EQUATIONAL DEFINABILITY OF ADDITION IN RINGS GENERATED BY IDEMPOTENTS

ADIL YAQUB

Boolean rings and Boolean algebras, though historically and conceptually different, were shown by Stone to be equationally interdefinable [3]. Indeed, in a Boolean ring, addition can be defined in terms of ring multiplication and the successor operation (Boolean complementation). We show that this type of equational definability of addition also holds in a much wider class of rings, namely commutative rings with identity which are generated by their idempotents. The proof utilizes the structure theory of rings and the following elementary number-theoretic results.

Lemma 1. Let m, n be positive integers, and p a prime. If m divides n then $\phi(m)$ divides $\phi(n)$, where ϕ denotes the Euler ϕ -function. Furthermore, if $p^k \leq m$ for some positive integer k then $\phi(m!) \geq k$.

In preparation for the proof of the main theorem, we first introduce some notations. Throughout, $(R, +, \times)$ will be a commutative ring with identity 1. Let $x, y \in R$, and define:

$$x^{\wedge} = x+1$$
, $x^{\vee} = x-1$,
 $x^{\wedge *} = (\cdots((x^{\wedge})^{\wedge})^{\wedge}\cdots)^{\wedge}$ (k-iterations).
 $x \times_{\wedge} y = (x^{\wedge} \times y^{\wedge})^{\vee} (= x+y+xy)$.

We are now in a position to prove the following:

Theorem. Let R be a commutative ring with identity 1, and suppose that the ring R is generated by its idempotents. Then the "+" of R is equationally definable in terms of the "×" of R and the successor operation " \wedge ". Indeed, there exists a positive integer n such that for all $x, y \in R$

(1)
$$x+y = [x(x^{\phi(n)-1}y)^{\wedge}x^{\phi(n)}] \times_{\wedge} [x^{\wedge}((x^{\wedge})^{\phi(n)-1}y^{\vee})^{\wedge}((x^{\phi(n)})^{\vee})^{2}],$$

where ϕ is the Euler ϕ -function. Furthermore, $x^{\vee} = x^{\wedge_{n-1}}$ and thus $x \times_{\wedge} y = (x^{\wedge} \times y^{\wedge})^{\wedge_{n-1}}$.

Proof. By hypothesis, there exist certain idempotents e_1, \dots, e_{m-1} (m > 1) such that $-1 = e_1 + \dots + e_{m-1}$. Let n = m!.

It is well known that the ground ring R is isomorphic to a subdirect sum of subdirectly irreducible rings R_i ($i \in \Gamma$), and, of course, each such

204 A. YAQUB

 R_i inherits all the hypotheses of R. Moreover, since the operations in a subdirect sum are componentwise, it suffices to verify (1) for each R_i .

Since R_i is a commutative subdirectly irreducible ring, in R_i the image of each e_i is either 0 or 1, and hence there exists a positive integer $m' \le m-1$ such that $-1 = m' \cdot 1$ in R_i . Therefore, R_i is of characteristic p^k (p a prime, $k \ge 1$) and $R_i \cong \mathbf{Z}_{p^k}$ (= ring of integers modulo p^k). Obviously, $p^k \le m'+1 \le m$. Since p^k divides n, $\phi(p^k)$ divides $\phi(n)$ and $\phi(n) \ge k$ by Lemma 1. If x is a unit in R_i then $x^{\phi(p^k)} = 1$ by Fermat-Euler Theorem. On the other hand, if x is a non-unit in R_i then $x^k = 0$ and $(x^h)^{\phi(p^k)} = 1$. Hence,

- (2) $x^{\phi(n)} = 1$ if x is a unit in R_i ,
- (3) $x^{\phi(n)} = 0$ and $(x^{\wedge})^{\phi(n)} = 1$ if x is a non-unit in R_i .

Now, substituting (2) and (3) into the right side of (1), it becomes

$$\begin{cases} x(x^{-1}y)^{\wedge} \times_{\wedge} 0 = x(1+x^{-1}y) = x+y & \text{if } x \text{ is a unit in } R_i \\ 0 \times_{\wedge} x^{\wedge} (1+(x^{\wedge})^{-1}y^{\vee}) = x^{\wedge} + y^{\vee} = x+y & \text{if } x \text{ is a non-unit in } R_i. \end{cases}$$

Also, the latter assertion is obvious from the fact that p^{k} divides n. This proves the theorem.

Remark. Since the ring \mathbb{Z}_q of integers modulo q satisfies all the hypotheses of our theorem, and since $-1 = (q-1) \cdot 1$, we have n = q!, and hence (1) now becomes

$$x + y = [x(x^{\phi(q!)-1}y)^{\wedge}x^{\phi(q!)}] \times_{\wedge} [x^{\wedge}((x^{\wedge})^{\phi(q!)-1}y^{\vee})^{\wedge}((x^{\phi(q!)})^{\vee})^{2}].$$

This formula for "+" in \mathbb{Z}_q is much simpler than that given in [4]. Related work can be found in [1] and [2].

REFERENCES

- H. ABU-KHUZAM, H. TOMINAGA and A. YAQUB: Equational definability of addition in rings satisfying polynomial identities, Math. J. Okayama Univ. 22 (1980), 55—57.
- [2] H.G. MOORE and A. YAQUB: Equational definability of addition in certain rings, Pacific J. Math. 74 (1978), 407—417.
- [3] M.H. STONE: The theory of representations of Boolean algebras, Trans. Amer. Math. Soc. 40 (1936), 37—111.
- [4] A. YAQUB: On the theory of ring-logics, Canad. J. Math. 8 (1956), 323-328.

University of California Santa Barbara, U.S.A.

(Received July 7, 1981)