ON UNIT GROUPS OF FINITE LOCAL RINGS

TAKAO SUMIYAMA

Throughout the present paper, R will represent a (not necessarily commutative) finite local ring with radical M. Let K be the residue field R/M, and R^* the unit group of R. Let $|K| = p^r(p \text{ a prime})$, $|R| = p^{nr}$, $|M| = p^{(n-1)r}$, and p^k ($k \le n$) the characteristic of R. Let $Z_{p^k} = \mathbb{Z}/p^k\mathbb{Z}$ be the prime subring of R. The r-dimensional Galois extension $GR(p^{kr}, p^k)$ of \mathbb{Z}_{p^k} is called a *Galois ring* (see [3]). By [5, Theorem 8 (i)], R contains a subring isomorphic to $GR(p^{kr}, p^k)$, which will be called a *maximal Galois subring* of R.

In the proof of [6, Theorem], the author showed that R^* contains an element u such that (i) its multiplicative order is p^r-1 (and hence \bar{u} is a generator of K^*) and (ii) $\mathbf{Z}_{P^*}[u]$ is a maximal Galois subring of R. Then R^* is a semidirect product of $\langle u \rangle$ with 1+M. Given $v \in \langle u \rangle$, we define $\phi_v \in \operatorname{Aut}(1+M)$ by $\phi_v(x) = v^{-1}xv$ ($x \in 1+M$). A map $f:\langle u \rangle \to 1+M$ is called a crossed homomorphism if $f(ab) = \phi_a(f(b))f(a)$ for any $a, b \in \langle u \rangle$. The set of all crossed homomorphisms of $\langle u \rangle$ to 1+M will be denoted by $Z_{\phi}^1 = Z_{\phi}^1(\langle u \rangle, 1+M)$ (cf. [2, pp. 104-106]). For each $x \in 1+M$, the map $f_x:\langle u \rangle \to 1+M$ defined by $f_x(a) = \phi_a(x)x^{-1}$ is a crossed homomorphism. Such a crossed homomorphism is called *principal*, and the set of all principal crossed homomorphisms is denoted by $B_{\phi}^1 = B_{\phi}^1(\langle u \rangle, 1+M)$. In case M is commutative, Z_{ϕ}^1 and B_{ϕ}^1 are Abelian groups and $H_{\phi}^1 = Z_{\phi}^1/B_{\phi}^1$ is the first cohomology group of $\langle u \rangle$ over 1+M. Given $v \in \langle u \rangle$, we define $N_v: 1+M \to 1+M$ by

$$N_{v}(x) = (vx)^{p^{r}-1} = v^{-(p^{r}-1)}(vx)^{p^{r}-1}$$

= $\phi_{vp^{r}-2}(x) \cdots \phi_{v^{2}}(x)\phi_{v}(x)x$.

Note that if M is commutative then N_v is a group homomorphism. We set $D = \{x \in 1 + M | N_u(x) = 1\}$.

The purpose of this paper is to prove the following theorems.

Theorem 1. (1) $|Z_{\phi}^{1}| = |D|$.

- (2) $|B_b|$ coincides with the number of maximal Galois subrings of R.
- (3) If M is commutative then $H^1_{\phi} = 0$.

Theorem 2. (1) The number of solutions of $X^{p^r-1}=1$ in R is

 $(p^r-1)s$ with a positive integer s.

- (2) The following are equivalent:
- 1) The number of solutions of $X^{p^{r-1}} = 1$ in R is $p^r 1$, namely the set of solutions of $X^{p^{r-1}} = 1$ in R coincides with $\langle u \rangle$.
 - 2) $R^* = \langle u \rangle \times (1+M)$.
 - 3) R^* is a nilpotent group.
 - 4) R has a unique maximal Galois subring.
 - 5) $|B_{\phi}^{1}|=1.$
 - 6) $[a,x] \in M^2$ for all $a \in R^*$ and $x \in M$.
- (3) The number of solutions of $X^{p-1} = 1$ in R is p-1, namely the set of sulutions of $X^{p-1} = 1$ in R coincides with the subgroup of $\langle u \rangle$ generated by the $\left(\frac{p^r-1}{p-1}\right)$ -th power of u contained in \mathbb{Z}_{p^n} .

Theorem 3. Let m be the number of solutions of $X^{p^{r-1}} = 1$ in R. If $r \ge 2$, then

$$|Z_{\phi}^{1}| + p^{r} - 2 \le m \le |Z_{\phi}^{1}| + p - 1 + p^{(n-1)r} (p^{r} - p - 1).$$

Theorem 4. Let $(p^r-1)s$ be the number of solutions of $X^{p^r-1}=1$ in R. Let $T=\{v\in \langle u\rangle|N_v(x)=1 \text{ implies } x=1\}$, and t=|T|.

- (1) If M is commutative, then s+t is a multiple of p.
- (2) If $M^2 = 0$ and k = 1, then s + t is a multiple of p^{τ} .

Proof of Theorem 1. (1) Let $f: \langle u \rangle \to 1+M$ be a crossed homomorphism. Since f is empletely determined by f(u) and $1 = f(1) = f(u^{p^r-1}) = N_u(f(u))$, the number of all crossed homomorphisms coincides with |D|.

- (2) Let f_x , $f_y \in B_{\phi}^1$. If $f_x = f_y$, then $f_x(u) = f_y(u)$, which implies that $y^{-1}xu = uy^{-1}x$. So, each principal crossed homomorphism corresponds to a left coset of 1+N in 1+M, where $N = \{z \in M \mid zu = uz\}$. Thus $|B_{\phi}^1| = |1+M|/|1+N| = |M:N|$. As was noted in [6], |M:N| is the number of maximal Galois subrings of R.
- (3) Consider $\Phi: D \to B_{\bullet}^1$ defined by $\Phi(x) = f_x$. We shall show that Φ is injective. If $f_x = f_y$ $(x, y \in D)$, then $z = x^{-1}y \in 1+N$, and hence $1 = N_u(y) = N_u(x)z^{p^r-1} = z^{p^r-1}$. This means that z = 1, namely x = y. Thus, this together with (1) implies $Z_{\bullet}^1 = B_{\bullet}^1$.

Proof of Theorem 2. (1) This is immediate by a theorem of Frobenius [1, Theorem 9.1.2].

(2) Obviously, $3) \Leftrightarrow 2 \implies 1$).

- 1) \Longrightarrow 2). By [1, Theorem 9.4.1], $\langle u \rangle$ is a normal subgroup of R^* , and therefore $R^* = \langle u \rangle \times (1+M)$.
 - $3) \iff 4$). See [6, Remark].
 - $4) \iff 5$). By Theorem 1 (2).
 - $6) \implies 3$). By [4, Lemma 1].
- 2) \Longrightarrow 6). Let a=v(1+y) $(v\in\langle u\rangle,\ y\in M)$. Then $[a,x]=[v(1+y),1+x]=v[y,x]\in M^2$.
- (3) By [5, Theorem 6], $X^{p-1}=1$ has p-1 solutions in \mathbb{Z}_{p^k} . So, we show that there are at most p-1 solutions in R. Let a=vx ($v \in \langle u \rangle$, $x \in 1+M$) be an element of R^* such that $a^{p-1}=1$. Then, the canonical image of v in K is contained in the prime field of K, and so v=iy with some multiple i of 1 and $y \in 1+M$. Since

$$v^{-(p-1)} = v^{-(p-1)}(vx)^{p-1} = \phi_{v^{p-2}}(x) \cdots \phi_{v^2}(x)\phi_v(x)x$$

is in $\langle u \rangle \cap (1+M) = 1$, we obtain

$$y^{p-1} = y^{p-1}\phi_{v^{p-2}}(x) \cdots \phi_{v^2}(x)\phi_v(x)x = (yx)^{p-1},$$

whence it follows that y = yx. Hence x = 1 and a = v. This completes the proof.

Corollary. If
$$r = 1$$
, then $R^* = \langle u \rangle \times (1 + M)$.

Proof of Theorem 3. If a = vx $(v \in \langle u \rangle, x \in 1+M)$ is an element of R^* such that $a^{p^r-1} = 1$, then $1 = (vx)^{p^r-1} = N_v(x)$. Hence, by Theorem 1 (1) we obtain

$$m = \sum_{v \in \langle u \rangle} |\{x \in 1 + M \mid N_v(x) = 1\}| \ge |D| + p^r - 2 = |Z_{\bullet}^1| + p^r - 2.$$

Now, let w be the $\left(\frac{p^r-1}{p-1}\right)$ -th power of u, and $v \in \langle w \rangle$. Then $N_v(x) = x^{p^r-1}$ by Theorem 2 (3). Hence,

$$m = |D| + \sum_{v \in \langle w \rangle} |\{x \in 1 + M \mid N_v(x) = 1\}| + \sum_{v \notin \{u\} \cup \langle w \rangle} |\{x \in 1 + M \mid N_v(x) = 1\}|$$

$$\leq |Z_{\phi}^1| + (p-1) + p^{(n-1)r}(p^r - 1 - 1 - (p-1))$$

$$= |Z_{\phi}^1| + p - 1 + p^{(n-1)r}(p^r - p - 1).$$

Proof of Theorem 4. (1) For any $v \in \langle u \rangle$, the map N_v is a group homomorphism, and $|\text{Ker } N_v|$ is a power of p, provided $v \notin T$. Since

$$(p^r-1)s = \sum_{v \in (u)} |\operatorname{Ker} N_v| = t + \sum_{v \notin T} |\operatorname{Ker} N_v| = t + pl$$

with some non-negative integer l, we see that s+t is a multiple of p.

(2) Given $k_1, k_2, \dots, k_n \in K$, we denote by $r_1\{k_1, k_2, \dots, k_n\}$ the $n \times n$

matrix

$$\begin{bmatrix} k_1 & k_2 & \cdots & k_n \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

According to [5, Theorem 3], R may be regarded as the ring of all matrices of the form

$$\operatorname{diag}\{c, \sigma_2(c), \dots, \sigma_n(c)\} + r_1\{0, d_2, \dots, d_n\},\$$

where c, d_2, \dots, d_n range over K and $\sigma_2, \dots, \sigma_n$ are fixed automorphisms of K. Obviously, 1+M consistis of all matrices of the form

$$1 + r_1\{0, d_2, \dots, d_n\}.$$

If b is a generating element of K^* then $u = \text{diag}\{b, \sigma_2(b), \dots, \sigma_n(b)\}$ is of order p^r-1 and $\mathbf{Z}_p[u]$ is a maximal Galois subring of R. Now, let $v = \text{diag}\{c, \sigma_2(c), \dots, \sigma_n(c)\}$ and $x = 1 + r_1\{0, d_2, \dots, d_n\}$. Then

$$(vx)^{p^{r-1}} = 1 + r_1\{0, g_2, \dots, g_n\}, \text{ where}$$

$$g_i = c(\sum_{j=0}^{pr-2} c^j \sigma_i(c)^{pr-2-j}) d_i = \begin{cases} 0 & \text{if } c \neq \sigma_i(c) \\ -c^{pr-1} d_i & \text{if } c = \sigma_i(c) \end{cases}$$

Since v is in T if and only if $c = \sigma_i(c)$ for all i, we see that $|\text{Ker } N_v|$ is a multiple of p^r for any $v \in T$. Thus, $(p^r - 1)s = t + p^r m'$ with some nonnegative integer m', and therefore s + t is a multiple of p^r .

Example. Let $R = \{ \begin{pmatrix} c & d \\ 0 & c^p \end{pmatrix} | c, d \in GF(p^2) \}$. Then t = p-1, and therefore the number of solutions of $X^{p^2-1} = 1$ in R is $p-1+(p^2-1-(p-1))p^2 = p^4-p^3+p-1$.

REFERENCES

- [1] M. HALL: The Theory of Groups, Macmillan, New York, 1959.
- [2] S. MACLANE: Homology, Springer-Verlag, New York, 1967.
- [3] B. R. McDonald: Finite Rings with Identity, Pure & Appl. Math. Ser. 28, Marcel Dekker, New York, 1974.
- [4] K. MOTOSE and H. TOMINAGA: Group rings with nilpotent unit groups, Math. J. Okayama Univ. 14 (1969), 43.—46.
- [5] R. RAGHAVENDRAN: Finite associative rings, Compositio Math. 21 (1969), 195-229.
- [6] T. SUMIYAMA: Note on maximal Galois subrings of finite local rings, Math. J. Okayama Univ. 21 (1979), 31—32.

AICHI INSTITUTE OF TECHNOLOGY

(Received July 31, 1980)