## ON THE RADICAL OF THE GROUP ALGEBRA OF A p-NILPOTENT GROUP

## YASUSHI NINOMIYA

Throughout the present paper, K will represent an algebraically closed field of characteristic p>0, and G a finite group whose order is divisible by p. We denote by J(KG) the radical of the group algebra KG. In the previous paper [4], we proved that J(KG) is contained in J(KP)KG for some Sylow p-subgroup P of G if and only if  $J(KG) = \bigcap_{x \in G} J(KP^x)KG$  ([4, Theorem 3]). For convenience' sake, we denote by  $\mathfrak{B}$  the class of finite groups G such that  $J(KG) = \bigcap J(KP)KG$ , where P ranges over Sylow p-subgroups of G. In [4], we studied the properties of groups contained in  $\mathfrak{B}$ . Recently, S. S. Bedi [1] gave several sufficient conditions for a group to be contained in  $\mathfrak{B}$ , but all of his results had been obtained in [4]. The purpose of this paper is to give a necessary and sufficient condition for a p-nilpotent group to be in  $\mathfrak{B}$ . Given  $g \in G$ , we put  $a^g = gag^{-1}$  for any  $a \in KG$ , and  $S^g = \{s^g | s \in S\}$  for any subset S of KG. We denote by  $E_G$  the set of all central primitive idempotents of KG.

In what follows, we let G be a p-nilpotent group, and  $N = O_{p'}(G)$ . Let  $f \in E_N$ . Then fKN is isomorphic to the matrix ring  $(K)_n$  over K. We put  $G_f = \{g \in G | f^g = f\}$ , and denote by  $P_f$  a Sylow p-subgroup of  $G_f$ . Now, let  $G = a_1G_f \cup a_2G_f \cup \cdots \cup a_sG_f$  be the decomposition of G into right cosets with respect to  $G_f$ . Then by [3],  $e_f = \sum_{i=1}^s f^{a_i} \in E_G$  and  $e_fKG$  is isomorphic to the matrix ring  $(KP_f)_{ns}$  over  $KP_f$ .

**Lemma.** If G is in  $\mathfrak{P}$  then every normal subgroup H of G is in  $\mathfrak{P}$ .

*Proof.* Since H is a normal subgroup of a p-nilpotent group G, we have  $J(KH) = KH \cap J(KG) \subset KH \cap J(KP)KG = J(KQ)KH$ , where P is a Sylow p-subgroup of G and  $Q = H \cap P$ . Hence  $H \in \mathfrak{P}$ .

Now, we can state our theorem as follows:

**Theorem.** The following statements are equivalent:

- (1) G is in  $\mathfrak{P}$ .
- (2) If  $f \in E_N$ , then fx = f for every  $x \in [N, P_f]$ .
- (3) If  $f \in E_N$ , then every element of  $P_f$  commutes with all the elements of fKN.

- Proof. (1) ⇒ (2): We may assume that  $P_f \neq \{1\}$ . Since  $G_f$  is a subnormal subgroup of G,  $G_f \in \mathfrak{P}$  by Lemma. Hence, by [4, Theoren 3],  $J(fKG_f) = fJ(KG_f) \subset fJ(KP_f^g)KG_f = J(KP_f^g)$  (fKN), where  $g \in G_f$ . Now, let  $fKN \cong (K)_n$ . Then we have  $fKG_f \cong (KP_f)_n$ . Since  $\dim_K J(fKG_f) = \dim_K (J(KP_f))_n = (|P_f| 1)n^2 = \dim_K J(KP_f) \cdot \dim_K fKN = \dim_K J(KP_f^g) \cdot \dim_K fKN = \dim_K J(KP_f^g)$  (fKN), the above implies that  $J(fKG_f) = J(KP_f^g)$  (fKN). Let  $s \in P_f$  and  $x \in N$ . Noting that  $J(KP_f)$  (fKN) =  $J(KP_f^g)$  (fKN), we have  $0 = \widehat{P}_f(s^x 1)f = \widehat{P}_f(s^{-1}s^x 1)f$ , where  $\widehat{P}_f = \sum_{u \in P_f} u$ . This implies that  $f(s^{-1}s^x) = (s^{-1}s^x)f = f$ , and so (2) holds.
- (2)  $\Longrightarrow$  (3): Let  $s \in P_f$  and  $x \in N$ . Then we have  $s(fx)s^{-1} = fsxs^{-1}$ =  $fx(x^{-1}sxs^{-1}) = x(fx^{-1}sxs^{-1}) = xf = fx$ , proving (3).
- $(3) \Longrightarrow (1)$ : Since every element of  $P_f$  commutes with all the elements of fKN,  $fKG_f$  is a group ring of  $P_f$  over the simple ring fKN. Hence we have  $fJ(KG_f) = (fKN)J(KP_f)$ . Furthermore, by [5, Theorem 5], we see that  $(fKG_f/fJ(KG_f)) \otimes_{KG_f} KG$  is a completely reducible KG-module. Since  $(fKG_f/fJ(KG_f)) \otimes_{KG_f} KG \cong fKG/fJ(KG_f)KG$ , this implies that  $fJ(KG) \subset fJ(KG_f)KG = (fKN)J(KP_f)KG = fJ(KP_f)KG \subset J(KP_f)KG$ . Now, let P be a Sylow p-subgroup of G which contains  $P_f$ . Then  $J(KP_f) \subset J(KP)$ , and so  $fJ(KG) \subset J(KP)KG$ , proving (1).

## **Corollary 1.** If N is abelian then G is in $\mathfrak{P}$ .

*Proof.* Since fKN = fK for every  $f \in E_N$ , it is clear that  $xax^{-1} = a$  for every  $a \in fKN$  and  $x \in G_f$ . Hence  $G \in \mathfrak{P}$  by Theorem.

**Corollary 2.** Let P be a Sylow p-subgroup of G. Assume that  $P \cap P^x = \{1\}$  for every  $x \in G - N_G(P)$ . Then G is in  $\mathfrak B$  if and only if there holds one of the following:

- (1) P is normal in G.
- (2) G has a subnormal subgroup H which is a Frobenius group with complement P.

*Proof.* Suppose that G is in  $\mathfrak P$  and P is not normal in G. Then, we may assume that G has no normal subgroups of index relatively prime to  $\mathfrak p$ . Since [N, P]P is normal in G, we have [N, P] = N. Let  $f \in E_N$  and suppose that  $P_f \neq \{1\}$ . Since  $P_f$  is a defect group of  $e_f KG$ , our assumption together with [2, Theorem 2] implies that  $P_f$  is a Sylow  $\mathfrak p$ -subgroup of G. So we may assume that  $P_f = P$ . Then, by Theorem (2), we have  $f\mathfrak x = f$  for every  $\mathfrak x \in [N, P] = N$ , and therefore  $f = |N|^{-1} \sum_{\mathfrak x \in N} \mathfrak x$ . Thus, we see that every block of KG different from the principal block is of defect zero.

Since  $N = [N, P] \neq \{1\}$ , by [6, Theorem 2], G is a Frobenius group with complement P.

Conversely, if P is normal in G then J(KG) = J(KP)KG, and so  $G \in \mathfrak{P}$ . Next, suppose that (2) holds, and let V be the Frobenius kernel of H. Putting  $e = |V|^{-1} \sum_{v \in V} v$ , we obtain  $J(KG) = J(KH)KG = eJ(KP)KG \subset J(KP)KG$ . Hence  $G \in \mathfrak{P}$ .

**Corollary 3.** Suppose that G is in  $\mathfrak{B}$  and a Sylow p-subgroup P of G is a cyclic group of order  $p^a$  generated by s. Let  $D_i = \langle s^{p^i} \rangle$ ,  $V_i = [N, D_i]$  and  $e_i = |V_i|^{-1} \sum_{x \in V_i} x$ , where  $0 \le i \le a-1$ . Then,  $e_0$  is the sum of block idempotents of defect a, and  $e_i - e_{i-1} (1 \le i \le a-1)$  is the sum of block idempotents of defect a-i. In particular, the sum of block ideals of positive defect is isomorphic to  $KG/V_{a-1}$ .

*Proof.* By Theorem (2), we see that a block ideal of defect a-i is contained in  $e_iKG$ . Since  $e_iKG \cong KG/V_i$  and  $D_iV_i/V_i$  is normal in  $G/V_i$ ,  $e_iKG$  is the sum of block ideals of defect  $\geq a-i$ . Noting that  $e_iKG = e_{i-1}KG \oplus (e_i-e_{i-1})KG$ , we can easily see that the result holds.

A. I. Saksonov and D. S. Passman individually gave examples of  $\mathfrak{P}_p$ -nilpotent groups G such that  $G \in \mathfrak{P}$  (see [4] and [1]). Now, by making use of Corollary 3, we shall show that these groups are not in  $\mathfrak{P}$ .

**Example 1** (Saksonov). Let p=3, and G=SL(2,3). Then G is a 3-nilpotent group with a cyclic Sylow 3-subgroup P of order 3. Suppose  $G \in \mathfrak{P}$ . Since  $[O_{3'}(G), P] = O_{3'}(G)$ , by Corollary 3 we have J(KG) = eJ(KP), where  $e=|O_{3'}(G)|^{-1}\sum_{x\in O_{3'}(G)}x$ . Hence, by [6, Theorem 2], G is a Frobenius group with complement P. But, this is a contradiction, because G has the non-trivial center. Hence  $G \in \mathfrak{P}$ .

**Example 2** (Passman). Let p = 2. Obviously,

$$N = \left\{ \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix} \middle| \quad \alpha, \ \beta, \ \gamma \in GF(3) \right\}$$

is a group of order 27. Let  $p = \langle s \rangle$  be a group of order 2, and G a semi-direct product of N by P, where the action of s to N is defined as follows:

$$\begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}^{s} = \begin{pmatrix} 1 & -\alpha & \beta \\ 0 & 1 & -\gamma \\ 0 & 0 & 1 \end{pmatrix}.$$

Then G is a 2-nilpotent group. Consider

$$a = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Since  $c=aba^{-1}b^{-1}=\begin{pmatrix}1&0&1\\0&1&0\\0&0&1\end{pmatrix}$  is an element of the center of N, we see

that N is generated by a and b. Further, noting that  $sas^{-1}a^{-1}=a$  and  $sbs^{-1}b^{-1}=b$ , we have [N,P]=N. Suppose  $G\in\mathfrak{B}$ . Then Corollary 3 together with the fact above implies that J(KG)=eJ(KP), where  $e=|N|^{-1}\sum_{x\in N}x$ . Hence by [6, Theorem 2], G is a Frobenius group with complement P. But this is a contradiction, because c is contained in the center of G. Hence  $G\in\mathfrak{B}$ .

Let G be an arbitrary finite group (not necessarily a p-nilpotent group). In [1], S. S. Bedi asked: Does every G in  $\mathfrak{P}$  have a normal subgroup  $G_0$  such that  $p \nmid [G:G_0]$  and that the factor group of  $G_0$  by some normal p-subgroup is a Frobenius group with a Sylow p-subgroup as a complement? The next example gives a negative answer to this question.

**Example 3.** Let p=2. Let N be an elementary abelian group of order 9 generated by  $b_1$  and  $b_2$ , and

$$P = \langle s, t | s^4 = 1, t^2 = 1, tst^{-1} = s^{-1} \rangle$$

a dihedral group of order 8. We define a homomorphism  $\theta: P \longrightarrow GL(2,3)$  ( $\cong$  Aut N) by

$$\theta(s) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \theta(t) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Now, let G be a semi-direct product of N by P with respect to  $\theta$ . Since N is abelian, G is in  $\mathfrak B$  by Corollary 1. However, G does not satisfy the condition in the above question. In fact, G has no normal 2-subgroups and the dihedral group cannot be a Frobenius complement.

## REFERENCES

S. S. Bedi: The Jacobson radical of the group algebra of a finite group, Proc. Amer. Math. Soc. 75 (1979), 13—18.

<sup>[2]</sup> J. A. Green: Blocks of modular representations, Math. Z. 79 (1962), 100—115.

<sup>[3]</sup> K. MORITA: On group rings over a modular field which possess radicals expressible as

- principal ideals, Sci. Rep. Tokyo Bunrika Daigaku A4 (1951), 177-194.
- [4] K. Motose and Y. Ninomiya: On the subgroups H of a group G such that  $J(KH)KG \supset J(KG)$ , Math. J. Okayama Univ. 17 (1975), 171—176.
- [5] M. OSIMA: On primary decomposable group rings, Proc. Phys.-Math. Soc. Japan 24 (1942), 1—9.
- [6] D. A. R. WALLACE: Note on the radical of a group algebra, Proc. Cambridge Philos. Soc. 54 (1958), 128—130.

SHINSHU UNIVERSITY

(Received May 7, 1981)