SOME POLYNOMIAL IDENTITIES AND COMMUTATIVITY OF s-UNITAL RINGS

YASUYUKI HIRANO, YUJI KOBAYASHI and HISAO TOMINAGA

Throughout this paper. R will represent an (associative) ring (with or without identity 1), C = C(R) the center of R, D = D(R) the commutator ideal of R, and N = N(R) the set of all nilpotent elements in R.

A ring R is called *s-unital* if $x \in Rx \cap xR$ for any $x \in R$. As stated in [13], if R is *s*-unital, then for any finite subset F of R there exists an element e in R such that ex = xe = x for all $x \in F$. Such an element e will be called a *pseudo-identity* of F (in R).

Let n be a positive integer. We consider the following ring-properties:

```
P_1(n): (xy)^n = x^n y^n and (xy)^{n+1} = x^{n+1} y^{n+1} for all x, y \in R.
```

$$P_2(n)$$
: $(xy)^n = x^n y^n = y^n x^n$ for all $x, y \in R$.

$$P_3(n)$$
: $(xy)^n = (yx)^n$ for all $x, y \in R$.

$$P_4(n)$$
: $[x, (xy)^n] = 0$ for all $x, y \in R$.

$$P_5(n)$$
: $[x, (yx)^n] = 0$ for all $x, y \in R$.

$$P_6(n)$$
: $[x,y^n] = 0$ for all $x, y \in R$.

$$P_7(n)$$
: $[x,y^n] = [x^n,y]$ for all $x, y \in R$.

 $P_8(n)$: There is a polynomial $\psi(\lambda)$ with integer coefficients such that $[x,y^n] = [\psi(x),y]$ for all $x, y \in R$.

$$P_9(n): [x(x+y)^n - y^n] = 0 \text{ for all } x, y \in R.$$

$$P_{10}(n)$$
: $[x^n, y^n] = 0$ for all $x, y \in R$.

$$Q(n)$$
: For any $x, y \in R$, $n[x,y] = 0$ implies $[x,y] = 0$.

The properties $P_1(n)$, $P_3(n)$, $P_6(n)$, $P_7(n)$ and $P_{10}(n)$ have been considered by many authors. The main objective of this paper is to prove the following

Theorem 1. Let m_1, \dots, m_t and n_1, \dots, n_t be (fixed) positive integers such that $1 \le m_i \le 9$ and $2 \le n_i$ for $i = 1, \dots, t$. Let $d = (n_1, \dots, n_t)$. If an s-unital ring R has the (conjunctive) property $P_{m_1}(n_1) \wedge \dots \wedge P_{m_t}(n_t) \wedge Q(d)$, then R is commutative.

In preparation for the proof of our theorem, we introduce here some definitions. Let P be a ring-property. If P is inherited by every subring and every homomorphic image, P is called an h-property. More weakly, if P is inherited by every finitely generated subring and every natural

homomorphic image modulo the annihilator of a central element, P is called an H-property. And, a ring-property P such that a ring has the property P if and only if all its finitely generated subrings have P, is called an F-property. Finally, P is called a C(n)-property if every ring with 1 having the property $P \wedge Q(n)$ is commutative.

Obviously, $P_1(n) - P_{10}(n)$ are *h*-properties and Q(n) is an *H*-property. These properties are also *F*-properties and the property "being commutative" is an *F*-property.

To our end, we shall prove three propositions. The first one enables us to reduce some problems of s-unital rings into those of rings with 1.

Proposition 1. Let P be an H-property, and P' an F-property. If every ring with 1 having the property P has the property P', then every s-unital ring having P has P'.

Proof. Let R be an s-unital ring having the property P. We show that if F is a finite subset of R, then the subring $\langle F \rangle$ generated by F has the property P'. To see this, choose a pseudo-identity e of F and a pseudo-identity e' of $F \cup \{e\}$. Obviously, e is a central element of $S = \langle F \cup \{e, e'\} \rangle$. Let A be the annihilator of e in S. Then the factor ring S/A has the identity e' + A. Since $\langle F \rangle \cap A = 0$, $\langle F \rangle$ may be regarded as a subring of S/A. Thus, by hypothesis, $\langle F \rangle$ has the property P'.

Some known results on rings with 1 can be extended to s-unital rings by Proposition 1. For example, by [11, Theorem 3] and [4, Theorem 1] we obtain

Corollary 1. Let R be an s-unital ring.

- (1) Let k be a positive integer. Suppose that for each pair of elements x, y in R there exist positive integers m, n such that $_{k}[x^{m},y^{n}] = 0$. Then D is a nil ideal.
- (2) Suppose that for each pair of elements x, y in R there exists an integer $n \ge 2$ such that $(xy)^n = x^n y^n$ and $(xy)^{n+1} = x^{n+1} y^{n+1}$. Then D is a nil ideal.

Next, we reprove a theorem of Kezlan [10].

Proposition 2. Let f be a polynomial in non-commuting indeterminates x_1, \dots, x_k with integer coefficients. Then the following statements are equivalent:

- 1) For any ring R satisfying f = 0, D is a nil ideal.
- 2) Every semiprime ring satisfying f = 0 is commutative.
- 3) For every prime p, $(GF(p))_2$ fails to satisfy f = 0.

Proof. Since $2) \Rightarrow 1) \Rightarrow 3$) are immediate, it remains only to prove that 3) implies 2). Obviously, the coefficients of f are relatively prime. Since every semiprime ring is a subdirect sum of prime rings, it suffices to show that every prime ring R satisfying f = 0 is commutative. Now, by a theorem of Amitsur [1, Theorem 7 (6)], the (classical) quotient ring R^* of R is an Artinian simple ring satisfying f = 0. Hence, by 3) (and Posner's theorem). R^* is a central division algebra of finite rank m^2 over $C^* = C(R^*)$. Suppose that R^* is not commutative, namely $m \ge 2$, and choose a maximal subfield K of R^* . Then again by the theorem of Amitsur, $R^* \otimes_{C^*} K \cong (K)_m$ satisfies f = 0. But this cotradicts 3). Thus, R^* , and therefore R is commutative.

Corollary 2 (cf. [5, Theorems 1, 2, 3] and [9, Theorem]). Let R be a semiprime ring, and ν a (fixed) positive integer.

- (1) If for each pair of elements x, y in R there exists an integer n such that $2 \le n \le \nu$ and $[x, (xy)^n x^ny^n] = 0$ (resp. $[x, (xy)^n (yx)^n] = 0$), then R is commutative.
- (2) Suppose that for each pair of elements x, y in R there exists an integer n such that $2 \le n \le \nu$ and $[x,[x^n,y]-[x,y^n]]=0$. Then R is commutative,

Proof. (1) In fact,
$$R$$
 satisfies the identity $f(x,y,z) = [x,(xy)^2 - x^2y^2]z[x,(xy)^3 - x^3y^3]z \cdots [x,(xy)^{\nu} - x^{\nu}y^{\nu}] = 0$ (resp. $f(x,y,z) = [x,(xy)^2 - (yx)^2]z[x,(xy)^3 - (yx)^3]z \cdots [x,(xy)^{\nu} - (yx)^{\nu}] = 0$), but $f(E_{12},E_{21},E_{21}) \neq 0$ in $(GF(p))_2$.

(2) R satisfies the identity $f(x,y,z) = [x,[x^2,y]-[x,y^2]]z[x,[x^3,y]-[x,y^3]]z\cdots[x,[x^\nu,y]-[x,y^\nu]] = 0$, but $f(E_{11},E_{12},E_{21}) \neq 0$ in $(GF(p))_2$.

According to Proposition 2, as Corollary 2 shows, various kinds of semiprime PI-rings (especially, semiprime rings having any one of the properties $P_1(n)-P_{10}(n)$ $(n \ge 2)$) are commutative. However, if we remove the hypothesis "semiprime", even under some extra hypothesis, say that R has 1 or that R is n-torsion free, we have not yet obtained definite results concerning the precise commutativity of R.

In the subsequent study, we shall use freely the following well-known

results: Let $a, b \in R$, and n a positive integer.

- (I) If [a,[a,b]] = 0 then $[a^n,b] = na^{n-1}[a,b]$.
- (II) If R contains 1 and $a^nb = (a+1)^nb = 0$, then b = 0.

Now, in advance of exposing the relationship among the properties $P_1(n) - P_{10}(n)$, we state the following lemma.

Lemma 1. Let $n \ge 2$. If $[x,y] \in C$ for all $x, y \in R$, then $P_7(n)$ implies $P_6(n^4)$.

Proof. We claim that $[x,y^{n^2}]x^{(n-1)^2}=[x,y^{n^2}]$ for all $x,y\in R$. Indeed, by (I) we have $[x,y^{n^2}]x^{(n-1)^2}=x^{(n-1)^2}[x^n,y^n]=nx^{n(n-1)}[x,y^n]=nx^{n(n-1)}[x^n,y]=[x^n,y]=[x,y^{n^2}]$. Now, by making use of the argument employed in the proof of [7, Lemma 5], we can prove that the subring $\langle x^{n^2} | x \in R \rangle$ is commutative. This implies that $[x^{n^4},y]=[x^{n^2},y^{n^2}]=0$ for all $x,y\in R$.

Proposition 3. (i) If R is s-unital, then $P_1(n) \Leftrightarrow P_2(n) \Rightarrow P_3(n) \Rightarrow P_4(n) \Leftrightarrow P_5(n) \Leftrightarrow P_6(n) \Rightarrow P_{10}(n)$ and $P_6(n) \Rightarrow P_7(n)$.

(ii) If $n \ge 2$, then $P_7(n) \Leftrightarrow P_8(n) \Leftrightarrow P_9(n) \Rightarrow P_6(n^a)$ for some positive integer a.

Proof. (i) In view of Proposition 1, we may assume that R has 1. Obviously, $P_3(n) \Rightarrow P_4(n) \land P_5(n)$, $P_2(n) \Rightarrow P_1(n) \land P_3(n)$, and $P_6(n) \Rightarrow P_4(n) \land P_5(n) \land P_7(n) \land P_{10}(n)$. Furthermore, $P_1(n)$ together with $P_6(n)$ implies $P_2(n)$, and so we prove that $P_1(n) \Rightarrow P_4(n)$ (resp. $P_5(n)) \Rightarrow P_6(n)$.

 $P_1(n) \Rightarrow P_4(n)$. Since $xy \cdot x^n y^n = (xy)^{n+1} = x^{n+1} y^{n+1}$, we get $x[x^n,y]y^n = 0$. Hence $x[x^n,y] = 0$ by (\mathbb{I}), and in particular $x[x^n,y^n] = 0$. So we have

$$[x,(xy)^n] = x\{(xy)^n - (yx)^n\} = x[x^n, y^n] = 0.$$

 $P_4(n) \Rightarrow P_6(n)$. By [12, Theorem], there exists a positive integer k such that kD = 0. If u is in N, then for any $x \in R$ we have

$$[x^n, u] = [\{(1+u)(1+u)^{-1}x\}^n, 1+u] = 0.$$

Hence, noting that $D \subseteq N$ by Proposition 2, we see that $[x^n, [x^n, y]] = 0$, and then $[x^{nk}, y] = kx^{n(k-1)}[x^n, y] = 0$ by (I). This enables us to see that $x^{n^2k}[x, y^n] = [x, x^{n^2k}y^n] = [x, (x \cdot x^{nk-1}y)^n] = 0$. Thus, $[x, y^n] = 0$ by (II).

Similarly, we can prove that $P_1(n) \Rightarrow P_5(n) \Rightarrow P_6(n)$.

(ii) Obviously, $P_7(n)$ implies $P_8(n)$. If R has $P_8(n)$, then

$$[x,(x+y)^n - y^n] = [\psi(x),(x+y) - y] = 0.$$

Next, if R has $P_9(n)$, then

$$[x,y^n] - [x^n,y] = [x,(x+y)^n] - [(x+y)^n,y] = [x+y,(x+y)^n] = 0.$$

We have thus seen the equivalence of $P_7(n) - P_9(n)$.

Now, suppose R has the property $P_7(n)$. By [7, Lemma 1] there exists a positive integer h such that $[x,y]^h=0$ for all $x, y \in R$. Choose a positive integer k such that $n^k \ge h$, and let $T = \langle x^{n^k} | x \in R \rangle$. Since $[[x,y],z^{n^k}] = [[x,y]^{n^k},z] = 0$ for all $x, y, z \in R$, Lemma 1 shows that $[s^{n^4},t] = 0$ for all $s, t \in T$. It therefore follows that $[x^{n^{2^{k+4}}},y] = [x^{n^{k+4}},y^{n^k}] = 0$ for all $x, y \in R$.

Remark 1. Let i, j be non-negative integers. Let us consider the following ring-property:

$$P(i,j;n): [x,(x^iyx^j)^n] = 0$$
 for all $x, y \in R$.

Obviously, $P(1,0;n) = P_4(n)$, $P(0,1;n) = P_5(n)$ and $P(0,0;n) = P_6(n)$. From the proof of Proposition 3 (i), we can easily see that P(i,j;n) is equivalent to $P_6(n)$ for any $i, j \ge 0$.

Obviously, if the power map $\pi_n \colon x \mapsto x^n$ is a ring-homomorphism of R then R has the property $P_9(n)$. In [6, Theorem 3], it is shown that if π_n is a surjective ring-homomorphism of R for some $n \ge 2$ then R is commutative. On the other hand, in [3, Theorem 3], it is shown that if a ring R with 1 has the property $P_1(n)$ and is generated by $\{x^{n^2} \mid x \in R\}$ or $\{x^{n(n+1)} \mid x \in R\}$ then R is commutative. The next improves these results as well as [2, Corollary 2] (see also [7, Corollary 2]).

Corollary 3. Let $n \ge 2$. Let R be an s-unital ring having one of the properties $P_1(n) - P_6(n)$ or a ring having one of the properties $P_7(n) - P_9(n)$, and let $T = \langle x^n | x \in R \rangle$. If the centralizer of T in R coincides with C, then R is commutative.

Proof. If an s-unital ring R has one of the properties $P_1(n) - P_6(n)$, then it has the property $P_6(n)$. So the assertion is clear. If a ring R has one of the properties $P_7(n) - P_9(n)$, then it has the property $P_6(n^a)$ for some positive α . Hence $[x^{n^{a-1}}, y^n] = [x^{n^a}, y] = 0$ for all $x, y \in R$. Then, $[x^{n^{a-1}}, y] = 0$ by hypothesis. We can thus continue the same procedure to obtain the conclusion [x, y] = 0.

Corollary 4. If $n \ge 2$, then the properties $P_1(n) - P_9(n)$ are C(n)-properties.

Proof. Let R be a ring with 1 having the property $P_i(n) \wedge Q(n)$. If $1 \le i \le 6$ then, according to Proposition 3 (i), we may assume that i = 6. Given $u \in N$, by an easy induction on the nilpotency index of u, we can show that $u \in C$, and therefore $D \subseteq C$ by Proposition 2. Now, by (1), for any $x, y \in R$ we have $nx^{n-1}[x,y] = [x^n,y] = 0$, whence [x,y] = 0 follows by (II). On the other hand, if $7 \le i \le 9$, then R has $P_6(n^a)$ and $Q(n^a)(=Q(n))$ for some positive integer a (Proposition 3 (ii)). Hence, R is commutative by what was just proved above.

Proof of Theorem 1. In virtue of Proposition 1, we may assume that R has 1. Since $P_1(n) - P_9(n)$ are C(n)-properties, the proof of our theorem is now immediate by [8. Proposition 1].

Corollary 5. Let m_1, \dots, m_t and n_1, \dots, n_t be (fixed) positive integers such that $1 \le m_i \le 9$, $2 \le n_i$ ($i = 1, \dots, t$) and $(n_1, \dots, n_t) = 1$. If an s-unital ring R has the property $P_{m_1}(n_1) \wedge \dots \wedge P_{m_t}(n_t)$, then R is commutative.

Remark 2. Let $n \ge 2$, and m a strictly proper divisor of n. Then, the properties $P_3(n) - P_{10}(n)$ are not C(m)-properties. In this sense, the results on $P_3(n) - P_9(n)$ in Corollary 4 are best possible. To see this, we take a prime divisor p of n such that $p \nmid m$. Let S be a non-commutative algebra over GF(p) such that $S^3 = 0$. Let R be the ring whose additive group is the direct sum of GF(p) and S with multiplication given by (k,s)(k',s') = (kk',ks'+k's+ss'). It is easy to see that R has the properties $P_3(n) - P_9(n)$ and Q(n), but R is not commutative. In the same way, the properties $P_1(n)$ and $P_2(n)$ are not C(m)-properties when n is odd. However, as is easily seen, $P_1(2)$ and $P_2(2)$ are C(1)-properties. In general, when n is even, we can not deny the possibility that $P_1(n)$ and $P_2(n)$ can be C(n/2)-properties (see [12, Examples 3 and 4]).

Remark 3. So far we did say little about $P_{10}(n)$. It is easy to see that $P_{10}(2)$ is a C(2)-property. However, $P_{10}(n)$ is not a C(n)-property if n has a divisor of the form $1+p^r+p^{2r}+\cdots+p^{sr}$, where r and s are positive integers and p is a prime not dividing n. In fact, let n have such a divisor and let

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & a^{pr} \end{pmatrix} \middle| a, b \in \mathrm{GF}(p^{r(s+1)}) \right\}.$$

Then, R is an n-torsion free ring with 1 and has the property $P_{10}(n)$, but

R is not commutative. Thus, in particular, $P_{10}(n)$ is not a C(n)-property if $3 \le n \le 10$. What about $P_{10}(11)$?

Remark 4. In view of Remark 3, it seems unavoidable to exclude the property $P_{10}(n)$ from the statment in Corollary 5. However, we have the following: If an s-unital ring R has the property $P_i(m) \wedge P_j(n)$ for some positive integers i, j, m and n such that $1 \le i, j \le 10, 2 \le m, n$ and (m, n) = 1, then R is commutative. In fact, if R has this property, then R has the property $P_{10}(m^a) \wedge P_{10}(n^a)$ for some positive integer α (Proposition 3 (ii)). Then R is commutative by Proposition 1 and [14, Theorem] (cf. the proof of [8, Theorem 1]).

REFERENCES

- [1] S.A. AMITSUR: Prime rings having polynomial identities with arbitrary coefficients, Proc. London Math. Soc. (3), 17 (1967), 470—486.
- [2] H.E. Bell: On some commutativity theorems of Herstein, Archiv Math. 24 (1973), 34—38.
- [3] H.E. Bell: On the power map and ring commutativity, Canad. Math. Bull. 21 (1978), 399-404.
- [4] B. FELZENSWALB: On the commutativity of rings, Acta Math. Acad. Sci. Hungar. 34 (1979), 257—260.
- [5] V. GUPTA: Some remarks on the commutativity of rings, Acta Math. Acad. Sci. Hungar. 36 (1980), 233—236.
- [6] I.N. HERSTEIN: Power maps in rings, Michigan Math. J. 8 (1961), 29-32.
- [7] Y. HIRANO and H. TOMINAGA: Some commutativity theorems for rings, Hiroshima Math. J. 11 (1981), 457—464.
- [8] Y. HIRANO, M. HONGAN and H. TOMINAGA: Supplements to the previous paper "Some commutativity theorems for rings", Math. J. Okayama Univ. 23 (1981), 137—139.
- [9] A. KAYA: A theorem on the commutativity of rings, METU J. Pure Appl. Sci. 10 (1977), 261—265.
- [10] T.P. KEZLAN: A note on commutativity of semi-prime PI-rings, Math. Japonica 27 (1982), 267—268.
- [11] A.A. KLEIN, I. NADA and H.E. BELL: Some commutativity results for rings, Bull. Austral. Math. Soc. 22 (1980), 285—289.
- [12] Y. KOBAYASHI: A note on commutativity of rings, Math. J. Okayama Univ. 23 (1981), 141—145.
- [13] I. MOGAMI and M. HONGAN: Note on commutativity of rings, Math. J. Okayama Univ. 20 (1978), 21—24.
- [14] W.K. NICHOLSON and A. YAQUB: A commutativity theorem for rings and groups, Canad. Math. Bull. 22 (1979), 419—423.

OKAYAMA UNIVERSITY
TOKUSHIMA UNIVERSITY
OKAYAMA UNIVERSITY

(Received December 9, 1981)