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ON THE ITERATED SAMELSON PRODUCT

HipEYUK!I KACHI

1. Introduction. Let G be a topological group. The Samelson
product < , > of G is a pairing

7o(G) X 7a(G) — 7p+a(G)  (pg 2 1)
defined as follows. Let @ € 75(G). 8 € 74(G) be represented by maps
f(IP 1) — (Ge). g:(I791)— (G.e).
Then <a, B> € 7r+qa(G) is defined to be the element represented by the
map
k:(IPxI191Px[7 U [Px 19— (G.e),
where £(x,y) = f(x)g(y)f(x)'g(y)" for x €/% and y E1°.
With each element A € m(G) we associate the operator
D, : 7:(G)— n,11(G)

defined by taking the Samelson product with 4. From the Jacobi identity,
each of these operators constitutes a derivation, with respect to the
Samelson product in 7«(G). Suppose that 7(G) = 0, as in the case when
G is a Lie group. Then 2D7=0; moreover, there is some evidence to
support the following

Conjecture (I. M. James [6]). For some value of s, depending on A
but not on #, the operator

Dy : ﬂ'r(G)_’ 7l'r+s(G)-
defined by iteration of D,, is trivial.

Note that D; = 0 if A can be represented by a loop within the center
of G or G is commutative. In [5], James proved that the conjecture is
true for the rotation group R, and the generator of m(R,) = Z,.

In this paper we show the corresponding result for the unitary group
and the generator of its fundamental group by making use of the relation
given by Bott [2] and Husseini [3].

Our result can be stated as follows;

Theorem 3.1. Let U(t) be the unmitary group and p the gemerator
37
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of m(U(t)) = Z. Then the iterated operator
D m(U() — mras(U(1))

is trivial for any r. where (1) s =2 for t odd. (ii) s=5 for { =0
mod 8 and (iii) s =4 otherwise,

Of course D, is trivial when t = 1. We can show that Dj: 7 (U(#))
— m2.-3(7(#)) is non-trivial for / = 0 mod 8. But the author does not
know of any example that D} is non-trivial.

We also give an analogous result for the symplectic group Sp(¢) and
the generator of m(Sp(#)) in §3. In §4 and § 5. we study the relative
Samelson product.

2. Preliminary. Let F denote the field of complex numbers C or
the field of quaternions /. By F" we denote an n-dimensional right
vector space over F with a fixed basis and the usual inner product. The
group of automorphisms of /" which preserve this inner product is denoted
by Gn = G(F"). As usual, G(C™") = U(n), G(H") = Sp(n). Let Gn. be
one of the complex Stiefel manifold Wy, .= U{(n)/ U(n— k) or the symplectic
Stiefel manifold X, = Sp(n)/Sp(n—£k), depending on the field F. We
denote the natural projection by p: Gy ——Gu,x. The inclusion 7/ : G, —
Gr+m is the mapping which leaves the last m basic vectors fixed.

Let # =21 and m, n 2 k. The intrinsic join operation, as defined in
[4], is a pairing of 7(Gui) With 7:(Gmr) to Tivie1!(Grimr). wWhere 7, j 2 0.
The intrinsic join of @ € 7{Gn.) with 8 € 7;(Gp..) is denoted by axpj.
This pairing is both biliear and associative. Consider the case k& = 1.
The Gn,; is homeomorphic to S9! where d is the dimension of F over
the real field.

Lemma 2.1. The homomorphism from adGm) (0 TivanlGuimi)
defined by taking the intrinsic join with the generator of man-\(Gna)
is essentially the same as the dn-fold iterated suspension homonorphism.

Bott [2] and Husseini [3] obtained a useful relation between the
intrinsic join and the Samelson product :
Theorem 2.2. Fur any ¢ € 7{Gr) and B € 7Gn).
Cixa, ixB> = To((pxa) * (b« B)).

as shown in the following diagram;
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ﬂi(Gn)X ﬂj(Gm)
P*XD*/ \1'*X1'*
71':'( Gn.k) X ﬂj(Gm.h) 71'1'(GH+ m—k) X ﬂj((;rz+zz:—/e)
* <, 2
l ) |

7Tz'-j+l(Gn—‘m,k) Ti+i (Gn+m—iz)
where 0 denotes the boundary homomorphism in the homotopy exact

sequence of the fiber space p: Gnem— Grimae with fiber Guim-s.
3. The proof of the main Theorem.

Theorem 3.1. Let U(mt) be the unitary group and p be the generator
of m{U(m)) = Z. Then lhe iterated operator
Di: m(U(m)) — mres(U(m))
is trivial for any v, where (1) s =2 for m odd, (ii) s=15 for m=0
mod 8 and (iii) s =4 otherwise.
Proof. Let p'€ m(U(1)) be a generator which satisfies p = sy’
for the inclusion 7 : U(1)— U@m). Apply Theorem 2.2 for '€ m(U1))

and any 8 € n(U(m)). Since U(1) is identified with W),- we have from
Lemma 2.1

D) = lix. B>
= £ IE p«B) € mr(U(m)).

where E is the suspension homomorphism. Hence
D3(B) = {p. <u. B> = = DUGE*p«B))
= ZOE*(p«0E*(p+B)).
Now the composition
pxd: mra( ST — 1 (U (m)) — 7r-1(S?77)

is the boundary homomorphism 4 in the exact sequence of the fiber space
Wnat.2 over Wier,1 = S22+ with fiber Wy, = S?™-1.  Then, as well known
results,

0 for m odd
Nam—1  Tor m even

Meame1) = {

where Hz,n(szm_l) = {7}2m—1} = Z- and 7T2m+1(82m+1) = {52m+1} =Z.
Therefore we have
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Di(8) = £ oE*(A(E*(p+B)))
= ir?Ez(-d(tzmu):E(/)*ﬁ))
_ {0 for m odd
A Dam-1°E3(px3)) for m even

Then, after two more steps, we obtain
D;K/-?) = a(’]%mlrl')ES([)*ﬁ))
= (aﬂgmﬂ)c(EJ(f)*lg))

for m even.
By Matsunaga [8], mem-3(U(m)) is generated by Ovoms: and its
2-primary components

Zs if m =2 mod 4
Tom-a{U(m)) = {1 Z, if m=4 mod 8
Zy if =0 mod 8.
where 7f2m+4(32m+]) = {V2m+l} = Zo (7’” = 2) Since 77%m+1 = 12vap+ it
follows that
Di(B) =0

for m =24,6 mod 8. After one more step, we have
Di(B) = (0n3ms1)° E3(p«B3).
Thus we have
DB =0
for w» = 0 mod 8, since 78n.1 = 0. Q.E.D.

Example. Let @, be a generator of mem(U(m)) = Z,,. Specifically,
we shall take a@n to be aw = 0tam+1. Then we have

Dﬂ(azm) = @om>am F 0
D!%(QZM) = dam?> 774:1',111 *+0
D¥aom) = @om>n3m  (If m =0 mod 4 then dom= 73m * 0)

and
Di{asn) = Dulaamr) = 0.
Let
D : 7(Sp(im)) — mr43(Sp(m))

be the operator defined by taking the Samelson product with the generator
T € m(Sp(m)) = Z. Then we have
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Theorem 3.2. The iterated operator
Ds: 7, (Sp(m)) — mross(Sp(an))
of D is trivial for any r, where (i) s=2 if m=—1 mod 24, (ii) s =3

if m is other odd and (iii) s =5 if m is even.

Proof. Sp(1) and Xi. are identified with S% For the generator
of m3(Sp(1)), the generator r of ms(Sp(m)) satisfies 7 = ixr for the
inclusion 7: Sp(1)—— Sp(m). From Theorem 2.2 and Lemma 2.1, it
follows that
(3.3) D (B) = st > = £E* (p+f)
for any 8 € m(Sp(m)).

Now the composition

Dpx0 7Tr+4(54m’3) - 7Tr+3(S.D( H’i)) _— 71'r+3(34m_1)

is the boundary homomorphism 4 in the exact sequence of the fiber space
Xm+],2 over Xm+].1 - Sdm.‘S \Vith fiber Xm,l = S4m—l.
Then we have

w for m=1
(m+Dvam_, for m=2
where 76(S®) = {w} = Z,». Thus we obtain
D#(8) = £ OE*(px0E*(pxh))
{ia((E4w)°(E7D*B)) for m=1
+((m+1)vamsze(E7pf)) for m = 2.

Thus D2(B) =0 for m+1 = 0 mod 24.
On iterating (3.3), we get
(3.4) D3(B) = T o((m+1)Pvin-3° E'°psf).

Since 2vinsz = 0, it follows from (3.4) that D3(8) = 0 for m odd. After
two more steps, we have D3(3) = 0, since vin.s =0. QE.D.

Heams) = |

Corollary 3.5 (Arkowitz-Curjel [1]). If 1 & n3(S®) is the homotopy
class of the identity map, then <{1,1>,1>,1> = 0 € m,5(S3).

4, The relative Samelson product. The definition and the material
in this section are due to James [6]. Let H he a subgroup of the
topological group G. The relative Samelson product < , > is a pairing

”p(H)X/Tq(G-H)—‘ 7o+al G.H) (b2 1, ¢g=22)
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defined as follows. Let @ € 7o(H), 3 € 7o(G.H) be represented by maps
[P 0P — (He). g:(U%")— (G.H).
Then <a, B> € mp+o(G.H) is represented by the map
k:(IPXI91PX[7 U [PX 19— (G.H),

where k(x.y) = f(x)g(¥)f(x) 'g(y)! for x€ I”, y E I°.
The main relations between the ordinary and relative Samelson
product are indicated in the following diagram :

o)X 7ol G.H) S 1y ol G.H)

(4.1) [ 1Xx6 l )
7ol )X Tar(H) ~——2 zpsacr(H)

7ol HYX 74(G)

wx1 N I
(4»2) ﬁp(G)Xﬂq(G) /TP(H)XT(Q(G‘H)
<> [ <. >

7ora(G) a oral G.H)

The homomorphism ix, jx. &, of course, are from the homoyopy exact
sequence of the pair (G,H) and the diagrams are commutative up to sign.
We see from this that an element y € n,(H) determines a homomorphism
of the homotopy exact sequence into itself raising dimension by ». On
7x(H) we take the ordinary Samelson product with 7y itself, on 7x(G) the
ordinary Samelson product with i«(y7). and on m«(G H) the relative
Samelson product with y itself. And we denote by Dy.y, D¢,y and Dgiu.r
each Samelson product respectively.

Lemma 4.3. If D§, =0 and D¢, =0, then D, = 0.

Proof. If a€ npo(G.H). then 9D&u,(a) = £ Dj.(0a) =0 by (4.1).
Hence D& n.r(a) = jx(&), by exactness, for some & € mp.,s(G). Thus, from
(4.2), Dcs;m.r(a’) = Df;/H.r(j*E) = i].*D‘G,r(E) =0. Q.E.D.

Proposition 4.4. For the pair (GH) and y € n.(H) in the
Jollowing table, there exists an integer s for which the s-fold itevated
operator D&y of Denyr: m(G.H)— mpir(G,H) is trivial for any
p=2:
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(G,H) 7 € JTr(H) S
(i) (Un+k).U)) 7y is a generator of m(U(n)) 10
(i1) (Ren,U(n) y is a generator of m(U(n)) 11

(iii) (Spn+E£).Sp(n)) v is a generator of w3(Sp(n)) 10.

Proof. Let y be a generator of #,(H). Then the image of y in
7G) is a generator of n,(G). Thus from Lemma 4.3 and Theorems 3.1,
3.2, we obtain the results. Q.E.D.

5. The relative Samelson product on (Sp(r), U(n)). Consider the
pair (Sp(n), U(#n)). By the Bott periodicity, mam_i(U(n+m)) is infinite
cyclic group for # 2 0 and 72,(Sp(n+m), U(n+m)) is infinite cyclic group
for m=0if n=10or3mod4. The boundary homomorphism 6: me,{(Sp(# + 1),
U(n+m)) — man_(U(n+m)) is an isomorphism for # =1 mod 4 and
maps a generator onto twice a generator for # =3 mod 4. For the first
non-stable range, we have

Lemma 5.1 (See [7]). The following sequence
0— Tarer(SH) 2 To0ai(SHO.U) —= md U(1)) — 0

s exact and

Z, i t =0 mod 4

o |z+z i i=1mod4
720a1(SP(1), U(1)) = T Ft=2 mod 4
VA if t =3 mod 4.

We apply the diagram (4.1) to the pair (Sp(s+ m),U(#+m)). Then,
from Theorem 1 of Bott [2]. we obtain

Proposition 5.2. Let m, n21 with n=1 or 3 mod 4. Consider
the velative Samelson product

{Pm, &> E Mamron(Sp(n+m), U+ m)).

where ¢m € Toma (Un+m)) and & € menSp(n+m),U(n+m)) are
generators. Lel & € momeana (Sp(n+m). U(n+m)) be a generator such
that 0 is a generatov of Tan+om(U(n+m)), then

ml(n—1)1& mod image jx if =1 mod 4

(b En? = {Z(nz!(n.—l)!)é' mod image jx if » =3 mod 4.

where jx: Tansome1(Spla+m)) — Tenroma (SH(+ m), U (54 m)).
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By taking various »# and m we obtain examples of non-trivial relative
Samelson products in the case of (Sp(#).U(¢)). Hence we deduce

Corollary 5.3. If (22, then U(t) is not howmotopy normal in
Sp(t) in the sense of McCarty [9].
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