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SOME REMARKS ON BISIMPLE RINGS

Yastuyuk! HIRANO and Hisao TOMINAGA

Throughout, R will represent an (associative) ring, and Z,(R) (resp.
Zi(R)) the right (resp. left) singular ideal of R. A ring R (+ 0) is called
an s-unital ring if for each x € R there holds x € Rx N xR. As stated
in [4]. if R is an s-unital ring, then for any finite subset F of R there
exists an element e in R such that ex=xe=x for all x€F. Consequently,
for any finite subset F of a regular ring R there exists an idempotent e
in R such that £ € eRe. A ring R(=+0) is called pseudobisimple if for
each pair of non-zero elements a, b in R there exists an element ¢ in R
such that aR =cR and Rb = Rc. Following [5]. an s-unital pseudobisimple
ring is called a bisimple ring.

0 Z Z

Obviously, every zero-ring is a pseudobisimple ring, R = [ 0 0 Z

0 0 0
is a pseudobisimple ring with £? #= 0 and %= 0, and every division ring
is a bisimple ring. Now, let @ and £ be infinite cardinals with o < 3,
and V a left vector space of dimension 8 over a division ring D. Write
S={e€EndpV |rank ¢ <o} and T ={¢ € EndpV | rank a < a}.
Then B(D:a.3) = S/T is a bisimple ring (see [5, (1.1)]).

The purpose of this note is to prove the following theorems which
improve Lemma 1.3, Theorem 1.4. Corollary 1.5 and Corollary 2.3 of [5].

Theorem 1. The following ave equivalent:

1) R is a regular bisimple ring.

2) R is a bisimple ring containing a non-zero idempotent.

3) R is a non-zevo regular ring whose non-zero principal vight
(resp. left) ideals are isomorphic as right (resp. left) R-modules.

Theorem 2. Let R be a bisimple ring. Then the following are
equivalent :

1) The sel E of idempotents in R is a non-zero wmultiplicative
Semigroup.

2) R is of bounded (nilpotency) index.

3) R satisfies the minimal condition on principal left ideals.

4) R satisfies the maximal condition on principal right ideals.

5) R satisfies the minimal condition on left annihilators.
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6) R satisfies the maximal condition on right annihilators.
7) R has finite Goldie dimension.

8) R is a division ring.

3)—17): The left-right analogues of 3)—7).

In preparation for the proofs of our theorems, we state two lemmas.

Lemma 1. Let R be an s-unital ring.

(1) If R is simple, then R is fully left and right idempotent and
ZAR)=Z(R)=0.

(2) If R contains a left (or right) identity then R has 1.

(3) I R satisfies the maximal condition on left (or vight) annihilators
then R has 1.

(4) Let a be an element of R. Then Ra (resp. aR) is a direct
summand of rR (rvesp. Rr) if and only if a is (von Newmann) regular.

(5) Let a be an element of R. If Ra (resp. aR) is maximal among
the principal left (vesp. right) ideals then a is regular.

Proof. (1) For any non-zero a € R we have RaR = R. So, (Ra)?
= Ra and (aR)?> = aR. Now, Z,(R) =Z/(R) = 0 by [6, Proposition 7 (1)].

(2) Let e be a left identity of R. Then for any x € R we have
x—xe € (x—xe)R = (x—xe)eR = 0, namely e is the identity of R.

(3) By [3, Theorem 4] and (2).

(4) By [7, Lemma 1 (3)].

(5) Let e be an element in R with a = ae = ea. Then we have
Ra = Re, and so e = a'a for some a. Thus, a = ada.

Lemma 2 (cf. [5, Lemmas 1.2 and 1.3]). (1) Let R be a pseudo-
bisimple ving. Then either R® =0 or R is a subdirectly irreducible ring
with heart R® (and R® is a simple ring). In particular, if R is bisimple
then R is a simple primitive ring and Z,(R) = Z{R) = 0.

(2) Let R be a bisimple ring. Then any two non-zero principal
right (resp. left) ideals of R are isomorphic as right (resp. left)
R-modules.

(3) If e is a non-zero idempotent of a pseudobisimple ring R then
eRe is a bisimple ring with identily.

(4) If e and f are non-zero idempotents in a pseudobisimple ring
R then eRe is isomorphic to fRY.

Proof. Let a, b be arbitrary non-zero elements in R, and let ¢ be
such that aR = cR and Rb = Rc.
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(1) Since RaR = RcR = RbR, the first assertion is easily seen.
Henceforth, we assume that R is bisimple. Then R is simple, and so
Z/(R)=Z)(R)=0by Lemma 1 (1). Now, suppose that R is quasi-regular,
and choose an element e with ¢=ae. Then we have a contradiction
a=a(l—e)(1—e)' =0, and hence R must be primitive.

(2) Choose u, vE R such that b= uc and ¢ =uvb. Then the
R-homomorphisms ¢ : aR —» bR defined by c¢x = ucx and ¢ : bR - aR
defined by bx — vbx are mutually converse.

{(3)and (4) If a b are in eRe then ¢ = ece, and therefore a(eRe)
= c(eRe) and (eRe)b = (eRe)c. (4 ) is obvious by Lemma 2 (2).

Corollary 1. Let D be a division ring, and a B infinite cardz'nals
with a<pB If e i a mnonzero idempotent in B(D;af) then
eB(D;a.8)e ~ B(D:a.a).

Proof. Let f be an idempotent in Endp V' with rank f =« Then
it is easy to see that fB(D:a.8)f =~ B(D;a,a). On the other hand, by
Lemma 2 (4), /B(D:a,R)f =~ eB(D;a.B)e, and therefore we obtain the
assertion.

Corollary 2. Let R be a regular bisimple ving. If R is not a
division ring, then for any finite subset F of R there exists a non-zero
idempotent ¢ in R such that eRe contains F and (eRe)n =~ eRe for any
positive integer w; in particular, (R), is a regular bisimple ving for any
positive inleger n.

Proof Let e be a non-zero idempotent in R such that F & eRe.
According to Lemma 2 (3), eRe is a regular bisimple ring with identity.
Thus, henceforth, we may assume that R has 1. Since R is not a division
ring but a regular ring, by making use of Lemma 2 (2) we can easily see
that R is isomorphic to the direct sum of # copies of R as right R-module.
Hence (R), is isomorphic to the bisimple ring R.

We are now ready to complete the proofs of our theorems.

Proof of Theorem 1. 1)=3). By Lemma 2 (2).

2) =1). Let e be a non-zero idempotent, and a an arbitrary non-zero
element of K. Then there exists ¢ € R such that eR = ¢R and Ra = Rc.
Now, by Lemma 1 (4), a is regular.

3)=>2). Let a, b be arbitrary non-zero elements in R, and Rb = Re
with an idempotent e. By hypothesis, there exists an R-isomorphism
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¢:eR ~» aR. We let ¢ = ¢(e), and Rc = Rf with an idempotent £
Clearly, cR = aR and rg(e) = rg(c) = rg(f). Now, let g be an idempo-
tent in R such that e, f € gRg. Since (1—F)g is in »x(f), we get
0=e(l—f)g = e—ef namely e=ef . Similarly, we have f = fe. Hence,
Rb = Re = Rf = Rec.

A ring R is called strictly prime if for each non-zero ¢ € R there
holds rg(ab) = 0 with some 4 € R. The next improves [2, Theorem 2.1].

Corollary 3. Let R be a ring with 1. If R is right self-injective,
then the following are equivalent :

1) R s bisimple.

2) R is strictly prime.

3) Every non-zero principal right ideal of R is isomorphic to R as
right R-module.

4) FEither R is a division ring or else R is a directly infinile
simple ving.

5) Either R is a division ring, or else R is a simple ring and
Re=(R®R )R~

Proof. 5) © 4) ©2) = 3). According to [2. Theorem 2.1], it suffices
to show that if 2) is satisfied then R is simple. First, we prove that R is
right non-singular. Suppose that »z(a) is essential in Rz for some ¢ € R.
If @ is non-zero, then rz(ab) =0 for some b € R. Since »z{a) N bR is
non-zero, we have a contradiction rg{ab) #+ 0. Hence, R coincides with
its maximal right quotient ring that is a regular ring. Now, let ¢ be an
arbitrary non-zero element of R, and d such that »g(cd) = 0. Since
¢dRr = Rr and R is a regular ring, it is easy to see that R = RcdR S RcR,
namely R is simple.

1) = 2). Let @ be an arbitrary non-zero element in R, and ¢ such
that aR = cR and Rc = R. Choose an element b in R such that ab = c.
Then »p(ab) = rr(c) = 0.

3)=1). Since aRr(= Rj) is injective for any non-zero ¢ € R, R is
a regular ring. Hence, R is bisimple by Theorem 1.

Proof of Theorem 2.  Obviously, 8) implies 1)-—7), and 5) is equiv-
alent to 6).

1)=8). According to Theorem 1, R is a regular ring. If R is not
a division ring, £ cannot form a semigroup by Corollary 2. Hence R is
a division ring.
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2) = 3). Let a be an arbitrary non-zero element of X, and e such
that ae = ea = a. Then, there exists a non-zero element ¢ such that
Re = Rc and aR = ¢R. and so e = xc and ¢ = ay for some x, y € R.
Since xc? = ¢, ¢ is strongly regular by [1, Theorem 1]. Hence, R is
regular by Theorem 1. If R is ot a division ring, then & cannot be of
bounded index by Corollary 2.

3)=18). By Lemma 2 (1), R is a direct sum of minimal left ideals.
Hence, by Lemma 1 (4) and Theorem 1, R is a regular ring. Combining
this with Lemma 2 (2), we see that R itself is a minimal left ideal.

4)=6). By Lemma 1 (5) and Theorem 1. R is a regular ring.
Hence, there holds 6). ‘

6)=8). R is a regular ring with 1 by Lemma 1 (3) and Theorem
1. Now, by Lemma 2 (2). we can easily see that Rk is irreducible. Thus
R is a division ring.

7)=6). Since Z,(R) =0 by Lemma 2 (1), [8 Lemma 3] enables us

to see that R satisfies the maximal condition on right annihilators.
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