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NOTE ON GROUPS WITH ISOMORPHIC
GROUP ALGEBRAS

Toru FURUKAWA

Introduction. For G a group and R a ring with identity, we denote
by RG the group ring of G over R and by Dnr(G) the n-th dimension
subgroup modulo R of G. That is, D,2(G) is defined to be {g € G| g—1
€ Adx(G)"}, where 4&(G) is the augmentation ideal of RG. Also, for any
normal subgroup N of G we denote by Jx(G,N) the kernel of the natural
homomorphism from RG to R(G/N). Note that dx(G.N) = A(N)RG =
RG4r(N). :

In this note we prove that if G and H are two groups with isomorphic
group algebras over R, where R is an integral domain of characteristic 0
in which no rational prime is invertible, then D,z(G) = {1} if and only if
Dy r(H) = {1} (Proposition 2.4). The corresponding result for the case
where R is the field of p elements for a prime p has been shown by . B.
S. Passi and S. K. Sehgal [3, Corollary 5]. Proposition 2.4 can be combined
with [4, 2.4 Corollary] to show that finitely generated nilpotent groups of
class 2 are determined by their integral group rings. This result for the
finite case is well known (see e.g. [5]).

In the process of establishing Proposition 2.4 we consider the group
V(RG) of normalized units of a group ring RG and obtain the following :
If G is any group and R is an integral domain of characteristic 0 in which
no rational prime is invertible, then for each » = 1 the factor group

V(RG) N (1+4:(G)*)/ V(RG) N (14 4x(G,Dn.r(G)))

is torsion free. This is an immediate consequence of Proposition 1.3
which is stated in a more general form.

1. The group of normalized units. Let RG be the group ring of a
group G over a commutative ring £ with identity. Denote by V(RG) the
group of normalized units of RG, that is, V(RG) = U(RG) N (1+4r(G))
where U(RG) is the group of units of RG. We need the following
crucial result.

Lemma 1.1 ([6, Corollary I.14]). Let G be a polycyclic-by-finite
group and R be an integral domain of characteristic O such that no
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element g+ 1 of G has order invertible in R. Suppose that u =
%}u.(g)ge V(RG). If u has finite ovder and u(1) + 0, then u = 1.

Let T(G) denote the set of torsion elements of a group G.

Lemma 1.2, Let G be a nilpotent group and R be an integral
domain of characteristic 0 in which no element g+ 1 of G has order
invertible. Let N be a centval subgroup of G. If w is a unit of RG of
finite order such that u—1E Jd(G.N), then v = x for some x E N.

Proof. Since #—1 can be written as a finite sum of the form

u—1l= zat’gi(xi—l) (a." € Rr 8: (S G' X € j\"v),

we may suppose that G is finitely generated and hence 7(G) is a finite
normal subgroup of G. We proceed by induction on the order of 7(G).
If T(G)= {1}, then G is torsion free nilpotent and it follows from [6.
Corollary VI.1.7] that V(RG) = G. Therefore # =1 and the result is
trivial. Assume T(G) # {1} so that T({(G)) # {1}, where ¢(G) is the
center of G. Set W = T(&(()) and' G = G/W. Let :RG — R(G)be
the natural homomorphism. Then # is a unit of R(G) of finite order
such that #—1€ 4g(G.N). Since T(G)= T(G)/W, T(G) has smaller
order than 7(G) and G has no element g # 1 whose order is invertible in
R. Hence by induction, # = ¥ for some y € N. Since ¥ € T(G) we see
that y € W and hence # = 1. Thus #—1 € 4x(G,W) and there exists an
element x € W with «(x) =+ 0. Then v = x~'u is a unit of finite order
such that ¢ € V(RG) and w»(1) #+= 0. Noting here that G is finitely
generated nilpotent and so is polycyclic, it follows by Lemma 1.1 that
v =1 and hence # = x. Since #—1 €4zx(G.N) we have x € N as desired.

Recall that for any (two-sided) ideal / of RG, G N (1+1) is a normal
subgroup of G. Let de(G)=1 2062 -2 1,2 be a decreasing
series of ideals of RG such that Lf,+1.[i € [, for all # =2 1. Then
{G N (1+7I)}n=1 is a descending central series of G, since we have

glxlgx—1=g'x H{{g—Dx—-1D—(x—1)g—1} € Inn

for g€ G and x€ G N (1+1,). Thus if GN(Q1+71,) = {1} for some n
then G is nilpotent. Now, we note that since J(G.G N (1+1,)) € I,
V(RG) N (1+4x(G.G N (1+1,,))) is a normal subgroup of V(RG) N(1+ I,.).

Proposition 1.3. Let G be an arbitrary group and R be an
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integral domain of characteristic 0 in which no rational prime s
invertible. Let d{G)=6L26L=2--21,2 - be a decreasing series of
ideals of RG such that hi,+I.0, € Ins1 for all n21. Then for each
n=1 the factor group

V(RG) N 1+1,)/ V(RG) N 1+ 4e(G.G N (1+1,)))
is torsion free.

Proof. We observe that if G = G/G N (1+1,), then GN (1+1,) =
{1} under the natural homomorphism ~ : RG— R(G). Hence by consid-
ering G/G N (1+1,) it suffices to prove the following :
(*) If GN (1+1,) = ({1}, then V(RG) N (1+1,) is torsion free.
We use induction on # to show (*), the case # =1 being trivial. Let
n 2 2 and assume that (*) holds for n—1. Set G = G/G N (1+1,-1),
and let ~ : RG - R(G) be the natural homomorphism. Then, since
G N (14 I,-1)={1}, the induction hypothesis shows that V(R(G))N(1+ I.-1)
is torsion free. Let # € V(RG) N (1+1,) have finite order . Then # is
a unit of finite order contained in V(R(G)) N (14+1.-1), so # =1. Thus
we have

u—1€ 4G,G N Q1+ 1In-1)).

Now, since G N (1+7,) = {1}, G N (1+1I,-:) is a central subgroup of G.
It follows from Lemma 1.2 that # = x for some x€ G N (1+1,_y).
However, since u—1€ I,, x€ G N (1+1,) so x =1. We have therefore
seen that V(RG) N (1+1,) is torsion free. This completes the induction
on # and (*) is established.

By taking I. = 4x(G)" in the above proposition we obtain the

following

Corollary 1.4. If G and R ave as in Proposition 1.3, then for
each n =1 the factor group

V(RG) N 1+ dx(G))/ V(RG) N (1+ 4x(G, D z(G)))

s torsion free.

2. Isomorphic group algebras. Let G be a group, R a ring with
identity. The following two lemmas are elementary.

Lemma 2.1 (cf. [1, Proposition 1]). Let H be a subgroup of G.
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Then H is finitely genevated if and only if Ag(H)RG is finitely
generated as a right ideal of RG.

Proof. Assume that H is finitely generated by a finite subset X.
Then it is easy to verify that dx(H)RG = (X —1)RG where X —1 is the
subset of all elements of the form x—1, x € X. Hence d:(H)RG is a
finitely generated right ideal of RG. Conversely, assume that dgx(H)RG
is finitely generated by a finite subset S of RG as a right ideal. Then
since S is finite there exists a finitely generated subgroup H* of H such
that S € A(H*)RG. Since S(RG) € A(H*)RG it follows that dg(H)RG
= Ax(H*)RG. Therefore H coincides with H* and so is finitely generated.

For a subset S of RG, let /(S) denote the left ideal {¢ € RG | S = 0}.
Recall that if H is a subgroup of G, then /(drx(H)RG) + 0 if and only if
H is finite ([1, Proposition 1]).

Lemma 2.2, Let H be a subgroup of G. Then H is locally finite
if and only if for any finite subset S of A(H)RG it follows I(S) # 0.

Proof. Assume that H is locally finite. Let S be a finite subset of
Ax{H)RG. Then since H is locally finite there exists a finite subgroup
H* of H such that S € d(H*)RG. As stated above, /(dr(H*)RG) # 0,
so it follows /(S) = 0. Conversely, assume that for any finite subset S of
dx(H)RG it follows /(S) + 0. Let H* be a finitely generated subgroup
of H Then by Lemma 2.1 there is a finite subset S of RG with
A(H*)RG = S(RG). Since /(S) # 0, we have [(dx(H*)RG) # 0 so that
H* is finite. Thus we see that H is locally finite.

Now let R be a commutative ring with identity, let G and H be
groups having isomorphic group algebras over K. If §: RG - RH is an
R-algebra isomorphism then we may suppose that & is normalized and
hence 8(4x(G)) = Ag(H) (see [6, p.64]). In what follows, the given
R-algebra isomorphism RG = RH will be assumed to be normalized.

Lemma 2.3. Let G be a wnilpotent group and R an integral domain.
Suppose RG = RH as R-algebras. Then T(H) forms a subgroup of
H and G/T(G)= H/T(H).

Proof. Note that since G is nilpotent T(G) is a locally finite normal
subgroup of G. Let 8: RG —» RH be an R-algebra isomorphism and set
K=HNQ+6Ud(GT(G)))). Then since 4dr(H K)S (4G, T(G))),
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there is a natural epimorphism RH/Jdz(H.K) = RH/8(4:(G, T(G))). which
induces a normalized epimorphism f: R{(H/K) - R(G/T(G)) such that
H/K N (1+Ker f)={1}. By[6.Corollary VI.1.7] we have V(R(G/ T(G)))
= G/T(G), so the restriction of 7 to H/K is an imbedding into G/ T(G).
This means that f is an isomorphism, and hence we obtain

8(dr(G.T(G))) = d(H K) and G/ T(G) = H/K.

Consequently, using Lemma 2.2 we deduce that K is locally finite and
that H/K is torsion free. Therefore K=T(H) and the proof is complete.

Let 7.(G) denote the n-th term of the lower central series of a
group G.

Proposition 2.4. Let R be an integral domain of characteristic 0
in which no rational prime is invertible. Let G and H be two groups
with RG = RH as R-algebras. Then

Dur(G) = {1} if and only if Dnr(H)={1}.

Proof. Suppose Dnz(G)={1}. Then G is nilpotent and thus by
Lemma 2.3, G/T(G)= H/T(H). Since 7.(G)={1} we have y.(G/T(G))
={1} and hence y.(H/T(H)) = {1}, so that y,(H) & T(H). Moreover,
we get Dnr(H) S T(H), because D,(H)/7,(H) is torsion (see e.g. [2,
pp.36—37]). Now, by Corollary 1.4, V(RG) N (1+ dz(G)") is torsion free.
Since (V(RG) N (1+4dr(G)M)) = V(RH) N (1+dz(H)") under the given
R-algebra isomorphism 8 : RG — RH, it follows that V(RH) N (1+dz(H)")
and hence D,.z(H) is torsion free. However, Dnr(H) is torsion, so we
conclude that Dn,r(H) = {1}. The converse follows by symmetry.

Corollary 2.5. If, under the hypotheses of Proposition 24, G is
finttely generatea wnilpotent, then so is H.

Proof. Note .hat with the hypothesis on R, Dy(X) = Dn,z(X) for
any group X where Z is the ring of rational integers (see [2, p.16]).
Since G is finitely generated nilpotent we know from [7, Corollary 1] that
D,z (G) = {1} with some n. Thus by Proposition 2.4, Dnx(H) = {1}, so
H is nilpotent. By Lemma 2.1, 4:(G) and therefore Jdz(H) is a finitely
generated right ideal, so H is finitely generated. Hence the result follows.

It is known [4, 2.4 Corollary] that if G is a finitely generated group,
then ZG = ZH implies G/Ds,z(G) = H/Ds,z (H) (see also [3]). Since
D3,z (G) = 73(G) for every group G (see e.g. [2, p.66]). we have immediately
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Corollary 2.6. If G is a finitely genevated wnilpotent group of class

2, then ZG = ZH implies G = H.
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