ON THE ITERATED SAMELSON PRODUCT

Нідеуцкі КАСНІ

1. Introduction. Let G be a topological group. The Samelson product $\langle \ , \ \rangle$ of G is a pairing

$$\pi_p(G) \times \pi_q(G) \longrightarrow \pi_{p+q}(G) \qquad (p,q \ge 1)$$

defined as follows. Let $\alpha \in \pi_p(G)$, $\beta \in \pi_q(G)$ be represented by maps

$$f:(I^p,\dot{I}^p)\longrightarrow (G,e), g:(I^q,\dot{I}^q)\longrightarrow (G,e).$$

Then $\langle a, \beta \rangle \in \pi_{P+q}(G)$ is defined to be the element represented by the map

$$k: (I^p \times I^q, I^p \times \dot{I}^q \cup \dot{I}^p \times I^q) \longrightarrow (G, e),$$

where $k(x,y) = f(x)g(y)f(x)^{-1}g(y)^{-1}$ for $x \in I^p$ and $y \in I^q$.

With each element $\lambda \in \pi_1(G)$ we associate the operator

$$\mathbf{D}_{\lambda}: \pi_r(G) \longrightarrow \pi_{r+1}(G)$$

defined by taking the Samelson product with λ . From the Jacobi identity, each of these operators constitutes a derivation, with respect to the Samelson product in $\pi_*(G)$. Suppose that $\pi_2(G)=0$, as in the case when G is a Lie group. Then $2D_{\lambda}^2=0$; moreover, there is some evidence to support the following

Conjecture (I. M. James [6]). For some value of s, depending on λ but not on r, the operator

$$D_{\lambda}^{s}: \pi_{r}(G) \longrightarrow \pi_{r+s}(G),$$

defined by iteration of D_{λ} , is trivial.

Note that $D_{\lambda} = 0$ if λ can be represented by a loop within the center of G or G is commutative. In [5], James proved that the conjecture is true for the rotation group R_t and the generator of $\pi_1(R_t) \cong \mathbb{Z}_2$.

In this paper we show the corresponding result for the unitary group and the generator of its fundamental group by making use of the relation given by Bott [2] and Husseini [3].

Our result can be stated as follows;

Theorem 3.1. Let U(t) be the unitary group and μ the generator

38 H. KACHI

of $\pi_1(U(t)) \cong \mathbf{Z}$. Then the iterated operator

$$D^s_{\mu}: \pi_r(U(t)) \longrightarrow \pi_{r+s}(U(t))$$

is trivial for any r, where (i) s = 2 for t odd, (ii) s = 5 for $t \equiv 0$ mod 8 and (iii) s = 4 otherwise.

Of course D_{μ} is trivial when t = 1. We can show that $D_{\mu}^3: \pi_{2l}(U(t)) \longrightarrow \pi_{2l+3}(U(t))$ is non-trivial for $t \equiv 0 \mod 8$. But the author does not know of any example that D_{μ}^4 is non-trivial.

We also give an analogous result for the symplectic group Sp(t) and the generator of $\pi_3(Sp(t))$ in § 3. In § 4 and § 5, we study the relative Samelson product.

2. Preliminary. Let F denote the field of complex numbers C or the field of quaternions H. By F^n we denote an n-dimensional right vector space over F with a fixed basis and the usual inner product. The group of automorphisms of F^n which preserve this inner product is denoted by $G_n = G(F^n)$. As usual, $G(C^n) = U(n)$, $G(H^n) = Sp(n)$. Let $G_{n,h}$ be one of the complex Stiefel manifold $W_{n,h} = U(n)/U(n-k)$ or the symplectic Stiefel manifold $X_{n,h} = Sp(n)/Sp(n-k)$, depending on the field F. We denote the natural projection by $p: G_n \longrightarrow G_{n,h}$. The inclusion $i: G_n \longrightarrow G_{n+m}$ is the mapping which leaves the last m basic vectors fixed.

Let $k \ge 1$ and $m, n \ge k$. The intrinsic join operation, as defined in [4], is a pairing of $\pi_i(G_{n,k})$ with $\pi_j(G_{m,k})$ to $\pi_{i+j+1}(G_{n+m,k})$, where $i, j \ge 0$. The intrinsic join of $\alpha \in \pi_i(G_{n,k})$ with $\beta \in \pi_j(G_{m,k})$ is denoted by $\alpha * \beta$. This pairing is both biliear and associative. Consider the case k = 1. The $G_{n,1}$ is homeomorphic to S^{dn-1} , where d is the dimension of F over the real field.

Lemma 2.1. The homomorphism from $\pi_i(G_{m,1})$ to $\pi_{i+dn}(G_{n+m,1})$ defined by taking the intrinsic join with the generator of $\pi_{dn-1}(G_{n,1})$ is essentially the same as the dn-fold iterated suspension homomorphism.

Bott [2] and Husseini [3] obtained a useful relation between the intrinsic join and the Samelson product:

Theorem 2.2. For any
$$\alpha \in \pi_i(G_n)$$
 and $\beta \in \pi_i(G_m)$,

$$\langle i_* \alpha, i_* \beta \rangle = \pm \partial ((p_* \alpha) * (p_* \beta)).$$

as shown in the following diagram;

$$\begin{array}{cccc}
\pi_{i}(G_{n}) \times \pi_{j}(G_{m}) \\
p_{*} \times p_{*} & \downarrow & i_{*} \\
\pi_{i}(G_{n,k}) \times \pi_{j}(G_{m,k}) & \pi_{i}(G_{n+m-k}) \times \pi_{j}(G_{n+m-k}) \\
\downarrow * & \downarrow & \downarrow & \downarrow \\
\pi_{i-j+1}(G_{n-m,k}) & \xrightarrow{\partial} \pi_{i+j} (G_{n+m-k})
\end{array}$$

where ∂ denotes the boundary homomorphism in the homotopy exact sequence of the fiber space $p: G_{n+m} \longrightarrow G_{n+m,h}$ with fiber G_{n+m-h} .

3. The proof of the main Theorem.

Theorem 3.1. Let U(m) be the unitary group and μ be the generator of $\pi_1(U(m)) \cong \mathbb{Z}$. Then the iterated operator

$$D^{S}_{\mu}: \pi_{r}(U(m)) \longrightarrow \pi_{r+s}(U(m))$$

is trivial for any r, where (i) s=2 for m odd, (ii) s=5 for $m\equiv 0$ mod 8 and (iii) s=4 otherwise.

Proof. Let $\mu' \in \pi_1(U(1))$ be a generator which satisfies $\mu = i_*\mu'$ for the inclusion $i: U(1) \longrightarrow U(m)$. Apply Theorem 2.2 for $\mu' \in \pi_1(U(1))$ and any $\beta \in \pi_r(U(m))$. Since U(1) is identified with $W_{1,1'}$ we have from Lemma 2.1

$$D_{\mu}(\beta) = \langle i_* \mu', \beta \rangle$$

= $\pm \partial E^2(p_* \beta) \in \pi_{r+1}(U(m)),$

where E is the suspension homomorphism. Hence

$$D_{\mu}^{2}(\beta) = \langle \mu, \langle \mu, \beta \rangle \rangle = \pm D_{\mu}(\partial E^{2}(p_{*}\beta))$$

= $\pm \partial E^{2}(p_{*}\partial E^{2}(p_{*}\beta)).$

Now the composition

$$p_* \partial: \pi_{r+2}(S^{2m+1}) \longrightarrow \pi_{r+1}(U(m)) \longrightarrow \pi_{r+1}(S^{2m-1})$$

is the boundary homomorphism Δ in the exact sequence of the fiber space $W_{m+1,2}$ over $W_{m+1,1} = S^{2m+1}$ with fiber $W_{m,1} = S^{2m-1}$. Then, as well known results,

$$\Delta(\iota_{2m+1}) = \begin{cases} 0 & \text{for } m \text{ odd} \\ \eta_{2m-1} & \text{for } m \text{ even} \end{cases}$$

where $\pi_{2m}(S^{2m-1}) = \{\eta_{2m-1}\} \cong \mathbb{Z}_2$ and $\pi_{2m+1}(S^{2m+1}) = \{\iota_{2m+1}\} \cong \mathbb{Z}_2$. Therefore we have

40 H. KACIII

$$\begin{aligned} \boldsymbol{D}_{r}^{2}(\beta) &= \pm \partial E^{2}(\Delta(E^{2}(p_{*}\beta))) \\ &= \pm \partial E^{2}(\Delta(\iota_{2m+1}) \circ E(p_{*}\beta)) \\ &= \begin{cases} 0 & \text{for } m \text{ odd} \\ \partial(\eta_{2m+1} \circ E^{3}(p_{*}\beta)) & \text{for } m \text{ even} \end{cases} \end{aligned}$$

Then, after two more steps, we obtain

$$D_{\rho}^{4}(\beta) = \partial(\eta_{2m+1}^{3} \circ E^{5}(p_{*}\beta))$$

= $(\partial\eta_{2m+1}^{3}) \circ (E^{4}(p_{*}\beta))$

for m even.

By Matsunaga [8], $\pi_{2m-3}(U(m))$ is generated by $\partial \nu_{2m+1}$ and its 2-primary components

$$^2\pi_{2m+3}(U(m))\cong egin{cases} oldsymbol{Z}_2 & ext{if } m\equiv 2 \mod 4 \ oldsymbol{Z}_4 & ext{if } m\equiv 4 \mod 8 \ oldsymbol{Z}_8 & ext{if } m\equiv 0 \mod 8. \end{cases}$$

where $\pi_{2m+4}(S^{2m+1}) = \{\nu_{2m+1}\} \cong \mathbb{Z}_{24} \ (m \ge 2)$. Since $\eta_{2m+1}^3 = 12\nu_{2m+1}$ it follows that

$$D^4_{\mu}(\beta) = 0$$

for $m \equiv 2.4.6 \mod 8$. After one more step, we have

$$\mathbf{D}^{5}_{\mu}(\beta) = (\partial \eta^{4}_{2m+1}) \circ E^{5}(p_{*}\beta).$$

Thus we have

$$D^5_{\mu}(\beta) = 0$$

for $m \equiv 0 \mod 8$, since $\eta_{2m+1}^4 = 0$. Q.E.D.

Example. Let α_m be a generator of $\pi_{2m}(U(m)) \cong \mathbb{Z}_{m!}$. Specifically, we shall take α_m to be $\alpha_m = \partial \iota_{2m+1}$. Then we have

$$\begin{array}{ll} \boldsymbol{D}_{\mu}(\alpha_{2m}) = \alpha_{2m} \circ \eta_{4m} \neq 0 \\ \boldsymbol{D}_{\mu}^{2}(\alpha_{2m}) = \alpha_{2m} \circ \eta_{4m}^{2} \neq 0 \\ \boldsymbol{D}_{\mu}^{3}(\alpha_{2m}) = \alpha_{2m} \circ \eta_{4m}^{3} \end{array} \quad \text{(If } m \equiv 0 \bmod 4 \text{ then } \alpha_{2m} \circ \eta_{4m}^{3} \neq 0 \text{)} \end{array}$$

and

$$D^4_{\mu}(\alpha_{2m}) = D_{\mu}(\alpha_{2m+1}) = 0.$$

Let

$$D_{\tau}: \pi_r(Sp(m)) \longrightarrow \pi_{r+3}(Sp(m))$$

be the operator defined by taking the Samelson product with the generator $\tau \in \pi_3(Sp(m)) \cong \mathbb{Z}$. Then we have

Theorem 3.2. The iterated operator

$$D_{\tau}^{s}: \pi_{r}(Sp(m)) \longrightarrow \pi_{r+3s}(Sp(m))$$

of D_{τ} is trivial for any r, where (i) s = 2 if $m \equiv -1 \mod 24$, (ii) s = 3 if m is other odd and (iii) s = 5 if m is even.

Proof. Sp(1) and $X_{1,1}$ are identified with S^3 . For the generator τ' of $\pi_3(Sp(1))$, the generator τ of $\pi_3(Sp(m))$ satisfies $\tau=i_*\tau'$ for the inclusion $i:Sp(1)\longrightarrow Sp(m)$. From Theorem 2.2 and Lemma 2.1, it follows that

(3.3)
$$D_{\tau}(\beta) = \langle i_* \tau', \beta \rangle = \pm \partial E^4(p_* \beta)$$

for any $\beta \in \pi_r(Sp(m))$.

Now the composition

$$p*\partial: \pi_{r+4}(S^{4m-3}) \longrightarrow \pi_{r+3}(Sp(m)) \longrightarrow \pi_{r+3}(S^{4m-1})$$

is the boundary homomorphism Δ in the exact sequence of the fiber space $X_{m+1,2}$ over $X_{m+1,1} = S^{4m+3}$ with fiber $X_{m,1} = S^{4m-1}$.

Then we have

$$\Delta(\iota_{4m+3}) = \begin{cases} \omega & \text{for } m = 1\\ (m+1)\nu_{4m-1} & \text{for } m \ge 2 \end{cases}$$

where $\pi_6(S^3) = \{\omega\} \cong \mathbf{Z}_{12}$. Thus we obtain

$$D_{\tau}^{2}(\beta) = \pm \partial E^{4}(p_{*}\partial E^{4}(p_{*}\beta))$$

$$= \begin{cases} \pm \partial((E^{4}\omega) \circ (E^{7}p_{*}\beta)) & \text{for } m = 1\\ \pm \partial((m+1)\nu_{4m+3} \circ (E^{7}p_{*}\beta)) & \text{for } m \ge 2. \end{cases}$$

Thus $D_{\tau}^2(\beta) = 0$ for $m+1 \equiv 0 \mod 24$.

On iterating (3.3), we get

(3.4)
$$D_{\tau}^{3}(\beta) = \pm \partial((m+1)^{2} \nu_{4m+3}^{2} \circ E^{10} p_{*} \beta).$$

Since $2\nu_{4m+3}^2 = 0$, it follows from (3.4) that $D_{\tau}^3(\beta) = 0$ for m odd. After two more steps, we have $D_{\tau}^5(\beta) = 0$, since $\nu_{4m+3}^4 = 0$. Q.E.D.

Corollary 3.5 (Arkowitz-Curjel [1]). If $1 \in \pi_3(S^3)$ is the homotopy class of the identity map, then $\langle\langle\langle 1,1\rangle,1\rangle\rangle = 0 \in \pi_{12}(S^3)$.

4. The relative Samelson product. The definition and the material in this section are due to James [6]. Let H be a subgroup of the topological group G. The relative Samelson product $\langle \cdot, \cdot \rangle$ is a pairing

$$\pi_{P}(H) \times \pi_{Q}(G,H) \longrightarrow \pi_{P+Q}(G,H) \qquad (p \ge 1, q \ge 2)$$

42 H. KACHI

defined as follows. Let $\alpha \in \pi_{P}(H)$, $\beta \in \pi_{Q}(G,H)$ be represented by maps

$$f: (I^p, \dot{I}^p) \longrightarrow (H, e), \quad g: (I^q, \dot{I}^q) \longrightarrow (G, H).$$

Then $\langle \alpha, \beta \rangle \in \pi_{P+q}(G,H)$ is represented by the map

$$k: (I^p \times I^q, I^p \times \dot{I}^q \cup \dot{I}^p \times I^q) \longrightarrow (G, H),$$

where $k(x,y) = f(x)g(y)f(x)^{-1}g(y)^{-1}$ for $x \in I^p$, $y \in I^q$.

The main relations between the ordinary and relative Samelson product are indicated in the following diagram:

$$(4.1) \qquad \begin{array}{c} \pi_{P}(H) \times \pi_{q}(G,H) & \stackrel{\langle \cdot, \cdot \rangle}{\longrightarrow} \pi_{P+q}(G,H) \\ \downarrow 1 \times \partial & \downarrow \partial \\ \pi_{P}(H) \times \pi_{q-1}(H) & \stackrel{\langle \cdot, \cdot \rangle}{\longrightarrow} \pi_{P+q-1}(H) \\ & \pi_{P}(H) \times \pi_{q}(G) \\ i_{*} \times 1 & \downarrow & 1 \times j_{*} \\ \downarrow \alpha_{P}(G) \times \pi_{q}(G) & \pi_{P}(H) \times \pi_{q}(G,H) \\ \downarrow \langle \cdot, \cdot \rangle & \downarrow \langle \cdot, \cdot \rangle \\ \pi_{P+q}(G) & \stackrel{j_{*}}{\longrightarrow} \pi_{P+q}(G,H) \end{array}$$

The homomorphism i_* , j_* , ∂ , of course, are from the homoyopy exact sequence of the pair (G,H) and the diagrams are commutative up to sign. We see from this that an element $\gamma \in \pi_r(H)$ determines a homomorphism of the homotopy exact sequence into itself raising dimension by r. On $\pi_*(H)$ we take the ordinary Samelson product with γ itself, on $\pi_*(G)$ the ordinary Samelson product with $i_*(\gamma)$, and on $\pi_*(G,H)$ the relative Samelson product with γ itself. And we denote by $D_{H,\gamma}$, $D_{G,\gamma}$ and $D_{GH,\gamma}$ each Samelson product respectively.

Lemma 4.3. If
$$D_{H,r}^s = 0$$
 and $D_{G,r}^t = 0$, then $D_{G,h,r}^{s-t} = 0$.

Proof. If $\alpha \in \pi_P(G,H)$, then $\partial D_{G/H,r}^{\$}(\alpha) = \pm D_{H,r}^{\$}(\partial \alpha) = 0$ by (4.1). Hence $D_{G/H,r}^{\$}(\alpha) = j_*(\varepsilon)$, by exactness, for some $\varepsilon \in \pi_{P+rs}(G)$. Thus, from (4.2), $D_{G/H,r}^{\$}(\alpha) = D_{G/H,r}^{\$}(j_*\varepsilon) = \pm j_*D_{G,r}^{\$}(\varepsilon) = 0$. Q.E.D.

Proposition 4.4. For the pair (G,H) and $\gamma \in \pi_r(H)$ in the following table, there exists an integer s for which the s-fold iterated operator $\mathbf{D}_{S/H,\gamma}^{s}$ of $\mathbf{D}_{G/H,\gamma}: \pi_p(G,H) \longrightarrow \pi_{p+r}(G,H)$ is trivial for any $p \geq 2$:

$$(G,H) \qquad \gamma \in \pi_r(H) \qquad s$$

$$(U(n+b)U(n)) \quad \text{if a gaugestor of } \pi_r(U(n)) \quad 10$$

- (i) (U(n+k),U(n)) γ is a generator of $\pi_1(U(n))$ 10
- (ii) $(R_{2n}, U(n))$ γ is a generator of $\pi_1(U(n))$ 11
- (iii) (Sp(n+k),Sp(n)) γ is a generator of $\pi_3(Sp(n))$ 10.

Proof. Let γ be a generator of $\pi_r(H)$. Then the image of γ in $\pi_r(G)$ is a generator of $\pi_r(G)$. Thus from Lemma 4.3 and Theorems 3.1, 3.2, we obtain the results. Q.E.D.

5. The relative Samelson product on (Sp(n), U(n)). Consider the pair (Sp(n), U(n)). By the Bott periodicity, $\pi_{2m-1}(U(n+m))$ is infinite cyclic group for $n \ge 0$ and $\pi_{2n}(Sp(n+m), U(n+m))$ is infinite cyclic group for $m \ge 0$ if $n \equiv 1$ or $3 \mod 4$. The boundary homomorphism $\partial: \pi_{2n}(Sp(n+m), U(n+m)) \longrightarrow \pi_{2n-1}(U(n+m))$ is an isomorphism for $n \equiv 1 \mod 4$ and maps a generator onto twice a generator for $n \equiv 3 \mod 4$. For the first non-stable range, we have

Lemma 5.1 (See [7]). The following sequence
$$0 \longrightarrow \pi_{2t+1}(Sp(t)) \xrightarrow{j_*} \pi_{2t+1}(Sp(t), U(t)) \xrightarrow{\partial} \pi_{2t}(U(t)) \longrightarrow 0$$

is exact and

$$\pi_{2t+1}(Sp(t),U(t)) = \begin{cases} \mathbf{Z}_{t!} & \text{if } t \equiv 0 \mod 4 \\ \mathbf{Z} + \mathbf{Z}_2 & \text{if } t \equiv 1 \mod 4 \\ \mathbf{Z}_{2\times t!} & \text{if } t \equiv 2 \mod 4 \\ \mathbf{Z} & \text{if } t \equiv 3 \mod 4. \end{cases}$$

We apply the diagram (4.1) to the pair (Sp(n+m), U(n+m)). Then, from Theorem 1 of Bott [2], we obtain

Proposition 5.2. Let $m, n \ge 1$ with $n \equiv 1$ or $3 \mod 4$. Consider the relative Samelson product

$$\langle \phi_m, \zeta_n \rangle \in \pi_{2m+2n+1}(Sp(n+m), U(n+m)).$$

where $\phi_m \in \pi_{2m+1}(U(n+m))$ and $\zeta_n \in \pi_{2n}(Sp(n+m), U(n+m))$ are generators. Let $\xi \in \pi_{2m+2n+1}(Sp(n+m), U(n+m))$ be a generator such that $\partial \xi$ is a generator of $\pi_{2n+2m}(U(n+m))$, then

$$\langle \phi_m, \zeta_n \rangle = \begin{cases} m!(n-1)! \xi & \text{mod image } j_* \text{ if } n \equiv 1 \text{ mod } 4 \\ 2(m!(n-1)!) \xi & \text{mod image } j_* \text{ if } n \equiv 3 \text{ mod } 4, \end{cases}$$

where $j_*: \pi_{2n+2m+1}(Sp(n+m)) \longrightarrow \pi_{2n+2m+1}(Sp(n+m), U(n+m)).$

44 I. KACHI

By taking various n and m we obtain examples of non-trivial relative Samelson products in the case of (Sp(t), U(t)). Hence we deduce

Corollary 5.3. If $t \ge 2$, then U(t) is not homotopy normal in Sp(t) in the sense of McCarty [9].

REFERENCES

- [1] M. ARKOWITZ and C. R. CURJEL: Some properties of the exotic multiplications on the three sphere, Quart. J. of Math. 20 (1969), 171-176.
- [2] R. BOTT: A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960), 249-256.
- [3] S. Y. HUSSEINI: A note on the intrinsic join of Stietel manifolds, Comment. Math. Helv. 38 (1963), 26-30.
- [4] I. M. JAMES: The intrinsic join, Proc. London Math. Soc. 8 (1958), 507-535.
- [5] ————: Products between homotopy groups, Composito Math. 23 (1971), 329—345.
 [6] ————: The Topology of Stiefel Manifolds, London Math. Soc. Lecture Notes 24, Cambridge Univ. Press, Cambridge, 1976.
- [7] H. KACHI: Homotopy groups of homogeneous space Sp(n)/U(n), J. Fac. Sci. Shinshu Univ. 13 (1978), 35—41.
- [8] H. MATSUNAGA: On the groups $\pi_{2n+i}(U(n))$ for i=3,4,5, Mem. Fac. Sci. Kyushu Univ. **15** (1961), 72—81.
- [9] G.S. McCarty: Product between homotopy groups and the J-morphism, Quart. J. of Math. 15 (1964), 362—370.

DEPARTMENT OF MATHEMATICS SHINSHU UNIVERSITY

(Received January 12, 1982)