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ON GENERALIZED rn-LIKE RINGS AND
RELATED RINGS

Hisao TOMINAGA and ApiL YAQUB

Throughout, R will represent a ring with (Jacobson) radical J, and N
the set of all nilpotent elements in R. A ring R is called an s-unitel ring
if for each x € R there holds x € Rx N xR. If R is an s-unital ring then
for any finite subset F of R there exists an element e in R such that
ex = xe = x for all x € F (see, [4, Lemma 1 (a)]). Such an element ¢ will
be called a pseudo-identity of F. A ring R is called a generalized n-like ving
if R satisfies the polynomial identity (xy)"—xy"—x"y+xy =0 for an
integer #» > 1. Recently, H. G. Moore [3] showed that if » is even or 3
then every generalized »-like ring with identity is commutative.

The present objective is to prove a theorem which generalizes Theorem
4 of [3] and deduces Theorems 2 and 3 of [3]. We begin with the following
lemmas.

Lemma 1. Suppose that for each paiv of elements x, y in R there exists
an integer n = n(x,y) > 1 such that

*) (xy)"—xy"—x"y+xy = 0.
Then there holds the following:
( 1 ) (xn(x.x)__x)z — x2n(x.x)_2xn(x.x)+1 +x2 = (.
(2) xPAex-D+2 = p(xnx)+1_x2) 4 2 for gl positive integers k.
(3) If R is semi-primitive then R is commutative.
(4) N?=0and N =] contains the commutator ideal of R.

Proof (1) Setting y=x in (*), we get (1).
(2) Let m = n(x,x). Suppose x*"D+2— pxm+l_(L_1)x2. Then,
by (1),
A RHDM-142 — pm-1 k(m-1)+2 — kxzm_(k_l)xrm:l
—_ k(zxm+1__x2)_(k_1)xm+l — (k+1)xm+l_kx2’

which completes the induction.

(3) Note that our hypothesis is inherited by all subrings and homo-
morphic images of R. Note also that no complete matrix ring (S): over
a division ring S (¢ > 1) satisfies the hypothesis, as a consideration of
x = Ey1+ FE2 and y = E»; shows. Because of these facts and the structure
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theory of primitive rings, we may assume that R is a division ring. Then,
since x™**—x =0 by (1), a well-known theorem of Jacobson shows that
R is commutative.

(4) Since x2? = x2(2x™*X)-1_ x2%x)-1) [y ('] ), we see that J is a nil
ideal and every nilpotent element of R squares to 0. By (3), R/J is com-
mutative. Hence J coincides with N and contains the commutator ideal
of R. Finally, if u, v are in J then uv = up™ ¥ 4 4%y — (yp)* @ = (),

Lemma 2. Let R be an s-unital ring satisfving the hypothesis in Lemma
1.  Then there holds the following:

(1) For each x € R there exists a positive integer a such that x®™*>-1
is an idempotent.

(2) Every idempotent of R is central.

Proof. (1) Let e be a pseudo-identity of x, and set @ = (27¢?e2¢ —2)2,
Then, by Lemma 1 (1), we get 0 = ((2¢)7?¢2¢'—2¢)2x = @x. Thus, Lemma
1 (2) shows that x2#x*)-D+2 — 42 whence (1) follows.

(2) Let @, b be idempotents in R, and e a pseudo-identity of {a, b}.
According to (1), we may assume that e itself is an idempotent. We set
! = n((e—a)b,a) and m = n(e—a,b). Then, by (*),

{(e—a)b}la={(e—a)ba}'—(e—a)ba'+(e—a)ba = 0.
But, again by (*),
{(e—a)b}" =(e—a)b™+(e—a)"b—(e—a)b =(e—a)b,

and therefore {(e—a)b}™a = (e—a)ba. Reiterating in the last and using
{(e—a)b}a = 0 above, we get (e—a)ba=0, and hence ba= aba. Replacing
a by the idempotent e—a in the above argument, we also have b(e—a) =
(e—a)b(e—a), and hence ab = aba. Combining these, we conclude that
ab = ba, and thus all idempotents of R are central.

Lemma 3. (1) R is a generalized n-like ring if and only if R satisfies
the polynomial identities (xy)* = x™y" and (x"—x) (y"—y) =0.

(2) If R is an s-unital generalized n-like ring then (n—1)[u,x]=0 for
all ue N and x € R.

Proof. (1) If R is a generalized n-like ring, then R satisfies the
polynomial identity x”y*—xy"*—x"y+xy = (x"—x)(¥"—y) =0 (Lemma 1
(1) and (4)). Combining this with (xy)*—xy®—x"y+xy = 0, we readily
obtain (xy)" = x"y”. The converse is trivial.
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(2) Accordrding to Lemma 1 (4), we have
0= {(xu)*—xu —x"u+xu}—{(26x)" — ux"— u"x +ux} = [u,x"]— [, x].
Now, let e be a pseudo-identity of {x, }. Then, by (1) and Lemma 1 (4),

[u,x] =[u.x"] = (ux+x)"—(xu+x)" = {(u+e)x}*— {x(u+e)}”
=[(u+e)x"] = nlux?] = nlu.x],

which implies (2 ).

We are now in a position to state our main theorem.

Theorem 1. Let R be an s-unital (directly) indecomposable ring.
Suppose that for each paiv of elements x, vy in R theve exists an integer
n=n(xy) > 1 such that (xy)*—xy"— X*y+xy =0. Then R is a local ving
whose characteristic is p ov P, p a prime.

Proof. Since R is indecomposable, Lemma 1 (4 ) and Lemma 2 show
that R contains 1 and is a local ring. Moreover, noting that (27?2 —2)2 = (
by Lemma 1 (1), we see that the characteristic of R is a power of a prime
p. Since pisin N, we get p> =0 (Lemma 1 (4)).

Corollary 1. Let R be an s-unital rving. Suppose that for each pair of
elements x, v in R there exists an integer n = n(x,y) > 1 such that (xy)* —xy™
—x"y+xy=0. Then R is a subdirect sum of local rings. If furthermore
[xv,yx] =0 for all x € N and y & N, then R is commutative.

Proof. In view of Theorem 1, it remains only to prove the latter part.
Note that if R* is a homomorphic image of R then [x*y* y*x*] = 0 for all
non-nilpotent elements x*,y* in R*. Because of this fact, we may assume
that R is subdirectly irreducible, and thus R is a local ring (Theorem 1).
Then, noting that N is commutative (Lemma 1 (4 )), we can easily see that
[xy,yx] =0 for all x, yE R. Hence,

[x[x,y]] = [x(y+1).[x,y+1]]—[xp.[x.3]] = 0.
Now, by [2, Theorem], we see that R is commutative.

Corollary 2. Let R be an s-unital gemeralized n-like ring. If R is
indecomposable then R is a local ving whose characteristic is p or ?, p a
prime; if p does not divide n—1 then R is commutative.

Proof In view of Theorem 1, it remains only to prove that if (p, n—1)
=1 then R is commutative. By Lemma 3 (2), (z—1)[z,x] =0 for all
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#€ N and x € R. Combining this with p?[#,x] =0, we obtain [«#,x] =0,
and thus N is contained in the center of R. Then, using Lemma 1 (1)
and [1, Theorem], we see that R is commutative.

The next includes Theorems 2 and 3 of [3].

Corollary 3. Let R be an s-unital genevalized n-like ring. If n is
even or 3, then R is commutative.

Proof. Without loss of generality, we may assume that R is subdirectly
irreducible, and therefore R is a local ring by Theorem 1. If #n is even,
then 4 = {(=1)"—(—=1)}?=0 (Lemma 1 (1)). Hence R is commutative
by Corollary 2. Next, we consider the case that #=3. Since R is a
local ring, it is enough to show that if x, y are units in R then xy = yx.
By Lemma 3 (1),

22y —x?—y?+1=x" (¥ —2) (- )y~ =0
and y2x?—y?—x%+1=10. Hence x%y? = y?x2. Using this and Lemma 3
(1), we get
(xy)? = 2%y® = xx?y?y = xy?x2y = (xy) (yx) (xy),

whence it follows that xy = yx.

Remark. H. G. Moore required a theorem of Herstein [1] in the
proof of [3, Theorem 3]. However, we can prove the same without making
use of Herstein theorem (see the proof of Corollary 3).
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