ON A THEOREM OF M.S. PUTCHA AND A. YAQUB

HIROAKI KOMATSU

Recently, M.S. Putcha and A. Yaqub [3] proved the following: Let S be a multiplicative subsemigroup of the ring $M_n(F)$ of all $n \times n$ matrices over an arbitrary field F. Suppose that S contains all scalar matrices and suppose, further, that $a \in S$ always implies that $a+1 \in S$, where I denotes the identity $n \times n$ matrix. Then S is a subalgebra of $M_n(F)$.

Our present objective is to prove the following theorem and deduce several generalizations of the above result.

Theorem. Let S be a multiplicative subsemigroup of a ring R with 1. Suppose that S is strongly π -regular and suppose, further, that $a \in S$ always implies that $-a \in S$ and $a+1 \in S$. Then S is a subring of R.

In preparation for the proof of our theorem, we establish the following lemmas.

Lemma 1. Let S be a semigroup, and a a strongly π -regular element of S, namely $a^n = a^{2n}b = ca^{2n}$ for some positive integer n and some b, $c \in S$. Let $d = a^nb^2$ and $e = a^nd$. Then ad = da and e is an idempotent such that ae = ea and $a^ne = a^{2n}d = a^n$.

Proof. See the proof of [1, Lemma 1].

Lemma 2. Let S be as in Theorem. Let $a, b \in S$.

- (1) If ab = 0 then $a+b \in S$.
- (2) If a is invertible then $a+b \in S$.
- (3) If a is nilpotent then $a+b \in S$.

Proof. (1) $a+b=-\{-(a+1)(b+1)+1\} \in S$.

- (2) Since $a^{-1} \in S$ by Lemma 1, we get $a + b = a(1 + a^{-1}b) \in S$.
- (3) Since a+1 is invertible, $a+b=-[-\{(a+1)+b\}+1] \in S$ by (2).

We are now ready to complete the proof of our theorem.

Proof of Theorem. Let a, b be arbitrary elements of S. We have to show that $a+b \in S$. According to Lemma 2 (2) and (3), we may assume that a is neither invertible nor nilpotent. Then, by Lemma 1, we can easily see that S contains a non-trivial idempotent e such that ae = ea is invertible in eRe and a(1-e) is nilpotent. Note that all the hypotheses in

Theorem are inherited by $eSe(\subseteq eRe)$ and $(1-e)S(1-e)(\subseteq (1-e)R(1-e))$. Hence, by Lemma 2 (2) and (3), $e(a+b)e = ae + ebe \in eSe \subseteq S$ and $(1-e)(a+b)(1-e) = a(1-e) + (1-e)b(1-b) \in (1-e)S(1-e) \subseteq S$. Since $e(a+b)e \cdot (1-e)(a+b)(1-e) = 0$ and both e(a+b)(1-e) = eb(1-e) and (1-e)(a+b)e = (1-e)be are nilpotent elements in S, Lemma 2 (1) and (3) prove that $a+b=e(a+b)e+(1-e)(a+b)(1-e)+e(a+b)(1-e)+(1-e)(a+b)e \in S$.

In advance of stating the first corollary, we introduce the following definition: A ring A with 1 is said to be *right integral* over a unital subring B, if for each $a \in A$ there exists a positive integer n such that $\sum_{i=0}^{\infty} a^i B = \sum_{i=0}^{n} a^i B$.

Corollary 1. Let R be a right integral extension of a division ring P. Let S be a multiplicative subsemigroup of R. Suppose that S contains P and suppose, further, that P0 always implies that P1 is a subring of P1.

Proof. Let a be an arbitrary element of R. Since R is a right integral extension of D, we can easily see that $a^m = a^{m+1}a_0$ with some positive integer m and some $a_0 \in \sum_{i=0}^{\infty} a^i D$. Hence, by [2, Proposition 2], R is strongly π -regular. Henceforth, we let a be an arbitrary element of S. Since every element of $\sum_{i=0}^{\infty} a^i D$ is of the form $a^k (a^h a_h + \cdots + 1)a$ $(a, a_i \in D)$, an easy induction proves that $\sum_{i=0}^{\infty} a^i D \subseteq S$. Thus, $a^n = a^{2n}b = ca^{2n}$ for some positive integer n and some n0 in n2. This implies that n3 is a strongly n3-regular semigroup. Hence, n3 is a subring of n3 by Theorem.

The following are immediate consequences of Corollary 1.

Corollary 2. Let S be a multiplicative subsemigroup of an algebraic algebra R with 1 over a field F. Suppose that S contains $F(=F \cdot 1)$ and suppose, further, that $a \in S$ always implies $a+1 \in S$. Then S is a subalgebra of R.

Corollary 3. Let D be a division ring, and S a multiplicative subsemigroup of $M_n(D)$. Suppose that S contains all scalar matrices and suppose, further, that $a \in S$ always implies that $a+I \in S$. Then S is a subring of $M_n(D)$.

REFERENCES

- [1] G. AZUMAYA: Strongly π-regular rings, J. Fac. Sci. Hokkaido Univ., Ser. I, 13 (1954), 34—39.
- [2] Y. HIRANO: Some studies on strongly π-regular rings, Math. J. Okayama Univ. 20 (1978), 141-149.
- [3] M.S. PUTCHA and A. YAQUB: Matrix semigroups closed under scalar transformations, Linear and Multilinear Algebra (to appear).

DEPARTMENT OF MATHEMATICS
OSAKA CITY UNIVERSITY

(Received December 9, 1981)