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THE IDENTITY (xy)"=x"y" AND COMMUTATIVITY
OF RINGS

Yujr KOBAYASHI

We shall give a commutativity theorem for rings with identity element.
It contains some known results which have been obtained by several au-
thors. Throughout this paper R represents a ring with 1, and NV denotes
the set of all positive integers.

1. Statement of Theorem. Let S be a semigroup or a ring. The
subset E£(S) of N defined by
E(S)=(ne N | (xy)" = x"y" for allx, y € S}
forms a multiplicative subsemigroup of N and is called the exponent semi-
group of S (Tamura [9]). The purpose of this paper is to prove the
following

Theorem. Let R be a ring with 1. If E(R) contains integers my, *-,
nr 2 2 such that (m{ni—1), -2, n(ny—1)) = 2 and some of n; is even,
then R is commutalive.

The theorem contains the following well-known result: If E(R) con-
tains three consecutive positive integers, R is commutative. This was proved
by Luh [7] under the additional condition that R is a primary ring. Ligh
and Richoux [6] removed the condition and gave a complete and elementa-
ry proof. Our theorem contains also the following more general result: If
E(R) contains m, m+1, n and n+1 such that (m, n) is either 1 or 2, then
R is commutative. In case (m, n)= 1, this result was proved by Bell [1,
Theorem 2]. In case (m, n) = 2, this was first proved by Yen [10,
Theorem 2] under the condition that R is primary, and Mogami [8]
removed the condition (even in a localized version).

As the simplest case of the theorem we have the following: If 2 €
E(R), R is commutative. This was given by Johnsen, Outcalt and Yaqub
[3]. Let us consider the case 3 € E(R). Then, R is commutative, if E(R)
contains some # such that » =2 (mod 6). Note that the commutativity
of R need not follow only from the condition 3 € E(R).

2. Proof of Theorem. To prove our theorem, we need the following
result which follows from a more general theorem on the structure of
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exponent semigroups (Kobayashi [4, Theorem 3]). However, for the con-
venience of the reader, we shall give a direct proof of it in the last section.

Lemma 1. Let S be a cancellative semigroup. If E(S) contains
integers my, -, ny 2 2 such that (ny(m—1), -, (ne(n,—1)= 2. then S
s commutative.

Lemma 2. Let x, y& R. Then under the assumption in Theorem, xy =
0 implies vx = 0.

Proof. Let n€ E(R) and » = 2. Assume that xy= 0. Thenwe have
Y+ y"x = (y+yx)" = y"(1+ 0"
It follows that

(n—-1)y"x = —y"x i}z( 7:) xiL
Using this equality #»—1 times, we get
(n—1)"1ynx — (_1)n—1ynx(%( Zl )xz'—l)n—l.

Since y"x™ = (yx)® = 0, we obtain (#—1)""'y"x = 0. By the assumption

 there are integers mi, -, nr 2 2 in E(R) such that (#,—1, -, n,—1) =
1. Thus we get the equalities
(=) tymx =0 (i=1, =, 7),
where m, = max {ni, -, #n,). It follows that y™x =0. A similar

argument starting with the equation (x+ yx)*= (1+y)*x” yields yx™ = 0.
On the other hand, we have

A+x)"+1+3)" 1= 1+2)"A+3)" = Q+x+y)"
=(1+x)"+(1+y)"—1 + E (H_])yx :

n _ AW
(z)yx— i.:zzl (1+J)yx ‘
nazi+sz3
Using this equality repeatedly, we obtain

n my+mo—2 id
(2) yx = 2 aiiyx’,
i+iam+me

It follows that

where mo = min{n|n€ E(R), n=2) and a;; are integers. Since

n)M1+7no—Z

ymex™ = yx™ = y™x =0, it follows that (2 yx=0. By the
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assumption that there are integers #,, -+, #r 2 2 in E(R) such that
((gl), (’;’)) =1, we conclude that yx = 0.

Proof of Theorem. Let us assume the condition in Theorem is satisfied.
By Lemma 2 there is no distinction between left and right zero-divisors
in R, and for any subset S of R, the left and the right annihilator of
S coincide and form a two-sided ideal of R, which we denote by Ann(S).
Let D be the set of all zero divisors of R (together with 0). To prove
the theorem we may assume that R is subdirectly irreducible. Let H be
the unique nonzero minimal ideal of R. We claim that D = Ann(H).
Clearly D DAnn(H). Conversely, let d be any element in D. Since Ann(d)
is a nonzero ideal of R, it contains H. This means d € Ann(H). proving
the claim. In particular we see that D is an ideal of R. It follows that
R\D generates R. Since R\D is a cancellative semigroup by multiplica-
tion, it is commutative by Lemma 1. Therefore R is also commutative.

3. Remarks. In Theorem the existence of 1 in R is essential, because
there is a non-commutative ring without 1 whose exponent semigroup
contains all positive integers ([3, Example 1]).

The condition that (#,(s;—1), -**, #n,(n,—1)) = 2 is also indispensable
as the following example shows.

Example (c.f. Kobayashi [5, Example 4]). Let ¢ = 2 be an integer and
Z, the residue class ring of integers modulo g. Let N be a non-commuta-
tive algebra over Z, such that N®= 0. We consider the ring R whose
additive group is the direct sum Z; @©&N with multiplication given by
(a+x)-(b+y)=ab+(ay+bx+xy) fora, bE Zg and x, yE N, Then, Ris a
ring with 1 and satisfies the identity (xy)"” =x™y” for any positive integer
»n such that #(z—1)/2 =0 (mod ¢g). But, R is not commutative.

The second condition that some of #; is even can be removed when
R is a primary ring. In fact, let R be a primary ring, that is, the Jacob-
son radical J of R is maximal, and assume that there are integers ),
<+, n,22in E(R) such that (s:(n,—1), -, #nn,—1)) =2. Then, R/J
is commutative by Herstein [2, Theorem 1], so it is a field. It follows
that R is generated by its units. Hence, R is commutative by Lemma 1.

We do not know if Theorem remains true in general after removing
the second condition.
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4. Proof of Lemma 1. Let S be a cancellative semigroup satisfying
the condition in Lemma 1. Let ¢ denote the equality relation on S. For
n & N we define the relation z, on S as follows: For x,yE€ S, xmy if

x" = y™ for some eE€ N. S is called n-power cancellative if mn= ¢ If
n € E(S), it is readily seen that m, is a congruence on S and the quotient
semigroup /7, is an n-power cancellative, cancellative semigroup. We
set P(S) ={n€ E(S)| = ¢}.

We claim that if »e;, +-+, ms are positive integers such that (#, -,
ms) =1, then zm N N 7w =¢ Let x, y€ S and suppose that x7mm y
for i =1, -, s, that is, x* = y* for some power %; of m; (i=1, =, s).
Since (&1, -, ks) =1, by renumbering k; if necessary, we can find non-
negative integers /), -+, Is such that Lki+ - + 1Lk, = Liprbesi+ + lsks+1
(1<t <s). Then we have

‘ItIx""' = fIy""" = (.1§I yri)y = (,1§I xR y.
i=1 i=1 i+l =i+l
By the cancellation law we then get x = y, proving the claim.

Now, we set R(S)={n € N|(xy)"=y"x" for all x, yES}. If =
(22) is in E(S), then n—1 € R(S) by cancellation. So, if 2 € E(S),
then 1€ R(S) and S is commutative. Let » = 3 and » € E(S). Then
(n—1)* =4 and (n—1)2€ E(S). Since (n, (n—1)%) =1, we get 7a N T(n-1)2
= ¢ by the claim above. Thus S is isomorphic to a subdirect product of
S/nn and S/mn-1:. To show the commutativity of S, it suffices to show
it for S/m, and S/mn-1): which are n-power cancellative and (#—1)?-power
cancellative respectively. So we may assume from the first that
P(SO\ {1} + @.

We claim that if m (22) is in P(S), then m—1 € E(S) and x™! is
in the center of S for every x € S. If me& P(S), then (m—1)*€E(S) as
above. Hence m(m—2)=(m—1)>—1€ R(S). Since m& P(S), it follows
that m—2 € R(S). Thus we find m—1 € E(S). So we have x™y™” =
(xy)™ = xyx™ 'y™ 1 for any x, y € S. By cancellation we obtain x™ 'y =
yx™ !, proving the claim.

Let m be the smallest integer in P(S)\{1}. We proceed by induction
on m. If m=2, § is commutative. Let assume that m =3 and the
assertion of the lemma holds for any cancellative semigroup S’ for which
P(S’) contains an integer m’ such that m > m' = 2. Let #y, **+, n, bein
E(S) and (m(n,—1), -, nn,—1)) =2. If m—1 divides »n; or n;—1 for
every i =1, «--, », then m—1 is either 1 or 2. In either case 2 € E(S)
and consequently S is commutative. Henceforth, assume that there is
n€ E(S) such that == 0,1 (mod m—1). Let n=I(m—1)+k 2<k <
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m—2. Since m—1¢& E(S) and x™! and y™~! are in the center for any
x,y € S, we have

gy = (xy)Hm-Drk = (xm-lym=1)I(yy)k — gim=D(yy)kyllm-1),
The cancellation law gives x*y* = (xy)*, showing k€ E(S). Since m—2,

k—1€ R(S), we see that (m—2)(k—1) = (k—=2)(m—1) +(m—£k) € E(S).
In the same way as above we find that m—% € E(S). Note that m >
m—1, k, m—E=2 and (m—1, k&, m—£k) = 1. Thus by the first claim we
see that Tm—) N7 N7m-r = ¢, that is, S is isomorphic to a subdirect product
of S/mm-1, S/mx and S/Tm-x, which are (m—1)-, k- and (m—k)- power
cancellative respectively. By the induction hypothesis they are all
commutative. Consequently S is also commutative, this completes the proof.
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