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SOME POLYNOMIAL IDENTITIES AND
COMMUTATIVITY OF s-UNITAL RINGS

Yasuyuki HIRANO, Yuji KOBAYASHI and Hisao TOMINAGA

Throughout this paper. B will represent an (associative) ring (with or
without identity 1), C = C(R) the center of R, D = D(R) the commutator
ideal of K. and N = N(R) the set of all nilpotent elements in K.

A ring R is called s-unital if x € Rx N xR for any x € R. As stated
in [13]. if R is s-unital, then for any finite subset ¥ of R there exists an
element e in K such that ex = xe =x for all x&€ F. Such an element ¢
will be called a pseudo-identity of F (in R).

Let » be a positive integer. We consider the following ring-properties:

P() o (o) = x%y" and (xy)" = "yl for all v, vE R,

Po(n): (oy)'=x"y"=y"x" for all x, yE R.

Py(n): ()" = ()" for all x, yE R

Pio(n): [x. (x»)?] =0 for all x. yE R.

Ps(n): [x (x)*] =0 for all x, vE K.

Ps(n): [xv7"] =0 for all x, yE R.

Pr(n): [xa*]=[x"y] for all x. yE R,

Ps(n): There is a polynomial ¥(A) with integer coefficients such
that [x.v"] = [¢(x).¥] for all x. vE R.

Py(n): [x(x+v)'—y"]=0forall x, yER.

Po(n): [x"y"] =0 for all x, yER.

Q(n) : For any x, y € R, »n[x,y] = 0 implies [x.y] = 0.

The properties Py(#). Ps(#n). Ps(n). P(n) and Po(n) have been consid-
f-;red by many authors. The main objective of this paper is to prove the
following

Theorem 1. Letf ny, ==, m; and ny. -, n; be (fixed) positive infegers
such that 1< wm; <9 and 2<n; for i=1 .t Let d=C0n, - n).
If an s-unital ring R has the (conjunctive) property Pm (1) A== A Pn(n,)
A QUd), then R is commulative.

In preparation for the proof of our theorem. we introduce here some
definitions. Let P be a ring-property. If P is inherited by every subring

and every homomorphic image, P is called an h-property. More weakly,
if P is inherited by every finitely generated subring and every natural
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homomorphic image modulo the annihilator of a central element, P is
called, an H-property. And, a ring-property P such that a ring has the
property P if and only if all its finitely generated subrings have P, is
called an F-propertv. Finally, P is called a C(x)-property if every rin{g
with 1 having the property P A Q(1) is commutative.

Obviously, Pi(n)— Pi(n) are h-properties and Q(1) is an H-property.
These properties are also f£-properties and the property “bheing commuta-
tive" is an F-property.

To our end. we shall prove three propositions. The first one enables
us to reduce some problems of s-unital rings into those of rings with 1.

Proposition 1. Lel P be an H-property. and P an F-property. If
every ring with 1 having the property P has the property P, then every
s-unital ving having P has I,

Proof. Let R be an s-unital ring having the property P. We show
that if F is a finite subset of K. then the subring (/> generated by F has
the property P. To see this, choose a pseudo-identity ¢ of F and a
pseudo-identity ¢ of F U le). Obviousl'y, e is a central element of S =
(F Ule, ¢1>. Let A be the annihilator of ¢ in S. Then the factor ring
S/A has the identity ¢'+A. Since <F> N A =), <F> may be regarded
as a subring of S/A. Thus, by hypothesis, <> has the property P’

Some known results on rings with 1 can be extended to s-unital rings
by Proposition 1. For example, by [11, Theorem 3] and [4, Theorem 1]
we obtain

Corollary 1. Let R be an s-unital ring.

(1) Let k be a positive integer. Suppose that for each pair of
elements x, v in R there exist positive integers m, n such that p[x™y"]
=0. Then D s a nil ideul.

(2) Suppose that for each pair of elements x, y in R there exists an
infeger n =2 such that (xy)* = x"y* and (xy)™! = x"*ly"*! Then
D s a nil ideal

Next, we reprove a theorem of Kezlan [10].
Proposition 2. Let f be a polynomial in non-commuting indeterminates

Xi, o Xe  with integer coefficients.  Then the following statements are
equivalent
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1) For any ring R satisfving f =0, D is a nil ideal.
2) Every semiprime ring satisfying f =0 is commulalive.
3) For every prime p, (GF(9))2 fails to satisfv f = 0.

Proof. Since 2) = 1) = 3) are immediate, it remains only to prove
that 3) implies 2). Obviously. the coefficients of f are relatively prime.
Since every semiprime ring is a subdirect sum of prime rings, it suffices
to show that every prime ring R satisfying f = 0 is commutative. Now,
by a theorem of Amitsur [1. Theorem 7 (6)]. the (classical) quotient ring
R* of R is an Artinian simple ring satisfying f = 0. Hence. by 3) (and
Posner's theorem). R*is a central division algebra of finite rank 2 over
C* = C(R*). Suppose that R* is not commutative, namely m = 2, and
choose a maximal subfield K of R*. Then again by the theorem of
Amitsur, R* ¢« K = (K)n satisfies f = 0. But this cotradicts 3). Thus,
R* and therefore R is commutative.

Corollary 2 (cf. [5. Theorems 1. 2, 3] and [9, Theorem]). Lef R be a
semiprime ving, and v a (fixed) positive integer.

(1) If for each pair of elements x, y in R there exists an integer n
such that 2< n< v and [x. (x3)"—x"y"] =0 (resp. [x. (xv)'—(x)*] = 0),
then R is commutative.

(2) Suppose that for each pair of elements x, y in R there exists an
integer n such that 2< n<v and [x[x"y]—[xy"]]1=0. Then R is
commultative,

Proof (1) In fact, R satisfies the identity
flxyz) = [x(xy)?—x2y?]e[x(xy)P = x3y%)z o [x,(xy)? —x¥y*] = 0
(resp. f(x.y.2) = [x.(xy)?—= (%)) 2[x,(xy)} = (yx)*] 2 -+ [x.(x)* — (yx)¥] = 0),
but f(Eiz, Ez21.E21) * 0 in (GF(p))..
(2) R satisfies the identity
flxy.z) =[x y] =[xy e[z [x%y] = [x.3%]]2 - [x[x¥ 3]~ [x.3*]] = O,
but f(E11.Er2. E21) # 0 in (GF(p))..

According to Proposition 2. as Corollary 2 shows, various kinds of
semiprime Pl-rings (especially. semiprime rings having any one of the
properties Pi(n)—Po(n) (n =2)) are commutative. However, if we
remove the hypothesis “semiprime”, even under some extra hypothesis,
say that R has 1 or that R is n-torsion free, we have not yet obtained
definite results concerning the precise commutativity of K.

In the subsequent study, we shall use freely the following well-known
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results: Let @, 8 € R, and » a positive integer.

(1) If [a[ab]] =0 then [«™b] = na™'[a.b].

(O) If R contains 1 and a”b = (a+1)"b = 0, then b = 0.

Now, in advance of exposing the relationship among the properties
Pi(n)— Po(n), we state the following lemma.

Lemma 1. Let n=2. If [xy]€ C for all x. y € R, then P{n)
implies Ps (n*).

Proof. We claim that [x,y™*]x"~* = [x,y™] for all x, yE R. Indeed,
by (I) we have [x~yn2]x(n—l)?-=' (n—-l)z[xrﬂyn]: nxn(n—l)[x.yn]znxnm—1)[xn.y]‘
=[x"y]=[x.y"]). Now, by making use of the argument employed in
the proof of [7, Lemma 5], we can prove that the subring <x"* | x € R) is
commutative. This implies that [x™v] = [x" y"] =0 for all x, yE R.

Proposition 3. (i) If R is s-unital, then Pi(n)© Px(n)= Ps(n)=>
Pi(n)e Ps(n)e Ps(n) = Pi(n) and Ps(n)= Pin).

(ii) If n=2, then Pin)e Ps(n)e Pn)=> Ps(n®) for some positive
integer a.

Proof. (i) In view of Proposition 1, we may assume that R has 1.
Obviously, Ps(n) = Ps(n) A Ps(n), Pa(n) = Pi(n) A Ps(n), and PFs(n) =
Pi(n) A Ps(n) A Po(n) A Pyo(n). Furthermore. Pi(n) together with Ps(n)
implies Po(#). and so we prove that Pi(n) = Pi(n) (resp. Ps(n)) = Ps(n).

Pi(n) = Py(n). Since xy-x"y"=(xy)**! =x"+1yp"*! we get x[x".y]y"
=(. Hence x[x"y]=0 by (1), and in particular x[x?3y"] =0. So we
have

[x.(x9)"] = x{ (xp)*— ()"} = x[x"y"] = 0.
Pi(n) = Ps(n). By [12, Theorem]. there exists a positive integer k
such that #D = 0. If « is in N, then for any x € R we have
[x7,u] = [{Q+2)A+u) 'x}" 14+ u] = 0.

Hence, noting that D € N by Proposition 2, we see that [x”[x”.y]] = 0.
and then [x7%y] = kx"*~V[x%y] =0 by (I). This enables us to see that
170 x, y"] = [x,x" % y*] = [x,(x-x"*'y)"] = 0. Thus, [x.y"] =0 by (II).
Similarly, we can prove that Pi(n) = Ps(n) = Ps(n).
(ii) Obviously, Ps(»n) implies Ps(z). If R has Ps(n), then

[x(x+y)"—y"] = [p(x)(x+y)—y] = 0.
Next, if R has Ps(n), then
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[ey"]=[x"y] = [x(x+ )" ] = [(x+ )"y ]= [x + v.(x+3)"] = 0.
We have thus seen the equivalence of P(n)— Py(n).

Now, suppose R has the property P;(xn). By [7, Lemma 1] there
exists a positive integer % such that [x,¥]" = 0 for all x, y € R. Choose
a positive integer % such that »* > A, and let T =<x™|x&€ R)>. Since
[[x.¥).2"] = [[x.y]*.2] = 0 for all x, ¥, zE R, Lemma 1 shows that [s™ ]
=0 for all 5, t& T. It therefore follows that [x™***y] = [x™"y"™] =0
for all x, yE R.

Remark 1. Let 7 ; be non-negative integers. Let us consider the
following ring-property :

P(ijn): [x(xiyx?)?] =0 for all x, vy € R.

Obviously, P(1,0;n) = Py(#n), P(0,1;n) = Ps(n) and P(0,0:n) = Ps(n). From
the proof of Proposition 3 (i), we can easily see that P(ijf;n) is equivalent
to Ps(n) for any 7, j = 0.

Obviously, if the power map 7,: x = x" is a ring-homomorphism of
R then R has the property Po(#). In [6, Theorem 3], it is shown that if
7 18 a surjective ring-homomorphism of R for some # =2 then R is
commutative. On the other hand, in [3, Theorem 3], it is shown that if a
ring R with 1 has the property P(x) and is generated by {x"’|x € R} or
{x®"+V| x € R} then R is commutative. The next improves these results
as well as [2, Corollary 2] (see also [7, Corollary 2]).

Corollary 3. Let n=2. Let R be an s-unital ving having one of
the properties Pi(n)—Ps(n) or a ring having ome of the properties
Pin)—Po(n), and let T =<x"|xE R>. If the centralizer of T in R
coincides with C, then R is commutative.

Proof. If an s-unital ring R has one of the properties Pi(#)— Ps(n),
then it has the property Ps(n). So the assertion is clear. If a ring R
has one of the properties P;(1)— Py(n), then it has the property Ps(n%)
for some positive @ Hence [x™7y"] = [x™y] =0 for all x, yE R.
Then, [x*'y] =0 by hypothesis. We can thus continue the same
procedure to obtain the conclusion [x,y]= 0.

Corollary 4. If n =2, then the properties Pi(n)—Po(n) are
C(#n)-properties.
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Proof Let R be a ring with 1 having the property (i) A @(n). If
1 < 7 <6 then, according to Proposition 3 (i), we may. assume that ;/ = 6.
Given u# € N, by an easy induction on the nilpotency index of «, we can
show that « € C, and therefore D S C by Proposition 2. Now, by (1),
for any x, y€ R we have nx"![x,y] =[x%v] =0, whence [xy]=0
follows by (II). On the other hand, if 7< /<9, then R has Ps(#%) and
R(n*)N= Q(n)) for some positive integer @ (Proposition 3 (ii)). Hence,
R is commutative by what was just proved above.

Proof of Theorem 1. In virtue of Proposition 1, we may assume that
R has 1. Since P(n)— Po(n) are C(n)-properties, the proof of our
theorem is now immediate by [8. Proposition 1].

Corollary 5. Let wnu, . m; and i, - ne be (fixed) positive
integers such that 1< m; <9, 2<n; (i=1,1) and (n\, - n) =1
If an s-unital ring R has the property Pm(\) A+ N Pu(n,), then R
18 commutative.

Remark 2. Let » = 2, and m a strictly proper divisor of #. Then,
the properties Ps(n)— Pio{n) are not C(m)-properties. In this sense, the
results on P3(n)— Ps(n) in Corollary 4 are best possible. To see this, we
take a prime divisor p of n such that pfm. Let S be a non-commutative
algebra over GF(p) such that S® = 0. Let R be the ring whose additive
group is the direct sum of GF(p) and S with multiplication given by
(Bs)k' s = (kk ks'+F's+ss). It is easy to see that K has the properties
P3(n)— Pso(n) and Q(#), but R is not commutative. In the same way, the
properties Pi(n) and Px(n) are not C(m)-properties when » is odd.
However, as is easily seen, Pi(2) and P»(2) are C(1)-properties. In general,
when # is even, we can not deny the possibility that Pi(#) and Px(#) can
be C(#n/2)-properties (see {12, Examples 3 and 4]).

Remark 3. So far we did say little about Po(n). It is easy to see
that Po(2) is a C(2)-property. However, Pio(%) is not a C(n)-property if

# has a divisor of the form 1+ p"+ p*"+ -+« +p%, where » and s are positive
integers and p is a prime not dividing ». In fact, let » have such a

divisor and let
_ffa b
rR= {(0 a”")

Then, R is an n-torsion free ring with 1 and has the property Pio(#), but

a, Y= GF(pr(sH))}_
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R is not commutative. Thus, in particular, Pjo(#) is not a C(»n)-property
if 3 <n<10. What about Pio(11)?

Remark 4. In view of Remark 3. it seems unavoidable to exclude
the property Pyo{(#) from the statment in Corollary 5. However. we have
the following: If an s-unital ring R has the property P{m) A Pi{n) for
some positive integers i, j, m and » such that 1</ ;j<10, 2 <m, »n and
(m, ») =1, then R is commutative. In fact, if R has this property, then
R has the property Pio(m?®) A Pio(#n%) for some positive integer a (Propo-
sition 3 (ii)). Then R is commutative by Proposition 1 and [14, Theorem]
(cf. the proof of [8, Theorem 1]).
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