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ON UNIT GROUPS OF FINITE LOCAL RINGS

Takao SUMIYAMA

Throughout the present paper, R will represent a (not necessarily
commutative) finite local ring with radical M. Let K be the residue field
R/M, and R* the unit group of R. Let |K|=p"(p a prime), |R| = p",
|M| = p** 27 and p* (£ < n) the characteristic of R. Let Zp«e = Z/p%Z be
the prime subring of R. The r-dimensional Galois extension GR(p*", p*)
of Zy is called a Galois ving (see [3]). By [5, Theorem 8 (i)], R contains
a subring isomorphic to GR(p*", p*), which will be called a maximal Galois
subring of R.

In the proof of [6, Theorem), the author showed that R* contains an
element # such that (i) its multiplicative order is p"—1 (and hence 7% is a
generator of K*) and (ii) Zp+[ %] is a maximal Galois subring of R. Then
R* is a semidirect product of {u> with 1+M. Given v € <u), we define
¢ Aut(1+ M) by du(x)=v'av (x€1+M). Amap f:<ud—1+M is
called a crossed homomorphism if f(ab)= ¢a(f(b))f(a) for any a, bE <ud.
The set of all crossed homomorphisms of x> to 1+ M will be denoted by
Zs = Z3Ku>1+ M) (cf. [2, pp. 104—106]). For each x =1+ M, the map
fx:<ud>— 1+ M defned by fx(a) = pa(x)x~! is a crossed homomorphism.
Such a crossed homomorphism is called principal, and the set of all principal
crossed homomorphisms is denoted by B = Bs(<u>.1+M). In case M is
commutative, Z3 and B} are Abelian groups and H} = Z}/B} is the first
‘cohomology group of <u> over 1+M. Given v&E<u>, we define
Ny:1+M—1+M by

Ny(x) = (vx)?! = p=F=D(yx )P -1

= Pper2(x) - ¢v=(x)¢v(x)x

Note that if M is commutative then N, is a group homomorphism. We
set D={x€E 1+M|N.(x)=1}.
The purpose of this paper is to prove the following theorems.

Theorem 1. (1) |Z}| =|D|.

(2) |B) coincides with the number of maximal Galois subrings of R.
(3) If M is commutative then H} = 0.

Theorem 2. (1) The number of solutions of X? =1 in R is
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(p"—1)s with a positive integer s.

(2) The following are equivalent:

1) The number of solutions of X* ' =1 in R is p"—1, namely the set
of solutions of X* ' =1 in R coincides with <u>.

2) R*=<w>x(1+M).

3) R* is a nilpotent group.

4) R has a unique maximal Galots subring.

5) |B =1

6) [ax]E M? for all a € R* and x € M.

(3) The number of solutions of X*~1 =1 in R is p—1, namely the set
of sulutions of X' =1 in R coincides with the subgroup of <u> genervated by

the (‘Zr__ll)-th power of u contained in Zpx.

Theorem 3. Let m be the number of solutions of X*'=1in R. If
r =2, then

|Z3+p"—2 < m < |Z§|+p— 1407 (p"—p—1).

Theorem 4. Let (p"—1)s be the number of solutions of X?"' =1 in R.
Let T ={vE<udINy(x) =1 implies x =1}, and t =|T)|.

(1) If M is commutative, then s+t is a multiple of p.

(2) IFM*=0and k=1, then s+t is a multiple of p’.

Proof of Theorem 1. (1) Let f:<u>—1+M be a crossed homo-
morphism.  Since f is cmpletely determined by f(z) and 1= f(1) =
F(u?1) = N,(f(w)), the number of all crossed homomorphisms coincides
with |D|.

(2) Let fi, fy € B} If fr=fy, then fiulz) = fy(u), 'which implies
that y~'xu=wuy 'x. So, each principal crossed homomorphism corresponds
to a left coset of 1+N in 14+ M, where N = {2 € M| 2u = uz}. Thus
|BY = [14+M|/[1+N| = |M :N|. Aswasnoted in [6], |M : N| is the number
of maximal Galois subrings of R.

(3) Consider @: D— B} defined by @(x) = fx. We shall show that
@ is injective. If fx = f» (x, y € D), then z = x~'y € 1+ N, and hence
1 = Nu(y) = Nu(x)z?~! = 2”1, This means that z =1, namely x = .
Thus, this together with (1) implies Z} = B.

Proof of Theorem 2. (1) This is immediate by a theorem of Frobenius
[1, Theorem 9.1.2].
(2) Obviously, )< 2) =1).



ON UNIT GROUPS OF FINITE LOCAL RINGS 197

1) = 2). By [1, Theorem 94.1], <& is a normal subgroup of R*,
and therefore R* = <u>xX(1+M).

3) &= 4). See [6, Remark].

4) < 5). By Theorem 1 (2).

6) = 3). By [4, Lemma 1].

2) = 6). Let a=v(+y) (vEud, yE M) Then [ax]=
[v(1+)1+x] = v[y.x] € M2

(3) By [5, Theorem 6], X*~! =1 has p—1 solutions in Zp. So, we
show that there are at most p—1 solutions in R. Let @ = vx (v € {w>,
x € 1+ M) be an element of R* such that ¢°~!=1. Then, the canonical
image of v in K is contained in the prime field of K, and so v = iy with
some multiple 7 of 1 and y €1+ M. Since

v = =@ D(x)P7l = Pye-a(x) -+ Pua(x)Pu(X)x
is in <u> N (1+M) =1, we obtain
Yot = 9P hye-a(x) o Poalx) Polx)x = (yx)P7,

whence it follows that y = yx. Hence x =1 and @ = v. . This completes
the proof.

Corollary. If »r =1, then R* = <u>x(1+M).

Proof of Theorem 3. If a=wvx (v E<u>, x €14+ M) is an element
of R* such that ¢”™~! =1, then 1 = (ux)* ! = N,(x). Hence, by Theorem
1 (1) we obtain

m=23 {x € 1+ M | No(x) = 1}| 2 |D|+p"—2 = | Z}|+p"—2.

Now, let w be the (ir_— 1)-th power of %, and v € {w>. Then Ny(x)=x""!

by Theorem 2 (3). Hence,
m=1Dl+ X H{x€1+M|Ny(x)=1+ 2 [{xE1+M|Ny(x)=1}|
velw veiutuw)

< |ZH+(p-D)+p" V7 (p" —1-1-(p—-1))
=|Z}+p—14p717 (p"—p—1).
Proof of Theorem 4. (1) For any v € <u>, the map N, is a group
homomorphism, and |Ker N,| is a power of p, provided v €& T. Since
(p"—1s= 3 |Ker Ny =t+ 2 [Ker Ny| = t+pl
P=1¢79) vET

with some non-negative integer /, we see that s+ ¢ is a multiple of ».
(2) Given ki, k2, kn € K, we denote by ni{ky, ke, -, kn} the zXn
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matrix
kl kz kn
00 0
00 -0

According to [5, Theorem 3], R may be regarded as the ring of all matrices
of the form

diag{c, o2(c), =+, oa{c)}+ 10, de, =+, dn},

where ¢, ds, -+, dn range over K and o2, **+, on are fixed automorphisms
of K. Obviously, 1+ M consistis of all matrices of the form

1+ 710, ds, =, dn}. -

If b is a generating element of K* then u = diag{b, 62(), ---, on(B)} is of
order p"—1 and Zp[u] is a maximal Galois subring of R. Now, let
v = diag{c, 0a(c), -+, 0a(c)} and x = 1+ 1{0, ds, -, d,}. Then

(vx)"' =1+ n{0, &, -, g}, where

pr=z . 0 if ¢ =+ o:ic)
e I, Pr-2—J d —
g = c( X c’alc) )d: {_cpr_ldi if ¢ = ooy,
Since v is in T if and only if ¢ = g;(c) for all 7, we see that |Ker N,| is
a multiple of p” for any v & T. Thus, (" —1)s = ¢+ p"m with some non-
negative integer m’, and therefore s+¢ is a multiple of p".

Example. Let R={(g (ﬁ,)|c,d6GF(p2)}. Then #=p—1, and there-

fore the number of solutions of X?*1=1in R is p—1+(p*—1—(p—1))p?
=p'—pP+p—1.
REFERENCES

[1] M. HALL: The Theory of Groups, Macmillan, New York, 1959.

[2] S. MAcCLANE: Homology, Springer-Verlag, New York, 1967.

['3 ] B. R. McDoNALD: Finite Rings with Identity, Pure & Appl. Math. Ser. 28, Marcel Dekker,
New York, 1974.

[4] K. Morost and H. TOMINAGA : Group rings with nilpotent unit groups , Math. J. Okayama
Univ. 14 (1969), 43— 46.

[5] R. RAGHAVENDRAN: Finite associative rings, Compositio Math. 21 (1969), 195—229.

[6] T.Sumivyama: Note on maximal Galois subrings of finite local rings, Math. J. Okayama
Univ. 21 (1979), 31—32.

AICHI INSTITUTE OF TECHNOLOGY
(Received July 31, 1980)



