COUNTEREXAMPLES IN THE INDIVIDAL ERGODIC THEORY OF PSEUDO-RESOLVENTS

RYOTARO SATO

1. Introduction. Let D denote the set of all complex numbers λ with Re $(\lambda) > 0$, and D_+ the set of all positive reals. Let $J = (J_{\lambda} : \lambda \in D)$ be a pseudo-resolvent of bounded linear operators on L_1 of a σ -finite measure space. Thus $J_{\lambda} - J_{\nu} = (\nu - \lambda) J_{\lambda} J_{\nu}$ for all λ and ν in D. Previously it was proved (cf. [5]) that if J satisfies that

$$\|\lambda J_{\lambda}\|_{1} \leq 1$$
 for all $\lambda \in D_{+}$

and also that for some constant $M \ge 1$

$$\|\lambda J_{\lambda} f\|_{\infty} \leq M \|f\|_{\infty}$$
 for all $\lambda \in D_{+}$ and $f \in L_{1} \cap L_{\infty}$,

then the following individual ergodic limits

$$\lim_{\substack{\lambda \to 0 \\ \lambda \in D_+}} \lambda J_{\lambda} f(\omega) \text{ and } \lim_{\substack{\lambda \to \infty \\ \lambda \in D_+}} \lambda J_{\lambda} f(\omega)$$

exist almost everywhere, whenever $f \in L_p$ with $1 \le p < \infty$.

The purpose of this note is to examine the necessity of the above norm conditions on J and to show, by examples, that these conditions can not be weakened without failing to hold the individual ergodic theorem.

2. Preliminary lemmas.

Lemma 1. If $(a_n : n \ge 0)$ is a sequence of nonnegative reals, then

$$\sup_{n \ge 1} \frac{1}{n} \sum_{i=0}^{n-1} a_i \le e \cdot \sup_{0 < r < 1} (1 - r) \sum_{i=0}^{\infty} r^i a_i$$

and

$$\lim_{n \to +\infty} \sup_{n \to +\infty} \frac{1}{n} \sum_{i=0}^{n-1} a_i \le e \cdot \lim_{r \to 1-0} \sup_{i=0} (1-r) \sum_{i=0}^{\infty} r^i a_i.$$

Proof. Putting

$$C_n = \frac{1}{n} \sum_{i=0}^{n-1} a_i$$
 $(n \ge 1)$ and $A_r = (1-r) \sum_{i=0}^{\infty} r^i a_i$ $(0 < r < 1)$,

we see that

$$A_r \ge (1-r)\sum_{i=0}^{n-1} r^i a_i \ge (1-r)r^{n-1}\sum_{i=0}^{n-1} a_i = n(1-r)r^{n-1}C_n.$$

208 R. SATO

On the other hand, for each $n \ge 1$

$$\sup_{0 < r < 1} n(1-r)r^{n-1} = n(1-[1-\frac{1}{n}])(1-\frac{1}{n})^{n-1} > e^{-1};$$

therefore the lemma follows.

Lemma 2. If a(t) is a nonnegative Lebesgue measurable function on the interval $(0, \infty)$, then

$$\sup_{b>0} \frac{1}{b} \int_0^b a(t) dt \le e \cdot \sup_{\lambda>0} \lambda \int_0^\infty e^{-\lambda t} a(t) dt,$$

$$\lim_{b\to+\infty} \sup_{\lambda\to0} \frac{1}{b} \int_0^b a(t) dt \le e \cdot \lim_{\lambda\to0} \sup_{\lambda\to0} \lambda \int_0^\infty e^{-\lambda t} a(t) dt$$

and

$$\limsup_{b\to +0} \ \frac{1}{b} \int_0^b a(t) \ dt \le e \cdot \limsup_{\lambda\to +\infty} \lambda \int_0^\infty e^{-\lambda t} a(t) \ dt.$$

Proof. Since

$$\lambda \int_0^\infty e^{-\lambda t} a(t) dt \ge \lambda e^{-\lambda b} \int_0^b a(t) dt$$
$$= (\lambda b) e^{-\lambda b} \cdot \frac{1}{b} \int_0^b a(t) dt,$$

and since for each b > 0

$$\sup_{\lambda>0} (\lambda b) e^{-\lambda b} = e^{-1},$$

the lemma follows immediately.

3. Counterexamples.

Example 1(cf. [7]). There exists a pseudo-resolvent $J = (J_{\lambda}: \lambda \in D)$ on $L_1(0, 1)$ such that

- (i) for all $\lambda \in D_+$, $J_{\lambda} \geq 0$ and $||\lambda J_{\lambda}||_1 = 1$,
- (ii) for some $f \in L_1(0, 1)$ the limit

$$\lim_{\substack{\lambda \to 0 \\ \lambda \in D_+}} \lambda J_{\lambda} f(\omega)$$

does not exist almost everywhere on the whole interval (0, 1).

To see this, let T be a positive isometry on $L_1(0,1)$ such that for some $0 \le f \in L_1(0,1)$, $\limsup_n \frac{1}{n} \sum_{i=0}^{n-1} T^i f(\omega) = \infty$ almost everywhere on (0,1) (cf. [1]). Then, since $||T||_1 = 1$, we may define

$$J_{\lambda} = (\lambda + 1 - T)^{-1} = \frac{1}{\lambda + 1} \sum_{i=0}^{\infty} \frac{T^{i}}{(\lambda + 1)^{i}} \quad (\lambda \in D).$$

Clearly, $J = (J_{\lambda} : \lambda \in D)$ is a pseudo-resolvent on $L_1(0, 1)$ such that

$$J_{\lambda} \geq 0$$
 and $\|\lambda J_{\lambda}\|_{1} = 1$ for all $\lambda \in D_{+}$.

Furthermore, by Lemma 1, we have

$$\lim_{\substack{\lambda \to 0 \\ \lambda \in D_{+}}} \lambda J_{\lambda} f(\omega) = \infty$$

almost everywhere on (0, 1). On the other hand, by Fatou's lemma, if we set

$$h(\omega) = \liminf_{\substack{\lambda = 0 \ \lambda = 0}} \lambda J_{\lambda} f(\omega)$$
 for all $\omega \in (0, 1)$

then $0 \le h \in L_1(0, 1)$. Therefore $h(\omega) < \infty$ almost everywhere on (0, 1), and this completes the proof.

Example 2. Given an $\varepsilon > 0$ there exists a pseude-resolvent $\mathbf{J} = (J_{\lambda}: \lambda \subseteq D)$ on L_1 of a finite measure space such that

(i) for all $\lambda \in D_+$

$$J_{\lambda} \geq 0$$
, $\lambda J_{\lambda} 1 = 1$ and $||\lambda J_{\lambda}||_1 \leq 1 + \varepsilon$,

(ii) for some $f \in L_1$ the limit

$$\lim_{\substack{\lambda \to 0 \\ \lambda \in D+}} \lambda J_{\lambda} f(\omega)$$

does not exist almost everywhere on a certain measurable subset of positive measure.

To see this, let S be an ergodic and invertible measure preserving point transformation on the interval (0, 1] and define also $Sg(\omega) = g(S\omega)$ for $g \in L_1(0, 1]$. Take $0 \le f \in L_1(0, 1]$ such that $f \log^+ f \notin L_1(0, 1]$. Then, by [3] and Lemma 1, we see that

$$\sup_{0 \le r \le 1} (1-r) \sum_{i=0}^{\infty} r^i S^i f(\omega) \notin L_1(0, 1].$$

Thus, as in Derriennic and Lin [2], there exists a sub- σ -field \mathcal{B} of the Lebesgue measurable subsets of (0, 1] such that the limit

$$\lim_{r\to 1-0} (1-r) \sum_{i=0}^{\infty} r^i E[S^i f \mid \mathcal{B}](\omega)$$

does not exist almost everywhere on (0, 1], where $E[\cdot | \mathcal{B}]$ stands for the conditional expectation operator with respect to \mathcal{B} . Define a positive

linear operator T on $L_1(0, 1+\varepsilon]$ by

$$Tg(\omega) = \begin{cases} S(g1_{(0,1]})(\omega) & \text{if } 0 < \omega \leq 1, \\ E[S(g1_{(0,1]}) \mid \mathcal{B}](\frac{\omega - 1}{\varepsilon}) & \text{if } 1 < \omega \leq 1 + \varepsilon. \end{cases}$$

It is easily seen that T1 = 1 and $||T^n||_1 = 1 + \varepsilon$ $(n \ge 1)$. Thus if we set

$$J_{\lambda} = (\lambda + 1 - T)^{-1} = \frac{1}{\lambda + 1} \sum_{i=0}^{\infty} \frac{T^{i}}{(\lambda + 1)^{i}} \quad (\lambda \in D)$$

then for all $\lambda \in D_+$ we have

$$J_{\lambda} \geq 0$$
, $\lambda J_{\lambda} 1 = 1$ and $\|\lambda J_{\lambda}\|_{1} \leq 1 + \varepsilon$;

furthermore, $\lim_{\stackrel{\lambda \to 0}{\lambda \in E}} \lambda J_{\lambda} f(\omega)$ does not exist almost everywhere on $(1, 1+\epsilon]$.

Hence the proof is completed.

Example 3. Given an $\varepsilon > 0$ there exists a pseudo-resolvent $\mathbf{J} = (J_{\lambda}: \lambda \in D)$ on L_1 of a finite measure space such that

(i) for all $\lambda \in D_+$

$$J_{\lambda} \geq 0$$
, $\lambda J_{\lambda} 1 = 1$ and $\|\lambda J_{\lambda}\|_{1} \leq 1 + \varepsilon$.

(ii) for some $f \in L_1$ the limit

$$\lim_{\substack{\lambda \to \infty \\ i \in \mathcal{D}}} \lambda J_{\lambda} f(\omega)$$

does not exist almost everywhere on a certain measurable subset of positive measure.

To see this, let $(S_t: t \ge 0)$ be the strongly continuous semigroup of positive isometries on $L_1(0, 1]$ defined by

$$S_t g(\omega) = g(\omega + t)$$
 $(g \in L_1(0, 1], \omega \in (0, 1]),$

where $\omega + t = \omega + t$ if $\omega + t \le 1$ and $\omega + t = \omega + t - n$ if $n < \omega + t \le n + 1$. By [4], for some $0 \le f \in L_1(0, 1]$ and some sequence (b_n) of positive reals with $\lim_{n \to \infty} b_n = 0$ we have

$$\sup_{n} \frac{1}{b_n} \int_0^{b_n} S_t f(\omega) \ dt \in L_1(0, 1).$$

Thus, by Lemma 2 and the argument given in Example 2 (cf. also [4]), there exists a strongly continuous semigroup $\Gamma = (T_t : t \ge 0)$ of positive linear operators on $L_1(0, 1+\varepsilon]$ such that for all $t \ge 0$

$$T_t 1 = 1$$
 and $||T_t||_1 = 1 + \varepsilon$,

and also such that the limit

$$\lim_{\substack{\lambda \to \infty \\ t \in \mathcal{D}_{t}}} \lambda \int_{0}^{\infty} e^{-\lambda t} T_{t} f(\omega) dt$$

does not exist almost everywhere on $(1, 1+\varepsilon]$. For $\lambda \in D$ define

$$J_{\lambda}g = \int_0^{\infty} e^{-\lambda t} T_t g \ dt \ (g \in L_1(0, 1+\varepsilon]).$$

Obviously J_{λ} is a bounded linear operator on $L_1(0, 1+\varepsilon]$ satisfying $J_{\lambda}T_0=J_{\lambda}$, and if $\lambda\in D_+$ then $J_{\lambda}\geq 0$ and $\|\lambda J_{\lambda}\|_1=1+\varepsilon$. Thus, to complete the proof it is now enough to check that $J=(J_{\lambda}:\lambda\in D)$ is a pseudo-resolvent. To this end, put $M=T_0L_1(0,1+\varepsilon]$. Then M is a closed subspace of $L_1(0,1+\varepsilon]$, $T_tM\subset M$ for all $t\geq 0$, and $T_0=I$ on M. Thus, by restricting $\Gamma=(T_t:t\geq 0)$ to M and applying Corollary IX.4.1 and Theorem VIII.2.2 in [6], we see that $J_{\lambda}-J_{\nu}=(\nu-\lambda)J_{\lambda}J_{\nu}$ on M. Hence for every $g\in L_1(0,1+\varepsilon]$

$$J_{\lambda} g - J_{\nu} g = J_{\lambda} T_0 g - J_{\nu} T_0 g$$

= $(\nu - \lambda) J_{\lambda} J_{\nu} T_0 g = (\nu - \lambda) J_{\lambda} J_{\nu} g$

completing the proof.

REFERENCES

- R. V. CHACON: A class of linear transformations, Proc. Amer. Math. Soc. 15 (1964), 560—564.
- [2] Y. DERRIENNIC and M. LIN: On invariant measures and ergodic theorems for positive operators, J. Functional Analysis 13 (1973), 252—267.
- [3] D. ORNSTEIN: A remark on the Birkhoff ergodic theorem, Illinois J. Math. 15 (1971), 77-79.
- [4] R. SATO: On local ergodic theorems for positive semigroups, Studia Math. 63 (1978), 45—55.
- [5] R. SATO: Individual ergodic theorems for pseudo-resolvents, Math. J. Okayama Univ. 23 (1981), 59—67.
- [6] K. Yosida: Functional Analysis, Springer, Berlin, 1965.
- [7] CHR. GRILLENBERGER and U. KRENGEL: On matrix summation and the pointwise ergodic theorem, Théorie Ergodique, Springer Lecture Notes in Math. 532, pp. 113—124, Springer, Berlin, 1976.

DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY

(Received Ianuary 12, 1981)