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DOUBLE SUSPENSIONS OF BRIESKORN
INVOLUTIONS

Yosumwosu KAMISHIMA

The purpose of this paper is to give an explicit description of double
suspensions of the Brieskorn involutions of dimensions 5 and 13.

For each odd positive integer 4, let > #*' be the Brieskorn sphere
which is the submanifold of C**? described by the equations

Z((]I+Z?+"'+Z%k+1=0 and ZDEO-I-zlE;-I-'~°+22k+|32k+1=1.

Then X2 ¥"' is a homotopy sphere and the involution T,: > ¥ — X ¥!
given by Tu(z0)=2, and Tuz;)=—2{i>0) is a fixed point free involution
of 2¥*. The involution (74, X¥"") is obtained also from the equivariant
plumbing of (d—1) copies of the tangent disk bundle of S*'! around the
fixed points.

In §1, we apply an equivariant plumbing technique to construct
homotopy projective spaces of dimensions 7 and 15, and obtain the follow-
ing: For each odd positive integer d, there exists a free involution 7
on a homotopy sphere 3% (resp. 2.7) such that (1) 7, has the Brieskorn
involution (7%, 2.%) (resp. (Ty, %)) as a desuspension, (2) i€ bP; (resp.
SEebPy), (3) T. extends to an involution with isolated fixed points on a
3-connected (resp. 7-connected) 8-dimensional (resp. 16-dimensional) spin
manifold M} (resp. M) which is bounded by 2% (resp. 2.F), and (4)
a(T:;, 29 ==xd mod 2* (resp. a(T;, 3 ¥)==*d mod 2*) (Theorem 1.1 and
1.2). Next, in § 2, we correct the results on plumbing manifolds stated in
(5] as follows: 28u (Xin+1)=[(h+1)/2] mod 28 and 2°: 127u(38.) =
[(k+1)/2] mod 2° - 127 (Theorem 2. 1).

In § 3, we modify the Bredon construction [3] to give other examples
of homotopy projective 15-spaces with the 13-dimensional Brieskorn involu-
tions as desuspensions. By means of the Milnor-Munkres-Novikov pairing,
Bredon has obtained some exotic actions on some elements of 6*** from
the linear action on the sphere S"**, This construction will be generalized
for free involutions on homotopy spheres. Applying it to the examples in
Theorem 1. 2, we see that for each odd positive integer d, there exists a
free involution (7', X'¥) with 2P & bP,; which has the Brieskorn
involution (7, X¥) as a desuspension (Theorem 3.7). Moreover, we
determine the double suspensions of the Brieskorn involution (7, >33) and
(Ts, 2%): The double suspension of the Brieskorn involution (73, 3°3) is

99
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(T4, 239, modulo the action of &#P; (Proposition 3.1), and the double
suspensions of the Brieskorn involution (7, X.2) are exactly >.¢/T.,
S/ Tatt 8, S8/ T!, 3%/ T4 3%, modulo the action of P, where

5 is the generator on the Z,-summand in ¢'°* which bounds no paral-
lelizable manifolds (Theorem 3. 11).

In § 4, we first improve the estimate for the spin invariants of the
Brieskorn involutions given in [8, p. 338] (Proposition 4. 1), and give an
answer to the question raised in [8, p. 337] concerning the classification of
1S (P®), the set of homotopy smoothings of the standard projective 5-space
P% (Corollary 4. 2). Secondly, we correct a result of Yang [12] concerning
the determination of the desuspensions of Hirsch-Milnor involutions (Propo-
sition 4. 3). Finally, we claim that the nonexistence of double suspensions
of the Brieskorn involutions is equivalent to the Kervaire invariant con-
jecture as follows: For k=2"—1, r>>1, there is a free involution 7 on
a (4k+3)dimensional homotopy sphere > .**® which has the Brieskorn
involution (T, X2 %*') as a desuspension for d==*3 mod 8 if and only if
ST+ is diffeomorphic to the standard sphere S%*!,

The author would like to thank Professors Y. Kitada, H. Suzuki and
T. Yoshida for their useful suggestions and criticism.

1. Construction of certain homotopy projective spaces. We give
some examples of homotopy projective spaces of dimensions 7 and 15.

Theorem 1. 1. For each odd positive integer d, there is a free involu-
tion T, on a homotopy sphere Y.\ with the following properties,

(1) T: has the Brieskorn involution (Ts, 2.3) as a desuspension.

(2) XlebPs, where bP; is the group of homotopy spheres which bound
parallelizable manifolds.

(3) T, extends to an involution with isolated fixed points on a 3-con-
nected 8-dimensional spin manifold M} which is bounded by 3. The spin
invariant a(T,, 220 of (Ts, 200 is +d mod 2°.

Theorem 1. 2. For each odd positive integer d, there is a free involu-
tion Ty on a homotopy sphere XY with the following properties,

(1) Ty has the Brieskorn involution (T,, 2.3) as a desuspension.

2) X¥e=bPy, where bP, is the group of homotopy spheres which
bound parallelizable manifolds.

(3) T extends to an involution with isolated fixed points on a T-connect-
ed 16-dimensional spin manifold M which is bounded by 2.7°. The spin
invariant a(T,, 2F) is *d mod 2.



DOUBLE SUSPENSIONS OF BRIESKORN INVOLUTIONS 101

Proof of Theorem 1.2. Let D®be the unit disk in the Cayley numbers

€ with the Z,-action, #(xo, %1, -+, ;) =(—%0, — %y, -, —%;). Let S be
the boundary 9D® of D® Let S® be the suspension of S7, i.e., the unit
sphere in € X R with the Z,-action, #(xo, %1, %7, y) =(—%0, — %1, **+, — 21, ).
Let fi,;: 8" —> SO(8) be the map defined by f, (#)(v)=(u"v)u’ for uc §’,
veD®. Fix f=f,,_,. Then f is invariant under the above Z,-action on
S’. So f factors through a map g: P" —> SO(8),
. f

S —— S0(8)

T ]

P £

where 7 is the projection map. We define a D%bundle E over S® with a
Z,raction T by EY™=(D®*x D% U (D“ D?), where b(g): S"x D* —>

S"x D b(g)(u, v) =@, gr(u) (v)) and the Z,-action is given by T'(x,v)
=(—u, —v) for (u,v)=D*x D8,

This involution 7' has two isolated fixed points on the zero-section of
E. The euler class e(E) is zero (in general, if one forgets the action,
then the map f, , induces a bundle £, ; over S* with euler calss e(%, )
==+(h+j)¢, and Pontrjagin calss P,(£, )=+6(h—j)¢, where ¢ is the
cofundamental class of H®(S?)). We show that

(1) (7, E*°) has an invariant characteristic submanifold (T, E"),
where E! is the tangent disk bundle E(z;) of S'. Welet D'={ucD?,
Re(#)=0} (Re(u) is the real part of the Cayley number #), and we denote
by S°® the unit sphere of D’. Obviously Re(uvu')=Re(r)=0, whenever
#ES® and vED’. Defining the map g,: P* —> SO(7) by g,(x(x))(®)

-1

=uvu~', we see that the following diagram is commutative:
P—% . 50@)
U U
PP—2 . som) .

Hence (7, E'®) has an invariant characteristic submanifold
(T, EM)=(D" x D7)»(U (D'"x DY (T, E®™).
7)

Since g7(u)(v)=—wuwvu, g is just the characteristic map of the tangent
bundle z; of S7, hence it follows (1).

We next prove that the spin invariant @(7,0E') is =+ 2 mod 2° (cf.
(1], [2]). The manifolds E, E'®* are spin manifolds since H’(E)
=H'(E'*)=0 for j=1,2. The inclusion i: (T, E*) C (T, E') has the
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trivial nornal bundle, so it induces an embedding F(i): FE' — FE',
where FE* is the space of oriented orthonormal k-frames for k=14, 16.
Then, from the homotopy exact sequence of the fibration SO(k) —> FE*
— E* we have that F(i),:m (FE") — =,(FE'®) is an isomorphism.
Recalling that (T, E") = (T, E(r) in (1), we see that a(T, 0E')=+2
mod 27, i.e., the two fixed points have the same sign. Then, the proposi-
tion 8.44[1] assures us that a(T,0E*)=+ 2 mod 28, since the image of
the loop in FE'* by the map F(i) is the loop in FE!'S.

For each positive integer s, we plumb 2k copies of the bundles E'¢
equivariantly at the fixed point on each. Denote by (8,, M) the resulting
manifold with Z,-action. Since the euler class of E'® is zero, the plumbing
matrix is equal to

01 0 }
1 0
1

.- ‘\zh
0 1J
0 1 0/

We can easily check that the determinant is +1, and hence M, is a
homotopy sphere. We note that dM,‘€bP,,. This follows from the Lemma
7 [11]. Put

(ﬂhlaMliﬁy aMnm) = (TZIH-I, Z;?«+I)-

Then M}® contains (2h+ 1) fixed points, and by the contribution of
a(T,dE**)=+2 mod 2° we have

2) a(Tosr, Z5he)=*(2h+1) mod 2°

On the other hand, we see by (1) that (3, M,°) has a codimension 2
invariant characteristic submanifold which is just the resulting of the
equivariant plumbing of 24 copies of E'*=E(r;). If the resulting manifold
is denoted by (8, M;*), then as was noted above, we have (3,|0M}}, aM;')
=(Tons1, 208 +1) (the Brieskorn involution). Furthermore, we recall that
the desuspension invariant for (3,|0M;°, dM,°) is the index of the above
plumbing matrix, which is clearly zero. Let (T%,.,, > 4+.) be a desuspen-
sion of (Taws+1, 2om+1). Since free involutions of even dimensional homotopy
spheres always desuspend, and their invariant characteristic spheres are
equivariantly diffeomorphic, (T, 25.1) is a desuspension of (Tu.y,
>%.). This completes the proof of Theorem 1. 2.

Proof of Theorem 1. 1 is similar to that of Theorem 1.2 by using the
quaternion field instead of the Cayley numbers, so we omit it.
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2. Differentiable structures of 2 ;'’. Applying the Eells-Kuiper
p-invariant [5], we are able to compute the differentiable structures of
a1 (=0MY) and X5+, (=0M)5). (Unfortunately, the results on plumb-
ing manifolds in [5] are incorrect since the contribution (j¥)~! is missing.)

Theorem 2. 1. The differentiable structures of Xin.:, S .1 are given
by

2) 25127 (L. ) =[(h+1)/2] mod 2°-127,
where 28 (vesp. 2°-127) are the order of bP; (resp. bPy), and [*] is the
integral part of *.

Proof. Let A, be the plumbing matrix of rank 2% introduced in the
proceeding section. We consider the following commutative diagram,
H(MY) —L— H(M2, om0

o

HA (M3, oMY HY(MY).

7« 1s represented by A, with respect to the standard basis of H,(M?) and
H,(M3E, oME). Let uw;esH*(M}) (i=1, .-+, 2k) be the basis corresponding to
the standard basis of H,(M}, 6M}) by the Poincaré duality isomorphism D.
The i-th block of the Pontrjagin class P,(M}) is P(E®)=P, (£, )= —2%..

2h
Hence by the construction of Mj}, it follows that P,(M})= —>:2%:. Since
=]

the index on H,(M}) is equal to that of A,, which is clearly zero, by the
definition of u ([5]) we have 28u(X%..)=G*"'P(M})?/2°. Now let B,
be the inverse of A, and <B,=(1:--1)B.,(1---1). Then 28u(Z i) =
35(= 28— 2) By (=2 =2 =1(B,. Obviously B=4,=(9 {) and
<{B,=2. For h>>1, it is easy to see that

(-1
0

(_ l)h—Z
0

[ eNe Nl

B,

By [
I
10 (1)

0 0 = 0 0
(=170 (=D O

O O O
o= O
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Hence <B,=<Bii+2(1+ (=1 +(=17+ -+ (=1)"")
_{(Bh_l if % is even
T |<Bi+2 if ks odd.
From the above we see that <B,=h or h+1 according as % is even or
odd. We conclude therefore that 28x(32%..)=[(#+1)2] mod 28.
In the same way as the proof of (1), we obtain the desired result for

2

Let 3 "=bP,.;,, andlet |>*| be the order of 31*. Let (T, 32") be
a free involution on a homotopy sphere, and «(7, 3.") the Browder-Livesay
desuspension invariant. If (7, 2")%|2."| mod 2, then (7, 2*) is called
a curious involution.

Corollary 2. 2. If d=+3mod8, then (Ty, 20 and (Ts, 2F) are
curious tnvolutions.

Recently T. Yoshida [13] has shown that free involutions on 3-dimen-
sional homology spheres satisfy that (7, 22*)=2x(32%) mod 2, where g
is the Rohlin invariant. However, the above equality need not be true for
general dimensions.

3. Double suspensions of (7, 2¢*!). Let (T, 22" be a free involu-
tion on a homotopy sphere. First we assume that >." is diffeomorphic to
the standard sphere S™ Let E(3*/T) be the total space of disk bundle
of the nontrivial line bundle over 3)*/7. Choosing a diffeomorphism
g: 3" —> S", we attach adisk D™ to E(32"/T) viag. Then we have
a homotopy projective space @"*'. Let (ﬁ 5"“) be a free involution on
the two fold cover of Q™*!. We assume further that @' is diffeomorphic
to S**!, then we apply the above process to construct a homotopy projective
space Q"% We call (T, @**?) a double suspension of (7, 7).

Proposition 3. 1. The double suspension of the Brieskorn involution
(Te, %) is (To, 320, modulo the action of bPs.

Proof. Let (T,X") be a double suspension of (7T, X>_3) and choose a
desuspension (7, 33%) D (T, 335). Let (T, 325 be as in Theorem 1.1, then
it has desuspensions (7%, 2.8) D (T4, X3). Since 6°=0, X%/ T is diffeo-
morphic to 35/7.. The suspension construction yields that X7/7T is
diffeomorphic to >33/ T, % 21" for some >."=#6’. So, any double suspen-
sion of (T4, 22%) is equivariantly diffeomorphic, up to the action of &P,
to 2,7;/ Td.
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We note that if the differentiable structure of 3.7 in Proposition 3.1
is given, then we can get rid of the ambiguity of 5P;; in fact

(1) taking the two fold cover in the above proof, we can determine
2 by (M =(p(X")—p(Xd)/2.

(2) from the proof of Corollary 2. 11[4], &P, acts freely on homotopy
projective 7-spaces.

By making use of the Milnor-Munkres-Novikov pairing p,:: 0" X II;
—> 6**  where I, is the k-stem 7,..(S™ for m large. Bredon [3]
showed the existence of exotic actions on some elements of ""*, We apply
the result to certain homotopy projective spaces. First we note that
**=Z, and II,=Z, We will here recall the construction for #=14 and
k=1.

Let S! act on S®*C R'® by means of the representation

-

@: S'=50(2) —> S0(16), #(A) = )
A

If we let ¢y, &5, **-, €15 a basis of R'®, then by the equivariant slice theorem
we can assign to S!(e;) the equivariant normal framing &, <g(es), -,
2(e16) > (gESY). The principal orbit S'(e;) lies on the plane spanned by
e; and ¢,. Thus we have an element «;;_,=<S"(¢y), §> €M, =m;5(S™)
in Bredon’s notation. He showed that ;550 in II,., We represent
< S%e,), > by an equivariant embedding f:S'x D' —> S, where the
action of S! is gxid on S'X DY for g=S. If we represent the generator
sE60* by a diffeomorphism #%:S™ — S, then the homotopy sphere
pu.i (o, ais,—;) with an S'-action is obtained from S$™—int f(S'XD") and
S'x DY by attaching via the diffeomorphism # : S!'X S — f(S* x S**),
r(x, y)=f(x, k(y)). The S'-action on S —int f(S* X D) is the restriction
of that on S, and on S'X D' (x,y) —> (gx,y) (g=S*). Let P' be the
Kervaire-Milnor map of 6*° to IIs/Jis, where J;s is the image of the J-
homomorphism 7,5(SO()) — 7115.(S) =115, I large. Then it follows from
Proposition 3. 3[3] that P’py,.(s, ais,-1) is nonzero in II,5/];s. Since the
action of S' is free on S', the above action is also free on py, (e, dis,—1).
Let 2 be the linear free antipodal map embedded in the S-action on S%.
We denote by T, the corresponding Z,-action on pu,i(e, a5,-1), and put
puile, ais,)=2F. We note that > 7 bP,; since Ker P'=bP;s. In the
proof of the next proposition, the above construction will be generalized
for free involutions on homotopy spheres,
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Proposition 3. 2. Let (T, 2.'°) be a free involution on a homotopy
sphere, and g:(T, ") —> (@, S*°) an equivariant homotopy equivalence.
Then, there is a free involution T' on a homolopy sphere >.'" and an
equivariant homotopy equivalence g':(T', 3 —> (T, 20).

Proof. The equivariant embedding f:S' X D* —— S¥ which repre-
sents the epuivariant framing <S%(e;), §> induces an embedding f:

P'x D" —» P, We may assume that the homotopy equivalence g of
;oo
the quotient spaces: 3.'°/T — P is transverse regular on P'G PV,

Then we have the induced embedding f': M'X D' —> 3/ T such that
2 (x,9) =F(2(x), ) for (x, y)EM'XD" where M'=g"'(P'). Define
the map #: M'XD¥ —> S'x D" by #(x, y)=(g(x), y). By the trans-
versality theorem, g is of degree 1, i.e., Z.[M']J=[P']. So t is of
degree 1. As we have obtained > ¥/7, from P¥, we can construct
/T from 35/ T—int f'(M'x D*) and M'X D' by attaching M*'xS*"
to f/(M!'xS") via the diffeomorphism 77, #'(x, y)=f'(x, h(y)). The
maps §: 331/ T—int f'(M' X D) — P®—int f(P' X D) and ¢ : M* X D*
—— P'X DY are compatible under the identifications, so that they induce
amap g’: 2%/ T — 2}/T., which is of degree 1. Since the two fold
cover of Y5/ T’ is (X —int £/ (M* x D)) liJ’ZVI % D* and has the homo-

topy type of 3'°, 7, induces an isomorphism of 7,(3*/T")=2Z, into
7, (38 /T,). Hence g' is a homotopy equivalence. Taking the two fold
cover, we obtain Proposition 3. 2.

We show that (7", 3/*®) constructed above is independent of the choice
of equivariant homotopy equivalences of (7T, 2*) to (g, S*). First we
prove that the above construction is compatible with normal cobordism
(refer to [9] for normal cobordism).

Lemma 3. 3. If F: W' — P s a normal cobordism between f;:
>/ T —> P® (1=0,1), then there is a normal cobordism F': wne —s
S8/ T. between fi: 3%/ Ti—> 28/ T, (i=0,1).

Proof. Let F: W—> P» be a normal map which is covered by a
bundle map B:vy, —> &, where v, is a stable normal bundle of W, and
£ a k-dimensional vector bundle, %2>>15. We may assume that f; is
transverse regular on P'C P, and put fi'(PY)=M] (:=0,1). Then, by
the relative transversality theorem we may assume that F is transverse
regular on P'C P, F Y (P)=V’C W' and 9V*=M;U M. Since the
normal bundle of V? is the pull-back of f: P'X D" —> P', we have an
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embedding G: V?x D' — W' such that G|aV2XD"“=f,Uf : Mix D"
UMIXD" — dW*=38/T,UXF/T,, and FG(x, y)=f(F(z), y) for
(x, )EVEX D™ Let W be (W*¥—int G(V2x D"))U V2x D** glued by
@ VEXSY —> G(V2xSY), @(x,y)=G(x, k(). Then the boundary of
W’ consists of X.i/T: (i=0,1) constructed in Proposition 3.2. If we
define the map s: V2X DY —s P'x D" by s(x,y)=(F(x),y), then as in
the proof of Proposition 3.2, the maps F and s induce a degree 1 map
F'i W — S5/T,. Let E|(P®—int f(P'X D™)) be the restriction of
£ on P —int f(P' X D*). Under the identification 7 : P! X S¥ —»
F(P*xS¥), P!'xS™ has the bundle #*(&|f(P'xS%)). Then the obstruc-
tions to extend #*(&|f(P'xS")) to a bundle over P'X D' lie in the
group H/(P!'x (D', S8");w;_(SO)). This group vanishes for j=14, 15,
and we can extend the bundle to a bundle w over P'X D'. The manifold

5/T, has a bundle & obtained from £ and « glued by # :P'xXS¥ —>
F(P*xSY). Since F is covered by the bundle map B:», —> £, by the
compatibility of s with F, there is a bundle map B’: ®*(v,|G(V?x S™))
— 7*(E| F(P*% S™)) which covers s: V2X S — P'X S, Let o be
the pull back of @ by the map s: VZx D* — P'X D", then we have a
bundle map B”:« —> o extending B’. Since H’(P'x DY, =, (SO)) is
zero, o (and hence ') is trivial. Since any bundle over VZx D is
trivial, we can take «’ as a normal bundle of V?Xx D'. Thus, B and B”
give a bundle map of v, to & which covers F': W/ — 3%/T.. Hence
F’ is a normal cobordism between f;: 3%/ T: —> 3%/ T..

Corollary 3. 4, The above construction of (T’,>""°) in Proposition
3.2 is independent of the choice of homotopy equivalences of (T, 2."°) onto
(a, S®).

Proof. Let f.:X/T—> P¥ (i=0,1) be a homotopy equivalence.
We can assume that these maps are of degree 1. Then, according to
Theorem I, [10], they are homotopic. If F:X/TXI—> P¥ is a
homotopy of these maps, then F is also of degree 1. Hence F is a
homotopy equivalence, and F determines a normal map. Then it follows
from Lemma 3. 3 that there is a normal cobordism W between (fo, 200/ T')
and (f}, >21/T). Since W has the homotopy type of 2/T X, W is an
h-cobordism between Y;/T, and /7). Hence they are diffeomorphic.

We may write p(7, 2®)=(T’, 22') and p(g)=g (see Proposition
3.2).

Proposition 3. 5. If (T, %) is a free involution on a homotopy
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sphere, then p(p(T, X))=(T, X0)).

Proof. Let H:S"™ —> 8™ be a diffeomorphism whose isotopy class
i_s the generator of #'*. Then & extends to a homotopy e_quivalence
h: D" —> D™ Decompose P into (P —int f(P'x D'*)U f(P'x D),

- id.

where f is the embedding introduced in the proof of Proposition 3. 2. Then
there is a homotopy equivalence f,: »/ T, —> P*® defined by id. on
PY¥—int f(P'X D) and f(idx%) on P'X D', Let o(T, 2)=(T1", X2,
and p(g): >/ T’ —> 3./ T.. Applying Proposition 3. 2 to the composition
f.,p(?g): 3V/T'— P¥, we can easily see that p(fap(é'))i /T —>
28/ Tey ie., plp(T, ZN=(T, ).

Proposition 3, 6. Let (T, 2"°) be as in Proposition 3. 5.

(1) p commutes with the action of 6*°, i.e., if we denote by p(3/T)
the quotient manifold of p(T, ), then p(T/T4#X)=p(Z/T)4X.

(2) let p(2) be the homotopy sphere of p(T, ). If LEbPis then
P(Z)ﬁbP 16-

Progf. (1) We can do the connected sum in 3}**/ T—int f” (M* X D™)
under the notations used in the proof of Proposition 3.2. Hence p(2/T#X)
=p(X/T)4Y’. (2) By Theorem V.3[9], 3/7T is normally cobordant
to a homotopy equivalence a:S'/T—> P¥. Applying the Pontrjagin-
Thom construction to the commutative diagram,

24

Sls Sls
ur’ . Uf  aipy=m,

M'— s

we obtain the commutative diagram :

(4

S5 — — , g5

Cr su Oy, -1

where «y;-, is introduced in the beginning of this section. Hence «
induces an isomorphism o : 7,5 (S™) ——> m5(S™) such that a*(ays_1)=cr.
The framed submanifold in S%, (M), ) =a*(S'(cy), §) determines a
nonzero element in IT,=m5(S'). Let 23} be the generator of ¢'. Then,
by construction, p, (21, (MY, F))=p(T, S¥). As was noted before
Proposition 3.2, P’p(7, S*°) is nonzero in s/]i5, i.e., p(S)&bPy,.
Since >./T is normally cobordant to S/ T, it follows by Lemma 3. 3 that
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p(Z/T) is normally cobordant to p(S*/T). Hence, p(Z)EbP.

The homotopy sphere 2.7 in Theorem 1.2 are elements of bP;,.
Using Propositions 3. 2 and 3. 6, we shall give examples of free involutions
whose homotopy spheres are not in 5P.

Theorem 3. 7. For each odd positive integer d, there exists a free
involution p(Te, TF). If we put p(Ty, T¥)=(Ts, 2'7), then (T, Z'7)
has the Brieskorn involution (T., 20F) as a desuspension and >)'S EbPi.

Proof. Since (T: 2¥) has the desuspensions (7, X1) D (T 258)
in Theorem 1. 2, we have a homotopy equivalence g: >¥/ T, —> P" such
that g {(P")=32%/T,; and g (P®*)=3¥/T. Let f:P'x D" —> PV
be the embedding as in the proof of Proposition 3.2. Then, from the
choice of the equivariant framing § defined in the beginning of this
section it follows that f(P'x D) is just the complement of the normal
bundle of P in P¥. Thus we have the following commutative diagrams
of maps;

sy —PE, s,
U = U

Y/ T T prgsy
U = U

=5/ T pw

Since 2 FEbPy, p(F)=2F isnot contained in bP;,.

According to the work of Kervaire-Milnor, we have a split exact
sequence of 6,

Pf
0—)bP15—)015:ZZ—)0,
where Z,=m,s/Jis. Denote by >.?° the generator on the Z,-summand,

P'(3ZF)=40. In the rest of this section, let (7, 2%) be a free involution
on a homotopy sphere in Theorem 1.2 and (T4, 204) its desuspension.

Lemma 3. 8. Let X1 be the generator of 6. Then X} acts freely
on the se¢ {23/ Ts dodd}, i.e., i/ To #2026/ Ta for arbitrary
dy, d..

Proof. I 34/T, is diffeomorphic to 3i/T, #21', then the sus-
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pension construction yields that 353/ T,, is diffeomorphic to Z’.‘,i/ T’.,l# pIg
for some >’&#°. Taking the two fold cover, we see that Z,‘.‘,f; is
diffeomorphic to ’,',51#22’. Thus by Theorem 3.7 we have 0=P'( ,‘,f))
=P/(Z'F)+2P (L)=P'(X')#0, which is a contradiction.

Lemma 3. 9. 2P acts freely on the set {37/ T, d odd}.

In advance of proving the lemma, we seek the specific geometry of the
desuspensions of (T, 28) (=0(Ts, Mi%). Recall that (T, Z2)=0(Ts, M)
in the proof of Theorem 1.2. We note that M}’ is 6-connected. The
generators of H,(M;") are taken to be a symplectic basis {a;, 8} (=1, -+,
(d—1)/2). Since 7(SO(7))=0, we can perform a surgery on the elements
a;’s. Let C' be a trace between M;' and a homotopy disk rel. boundary.
We put (7y, ViF)=(C®UC*"®), glued on (Ty, M}) equivariantly, where
C* isacopy of C. Next we perform a surgery on the elements 3’s to
yield a trace F'® between M,' and a homotopy disk E' rel. boundary.
Then it follows from the Mayer-Vietoris exact sequence that the manifold
(C®U F®) glued along M. is the 15-disk. i has the trivial normal
bundle in V¢, i.e., MS;XICV). If we add F'®XI to V¥XI along
(M;'xI)X1, then we have a trace X,° between V) and a homotopy disk
E™, where E"=(CUF)U(C*UF*) glued along E (see Figure 1). It
is easy to see that X, is 7-connected. Arranging XJ, we have a 7-con-
nected 16-manifold Y} whose boundary is a union of a homotopy disk DF
and V), glued along V) (see Figure 2).

DY

== \J
' - -
;5 f M.:" . 1 Eu
P G SIS - - -
4
! 7 15
, ) FBx]
4 7’
. .
- -

:‘ 15
16 4
¢

Figure 1 Figure 2

We put (7, W)=Y, UY}", glued on (T, V) equivariantly, where
Y: is a copy of Y. Then the manifold W¥ is T-connected, so WY cShP,;.
Since (7,, 6W5) has the desuspension (T, dVY), we see by Lemma 3.8
that oVy/Tu=3 '/ T.
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Decompose DY into DPPUKJY, where D;® is the disk with boundary
' and K} is an h-cobordism between S, and 33Y. Let Z¥ be any 7-
connected 16-manifold with boundary (VU EY) glued along XY, where
¥ is any homotopy disk with boundary 2. Then by the A-cobordism
theorem, there is a diffeomorphism #,: K¥ U E./ (glued along 3}') — DI
Since DYUE/ (glued along > ) bounds the 7-connected 16-manifold
(Y¥U ZY¥) glued along V¥, we see by Lemma 7[11] that #,|6(KPU E¥)
=yr,1Sy: Sit —> Si* is an element in #P,;.

Proof of Lemma 3.9. Suppose that there is a diffeomorphism f of

¥/ T, onto 253/ T,#%Z". In the two fold cover, there is the dif-
feomorphism f : Di —> D,',:5 induced from the covering diffeomorphism f
of f, where 0D;°=211. Decompose D;i5 into D35UK,'£15 as above. Then
we may assume that f : Kgy—> K;l is a diffeomorphism such that
f1S,=id. If we attach EZ to K;I via f: i, —> 2., then the mani-
fold (DFUK ,',‘15) U Effz bounds the 7-connected 16-manifold (YU Z.)
followed by f. Again, by the h-cobordism theorem, there is a dif-
feomorphism « : K; U EJ (glued by f)—> D¥ such that ¢|3(K o U E)
=®|So&bPs.  On the other hand, K, is obtained from S'XIUK,,
glued on the diffeomorphism a: S;' X1 — S} which represents 3.'°. Thus
@|S, is the composition of «a and the diffeomorphism of (K, M}J E;) (=S,)
onto S,, which is an element of #P,; by the argument before the proof of

Lemma 3.9. Hence, a which represents >'!° is contained in #P,;. This
yields a contradiction.

Corollary 3. 10. Let (Ty, 223°) be a free involution on a homotopy
sphere in Theorem 3. 7. Then, X° acts freely on the set {3.;°/T., d odd}.

Proof. Suppose that 23:°/ TJI#EFEZ&':/ T;. Then, by Theorem
3.1, F(Z,‘f;/ T.) #2.=p(Xi/T.). It follows by Proposition 3.6 that
o (X8 Ta)# 2:=p(X8/ T, #2,), and hence 20/ Ty $3,=33/T.,. This
contradicts Lemma 3. 9.

Theorem 3. 11. The set of double suspensions of the Brieskorn involu-
tions (T., 208) consists of exactly four distinct elements, modulo the action
of bPy, i.e., the quotient manifolds /T TF/Te4 XY, 327/ Ts and

‘13 / T,# Z!s'
d d N

Proof. Let (T, 2'°) be a double suspension of (7, X¥) and
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(T, 2)D(Ty, 228) a desuspension of (7,3.*®). Then the suspension
construction yields that (i) 2%/ T=31/T,or (ii) "/ T=21/ T4 1.
There follows that 33'°/ T is diffeomorphic to X%/ Tu#> or DVE/ T8>
for some Y'&60" according as (i) or (ii). Then by Lemma 3. 9 and Corol-
lary 3.10, X'/ T is diffeomorphic to one of the elements in the theorem,
modulo the action of bPi.

4. Application. First we determine the periodicity of the Brieskorn
involutions.

Proposition 4. 1. (1) If 23/ Te=3%/Tw, then d =+d’ mod 2.
@2 If 2/ Te=28/Ts, then d==+d mod 2%

Proof. From the discussion of the preceding section, the suspension
construction yields that > ¥/ T,=2 %%/ Ty #> for some >/'EbP,;.,.
The equivariant connected sum does not affect the spin invariant provided
3 bounds a spin manifold. Hence we conclude that a(T,, &) = a(T,,
S #%+3%). So by Theorem 1.2 we have d= *+d’ mod 2%*% This result
improves the earlier estimate for the spin invariants for the Brieskorn
involutions (see [8] p. 337).

The following corollary gives an answer to the question raised in [8,
p. 338] which is concerning with the classification of AS(P5).

Corollary 4. 2. Put I¥'=3%/T,

(1) AS(P®)= {11} d=1,3,5,7}, and MNi=T1’4p0 =<5y for each
odd d>>0.

(2) =28 = 38 for each odd d>0.

Proof. We note first that 2¥*' admits an orientation reversing
diffeomorphism. Since AS(P®)=[P® G/O0]=2Z, ([9]), (1) is obtained by
Proposition 4. 1. For (2), note that the number of distinct elements of the
set {2F/Ts, d>0} is at most 2° by the results on KO(P™) ([7]).

Let N/ be the Milnor sphere which is the boundary of the D*bundle
£...» over S* [6]. Taking the antipodal map on each fiber, we obtain a
smooth free involution a,: N7—> N.. In [6], it has been shown that
(an, Ni) has a double suspension. Let (ay, N;) be its 5-dimensional
desuspension. We correct here the assertion of these desuspensions [12].

Proposition 4. 3. (1) (ay, Ni) has (To-y, 25n-1) as a S-dimensional
desuspension, i.e., (an, NP)=(Tpn-1, 25:-1).
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(2) (TZh‘H) Z;IH-]) = (ah?l; N)Z'H) ﬁ 2;” u)here Zl’! is determined by

w(20) = ([(h+1)/2] — h(h—1)/2)/2. Hence T is DIFFexotic if d=3,5
mod 8.

Proof. Let E,,_. be the bundle induced from the map f,,~,» and
the antipodal map on the fiber, «,|N/=a,, then (a,, Ni) bounds the spin
manifold («;, E(§..1-»). Obviously, Fix (as, E(§..-.)) is the zero section
S*. Since the Pontrjagin class P,(£,;-.) is *=2(2h—1):, by definition [2]
we have a(a,, Ni)=+(2h—1) mod 2'. Suppose (an, N)=(T, 33 for
some d. As in the proof of Proposition 4. 1, we can see 2h—1=3d mod
2'. We are free to take d within {+d mod 2'}. So, in particular our
assertion follows by taking d=2k—1. Since (Tonsy, 2omne1) and (aneq, Nivy)
have the same characteristic submanifold (Tu.;, Doss+1), We obtain the
required diffeomorphism by the construction of suspensions. The rest of
proposition follows from the fact that 28u(N/)=h(h—1)/2. If h=2,3
mod 4, then 28x(Nj) is odd, and so its desuspension I1i(d=2k—1) is
DIFF-exotic if d=3, 5 mod 8.

Under the above situation, if we pattern after the argument of the
assertion in [12], we can construct an equivariant diffeomorphism i:
(@, Ni) —> (Bu-r, IM;-) (=(T—y, 235:-1)) actually for each A.
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