NOTE ON GROUPS WITH ISOMORPHIC GROUP ALGEBRAS

TÔRU FURUKAWA

Introduction. For G a group and R a ring with identity, we denote by RG the group ring of G over R and by $D_{n,R}(G)$ the n-th dimension subgroup modulo R of G. That is, $D_{n,R}(G)$ is defined to be $\{g \in G \mid g-1 \in \Delta_R(G)^n\}$, where $\Delta_R(G)$ is the augmentation ideal of RG. Also, for any normal subgroup N of G we denote by $\Delta_R(G,N)$ the kernel of the natural homomorphism from RG to R(G/N). Note that $\Delta_R(G,N) = \Delta_R(N)RG = RG\Delta_R(N)$.

In this note we prove that if G and H are two groups with isomorphic group algebras over R, where R is an integral domain of characteristic 0 in which no rational prime is invertible, then $D_{n,R}(G) = \{1\}$ if and only if $D_{n,R}(H) = \{1\}$ (Proposition 2.4). The corresponding result for the case where R is the field of p elements for a prime p has been shown by I. B. S. Passi and S. K. Sehgal [3, Corollary 5]. Proposition 2.4 can be combined with [4, 2.4 Corollary] to show that finitely generated nilpotent groups of class 2 are determined by their integral group rings. This result for the finite case is well known (see e.g. [5]).

In the process of establishing Proposition 2.4 we consider the group V(RG) of normalized units of a group ring RG and obtain the following: If G is any group and R is an integral domain of characteristic 0 in which no rational prime is invertible, then for each $n \ge 1$ the factor group

$$V(RG) \cap (1 + \Delta_R(G)^n)/V(RG) \cap (1 + \Delta_R(G, D_{n,R}(G)))$$

is torsion free. This is an immediate consequence of Proposition 1.3 which is stated in a more general form.

1. The group of normalized units. Let RG be the group ring of a group G over a commutative ring R with identity. Denote by V(RG) the group of normalized units of RG, that is, $V(RG) = U(RG) \cap (1 + \mathcal{L}_R(G))$ where U(RG) is the group of units of RG. We need the following crucial result.

Lemma 1.1 ([6, Corollary Π .1.4]). Let G be a polycyclic-by-finite group and R be an integral domain of characteristic 0 such that no

element $g \neq 1$ of G has order invertible in R. Suppose that $u = \sum u(g)g \in V(RG)$. If u has finite order and $u(1) \neq 0$, then u = 1.

Let T(G) denote the set of torsion elements of a group G.

Lemma 1.2. Let G be a nilpotent group and R be an integral domain of characteristic 0 in which no element $g \neq 1$ of G has order invertible. Let N be a central subgroup of G. If u is a unit of RG of finite order such that $u-1 \in \Delta_R(G,N)$, then u=x for some $x \in N$.

Proof. Since u-1 can be written as a finite sum of the form

$$u-1 = \sum_{i} a_i g_i(x_i-1)$$
 $(a_i \in R, g_i \in G, x_i \in N),$

we may suppose that G is finitely generated and hence T(G) is a finite normal subgroup of G. We proceed by induction on the order of T(G). If $T(G) = \{1\}$, then G is torsion free nilpotent and it follows from [6. Corollary VI.1.7] that V(RG) = G. Therefore u = 1 and the result is trivial. Assume $T(G) \neq \{1\}$ so that $T(\zeta(G)) \neq \{1\}$, where $\zeta(G)$ is the center of G. Set $W = T(\zeta(G))$ and $\overline{G} = G/W$. Let $\overline{} : RG \to R(\overline{G})$ be the natural homomorphism. Then \overline{u} is a unit of $R(\overline{G})$ of finite order such that $\overline{u}-1 \in \mathcal{L}_R(\overline{G},\overline{N})$. Since $T(\overline{G}) = T(G)/W$, $T(\overline{G})$ has smaller order than T(G) and \overline{G} has no element $\overline{g} \neq 1$ whose order is invertible in R. Hence by induction, $\overline{u} = \overline{y}$ for some $y \in N$. Since $\overline{y} \in T(\overline{G})$ we see that $y \in W$ and hence $\overline{u} = 1$. Thus $u-1 \in \mathcal{L}_R(G,W)$ and there exists an element $x \in W$ with $u(x) \neq 0$. Then $v = x^{-1}u$ is a unit of finite order such that $v \in V(RG)$ and $v(1) \neq 0$. Noting here that G is finitely generated nilpotent and so is polycyclic, it follows by Lemma 1.1 that v = 1 and hence u = x. Since $u - 1 \in \mathcal{L}_R(G,N)$ we have $x \in N$ as desired.

Recall that for any (two-sided) ideal I of RG, $G \cap (1+I)$ is a normal subgroup of G. Let $\mathcal{L}_R(G) = I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$ be a decreasing series of ideals of RG such that $I_1I_n + I_nI_1 \subseteq I_{n+1}$ for all $n \ge 1$. Then $\{G \cap (1+I_n)\}_{n\ge 1}$ is a descending central series of G, since we have

$$g^{-1}x^{-1}gx-1=g^{-1}x^{-1}\{(g-1)(x-1)-(x-1)(g-1)\}\in I_{n+1}$$

for $g \in G$ and $x \in G \cap (1+I_n)$. Thus if $G \cap (1+I_n) = \{1\}$ for some n then G is nilpotent. Now, we note that since $\Delta_R(G,G \cap (1+I_n)) \subseteq I_n$, $V(RG) \cap (1+\Delta_R(G,G \cap (1+I_n)))$ is a normal subgroup of $V(RG) \cap (1+I_n)$.

Proposition 1.3. Let G be an arbitrary group and R be an

integral domain of characteristic 0 in which no rational prime is invertible. Let $\Delta_R(G) = I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$ be a decreasing series of ideals of RG such that $I_1I_n+I_nI_1 \subseteq I_{n+1}$ for all $n \ge 1$. Then for each $n \ge 1$ the factor group

$$V(RG) \cap (1+I_n)/V(RG) \cap (1+\Delta_R(G,G \cap (1+I_n)))$$

is torsion free.

Proof. We observe that if $\overline{G} = G/G \cap (1+I_n)$, then $\overline{G} \cap (1+\overline{I_n}) = \{1\}$ under the natural homomorphism $\overline{} : RG \to R(\overline{G})$. Hence by considering $G/G \cap (1+I_n)$ it suffices to prove the following :

(*) If $G \cap (1+I_n) = \{1\}$, then $V(RG) \cap (1+I_n)$ is torsion free.

We use induction on n to show (*), the case n=1 being trivial. Let $n \geq 2$ and assume that (*) holds for n-1. Set $\overline{G} = G/G \cap (1+I_{n-1})$, and let $\overline{}: RG \to R(\overline{G})$ be the natural homomorphism. Then, since $\overline{G} \cap (1+\overline{I}_{n-1})=\{1\}$, the induction hypothesis shows that $V(R(\overline{G}))\cap (1+\overline{I}_{n-1})$ is torsion free. Let $u \in V(RG) \cap (1+I_n)$ have finite order. Then \overline{u} is a unit of finite order contained in $V(R(\overline{G})) \cap (1+\overline{I}_{n-1})$, so $\overline{u}=1$. Thus we have

$$u-1 \in \Delta_R(G,G \cap (1+I_{n-1})).$$

Now, since $G \cap (1+I_n) = \{1\}$, $G \cap (1+I_{n-1})$ is a central subgroup of G. It follows from Lemma 1.2 that u = x for some $x \in G \cap (1+I_{n-1})$. However, since $u-1 \in I_n$, $x \in G \cap (1+I_n)$ so x = 1. We have therefore seen that $V(RG) \cap (1+I_n)$ is torsion free. This completes the induction on n and (*) is established.

By taking $I_n = \mathcal{\Delta}_R(G)^n$ in the above proposition we obtain the following

Corollary 1.4. If G and R are as in Proposition 1.3, then for each $n \ge 1$ the factor group

$$V(RG) \cap (1 + \Delta_R(G)^n)/V(RG) \cap (1 + \Delta_R(G, D_{n,R}(G)))$$

is torsion free.

2. Isomorphic group algebras. Let G be a group, R a ring with identity. The following two lemmas are elementary.

Lemma 2.1 (cf. [1, Proposition 1]). Let H be a subgroup of G.

Then H is finitely generated if and only if $\Delta_R(H)RG$ is finitely generated as a right ideal of RG.

Proof. Assume that H is finitely generated by a finite subset X. Then it is easy to verify that $\Delta_R(H)RG = (X-1)RG$ where X-1 is the subset of all elements of the form x-1, $x \in X$. Hence $\Delta_R(H)RG$ is a finitely generated right ideal of RG. Conversely, assume that $\Delta_R(H)RG$ is finitely generated by a finite subset S of RG as a right ideal. Then since S is finite there exists a finitely generated subgroup H^* of H such that $S \subseteq \Delta_R(H^*)RG$. Since $S(RG) \subseteq \Delta_R(H^*)RG$ it follows that $\Delta_R(H)RG = \Delta_R(H^*)RG$. Therefore H coincides with H^* and so is finitely generated.

For a subset S of RG, let l(S) denote the left ideal $\{\alpha \in RG \mid \alpha S = 0\}$. Recall that if H is a subgroup of G, then $l(\Delta_R(H)RG) \neq 0$ if and only if H is finite ([1, Proposition 1]).

Lemma 2.2. Let H be a subgroup of G. Then H is locally finite if and only if for any finite subset S of $\Delta_R(H)RG$ it follows $l(S) \neq 0$.

Proof. Assume that H is locally finite. Let S be a finite subset of $\Delta_R(H)RG$. Then since H is locally finite there exists a finite subgroup H^* of H such that $S \subseteq \Delta_R(H^*)RG$. As stated above, $l(\Delta_R(H^*)RG) \neq 0$, so it follows $l(S) \neq 0$. Conversely, assume that for any finite subset S of $\Delta_R(H)RG$ it follows $l(S) \neq 0$. Let H^* be a finitely generated subgroup of H. Then by Lemma 2.1 there is a finite subset S of RG with $\Delta_R(H^*)RG = S(RG)$. Since $l(S) \neq 0$, we have $l(\Delta_R(H^*)RG) \neq 0$ so that H^* is finite. Thus we see that H is locally finite.

Now let R be a commutative ring with identity, let G and H be groups having isomorphic group algebras over R. If $\theta: RG \to RH$ is an R-algebra isomorphism then we may suppose that θ is normalized and hence $\theta(\Delta_R(G)) = \Delta_R(H)$ (see [6, p.64]). In what follows, the given R-algebra isomorphism $RG \cong RH$ will be assumed to be normalized.

Lemma 2.3. Let G be a nilpotent group and R an integral domain. Suppose $RG \cong RH$ as R-algebras. Then T(H) forms a subgroup of H and $G/T(G) \cong H/T(H)$.

Proof. Note that since G is nilpotent T(G) is a locally finite normal subgroup of G. Let $\theta: RG \to RH$ be an R-algebra isomorphism and set $K = H \cap (1 + \theta(\Delta_R(G, T(G))))$. Then since $\Delta_R(H, K) \subseteq \theta(\Delta_R(G, T(G)))$,

there is a natural epimorphism $RH/\Delta_R(H,K) \to RH/\theta(\Delta_R(G,T(G)))$, which induces a normalized epimorphism $f:R(H/K) \to R(G/T(G))$ such that $H/K \cap (1+Ker\ f)=\{1\}$. By [6, Corollary VI.1.7] we have V(R(G/T(G)))=G/T(G), so the restriction of f to H/K is an imbedding into G/T(G). This means that f is an isomorphism, and hence we obtain

$$\theta(\Delta_R(G, T(G))) = \Delta_R(H, K)$$
 and $G/T(G) \cong H/K$.

Consequently, using Lemma 2.2 we deduce that K is locally finite and that H/K is torsion free. Therefore K = T(H) and the proof is complete.

Let $\gamma_n(G)$ denote the *n*-th term of the lower central series of a group G.

Proposition 2.4. Let R be an integral domain of characteristic 0 in which no rational prime is invertible. Let G and H be two groups with $RG \cong RH$ as R-algebras. Then

$$D_{n,R}(G) = \{1\}$$
 if and only if $D_{n,R}(H) = \{1\}$.

Proof. Suppose $D_{n,R}(G) = \{1\}$. Then G is nilpotent and thus by Lemma 2.3, $G/T(G) \cong H/T(H)$. Since $\gamma_n(G) = \{1\}$ we have $\gamma_n(G/T(G)) = \{1\}$ and hence $\gamma_n(H/T(H)) = \{1\}$, so that $\gamma_n(H) \subseteq T(H)$. Moreover, we get $D_{n,R}(H) \subseteq T(H)$, because $D_{n,R}(H)/\gamma_n(H)$ is torsion (see e.g. [2, pp.36—37]). Now, by Corollary 1.4, $V(RG) \cap (1 + \Delta_R(G)^n)$ is torsion free. Since $\theta(V(RG) \cap (1 + \Delta_R(G)^n)) = V(RH) \cap (1 + \Delta_R(H)^n)$ under the given R-algebra isomorphism $\theta: RG \to RH$, it follows that $V(RH) \cap (1 + \Delta_R(H)^n)$ and hence $D_{n,R}(H)$ is torsion free. However, $D_{n,R}(H)$ is torsion, so we conclude that $D_{n,R}(H) = \{1\}$. The converse follows by symmetry.

Corollary 2.5. If, under the hypotheses of Proposition 2.4, G is finitely generatea nilpotent, then so is H.

Proof. Note that with the hypothesis on R, $D_{n,R}(X) = D_{n,Z}(X)$ for any group X where Z is the ring of rational integers (see [2, p.16]). Since G is finitely generated nilpotent we know from [7, Corollary 1] that $D_{n,Z}(G) = \{1\}$ with some n. Thus by Proposition 2.4, $D_{n,R}(H) = \{1\}$, so H is nilpotent. By Lemma 2.1, $A_R(G)$ and therefore $A_R(H)$ is a finitely generated right ideal, so H is finitely generated. Hence the result follows.

It is known [4, 2.4 Corollary] that if G is a finitely generated group, then $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G/D_{3,\mathbb{Z}}(G) \cong H/D_{3,\mathbb{Z}}(H)$ (see also [3]). Since $D_{3,\mathbb{Z}}(G) = \gamma_3(G)$ for every group G (see e.g. [2, p.66]), we have immediately

Corollary 2.6. If G is a finitely generated nilpotent group of class 2, then $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$.

REFERENCES

- [1] I. G. CONNELL: On the group ring, Canad. J. Math. 15 (1963), 650—685.
- [2] I. B. S. Passi: Group Rings and Their Augmentation Ideals, Lecture Notes in Math. 715, Springer-Verlag, Berlin, 1979.
- [3] I. B. S. PASSI and S. K. SEHGAL: Isomorphism of modular group algebras, Math. Z. 129 (1972), 65—73.
- [4] I. B. S. Passi and S. Sharma: The third dimension subgroup mod n, J. London Math. Soc. (2) 9 (1974), 176—182.
- [5] D. S. Passman: Isomorphic groups and group rings, Pacific J. Math. 15 (1965), 561-583.
- [6] S. K. Sehgal: Topics in Group Rings, Marcel Dekker, New York, 1978.
- [7] J. VALENZA: Dimension subgroups of semi-direct products, J. Pure and Appl. Algebra 18 (1980), 225—229.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received February 3, 1982)