that is, the differential homomorphism ¥ : 3u(8)—
Homg(®, B) of ¢:
dg(D)P = x " (D(x(P)+x(P)D) P

coincides with the mapping ¥ : 8u(8) — (e7n)x defined in Proposition 8.
However the proof is the same as the proof of the section 4.

10. Isomorphism (Ewn)k = SU(8)/(Z-

We shall show that ¢ : SU(8) — (Ezn)k is onto. For this purpose, if
we prepare the following three lemmas, we can attain our aim by using
the same way as the section 5.

Lemma 9. For a € R, linear transformations aia) of B defined
analogously as Lemma 4 belongs to ¥(SU(8)), i =1, 2, 3.

 Lemma 10. Any element P < (Mix={PeWM|(P, P)=1} can be
transformed in a diagonal form by a certain element @ € ¢(SU(8)):
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aP = (X, Y.

g

7) X, Y are diagonal forms. £ >0, n € R.

Lemma 11. If a € (Exn)k satisfies a0, 0, 1. 0) =0, 0, 1, 0),  then
(0, 0, 0, 1) = (0, 0, 0, 1).

Now, since it is easy to see that the kernel of ¥ : SU(8)— (En)« is
{E, —E}, thus we have

Proposition 12.  The group (Ezn)x = {a € Exn | (el aQ) = (P, Q)}
is isomorphic to the group SU(8)/Zs where Z> = {E. — ).

11. Polar decomposition of Esx)
We define a linear transformation ¢ of ' by

AX Y, & n=(Y —X 5 —&).
Then ¢ € Ezm, (2= —1and {P. @} = —((P. Q) =(P. Q) for P, Q € W.
Therefore put
v=7y=1(7.
Then v € E7(n, v* = —1 and we have

{P, QY = —(vP. Q)= (P, vQ). P.QEW.

To give a polar decomposition of the group E;¢). we prepare

Lemma 13. The group Ezq is an algebraic subgroup of the general
linear group GL(56. R) = Isor(¥, B) and satisfies the condition thal
a € Exy itmplies ‘a € Enqy, where 'a is the transpose of a with respect to
the inner product (P, Q): (aP. Q)= (P. 'a@).

Proof. Since (‘aP, Q)= (P, aQ)={vP, aQ} ={a'vP, Q) = —(va""vP,
Q) for e € E7(7), we have

= —pa v E Exn.

And it is obvious that the group E77 is algebraic, because it is defined by
algebraic relations &' = W, {aP. aQ} = {P. Q).
Using Chevalley's lemma ([1. Lemma 2, p. 201]). we have a
homeomorphism
FErn = (Ezn N O(R)) X R4
>~ SU(8)/Z: X R? (Proposition 12).
Since Ex7 is a simple Lie group of type E7. the dimension of E77 is 133.

Hence the dimension ¢ of the Euclidean part and the Cartan index / of
FE7@y are calculated respectively as follows:
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d = dimE77—dimSU(8) = 133—63 = 70,
{ = dimE77—2dimSU(8) = 133—2X63 = 7.

Thus we have the following theorem which was our second aim.

Theorem 14. The group Ewuq is homeomorphic to the topological
product of the group SU(B)/Z» and a Euclidean space R™:

Erqy = SL’V(S)/Zg X R0,

In particular, E+ay is a connected non-compact simple Lie group of tvpe
ET(?)-

12. Center z(Ewmn) of Exun

Theorem 15. The center 2(Ewn) of the group Erz is the cyclic
group of order 2 :
2(Ean) =11, —1}.

Proof. Let @ € z(£77). From the commutativity with » € Eqn, we
have ‘@ = —va~'v = —vpo~' = @'. Hence « € (Euxn)g therefore there
exists A € SU(8) such that '@ = ¢¥(A). Furthermore

a € z((E7n)k) = 2(¢(SU(8B))) (2(G) denotes always the center of a
group G and in this case we have)

= ¢ (2(SU(8)))

=y{plE, i=0 12 - T p=e™

= y{E. pE. p*E, p*F}

={1, —» —1, v} (because ¥(HE) = —uv).

However, v. — o are not contained in z(Ezn). In fact, for r € R, » #+ 0,
define a linear transformation r of % by

rX Y & n=0"1X rY, #3£& r73p).
Then r € E+7 and rv =+ or, r(—v) = (—v)r for » = 1, because rv(0, 0,1, 0)

=1(0,0,0, —1)=(0,0,0, —r3). 0r(0,0, 1, 0) = 0, 0, 73,0) = (0,0, 0, —»3).
Thus we have z(Exn) = {1, —1}.
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