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ON THE EULER-POINCARE CHARACTERISTIC OF
6-DIMENSIONAL HARMONIC MANIFOLDS

MasaNOR1 KOZAKI

1. Introduction. An analytic Riemannian manifold M is said to be
harmonic at a point m of M, if Js is a function of s only, where
. denotes the Laplacian of M and s the geodesic distance from m to the
point in a normal neighborhood of m. If M is harmonic at any point,
M 1is said to be harmonic. For a harmonic manifold, it is known that
A2 =f(2) is a function of £ only and does not depend on the reference
point m, where 2: =s?/2. Then f(2) is called the characteristic
function of M.

The purpose of this note is to estimate the Euler-Poincaré characteristic
X(M) of a 6-dimensional compact harmonic Riemannian manifold M in
terms of some curvature tensors and the volume volM of M. We denote
by R=(Ri)"”, p=(Rjw) =(R;) and © the Riemannian curvature
tensor, the Ricci tensor and the scalar curvature, respectively. The results
are stated as follows :

Theorem 1. Let M be a 6-dimensional compact orientable harmonic
Riemannian manifold, and f the characteristic function of M. Then the
Sollowing inequality holds

(M) < — 24 g’il M 550y + 825(0)f(0) + 140£(0)),

and the equality holds if and only if M is locally symmetric.

Theorem 2. Let M be a 6-dimensional compact harmonic Kaehler
manifold.

(1) If ©=0, then M is of constant holomorphic sectional curva-
ture. .

(2) If =0, then X(M)=0.

(3) If ©<<O0, thenthe following'inequalt’ty holds

.
>z vol M
X(M) = 12-384 7%’

1) We follow the definition of the Riemannian curvature tensor in {11}, which is different
from that of [2] and [9] in sign.
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and the equality holds if and only if M is of constant holomorphic sectional
curvature,

Our theorems are related to the conjecture that any harmonic Rieman-
nian manifold is locally symmetric (see [2], [8]).

Example. Let S° be a 6-dimensional sphere with constant sectional
curvature k, and PC*® a 6-dimensional complex projective space with
constant holomorphic sectional curvature %k. Then the characteristic
function of S® and PC? are respectively given by f(2) =1 + 5V2rQ
cotV/2kQ and f(@) =1+ 5lcotl —Itanl, where !/:= vV Eks/2 ([8],
[10], [12] and also §4). By a straightforward calculation, we obtain the
extremal case in Theorem 1.

2. Proof of Theorem 1. By the harmonicity of M, M is Einstein
and the following equalities hold ([2], [8], [11]):

2.1) = —9£(0), |RI*>= —9{f(0)* + 20£(0)},

2.2) 27|FR|z — %rﬁ — 247| R|? + 1128 — 327 = 1512007 (0),

Where VR: :(Rj'kl,h), ﬁ: - RijklRuukazup, T: = RU“R@'MI;U Rjutv and | ¢ I
denotes the norm. By making use of 4| R|?* =0 and the well-known
Lichnerowicz formula, we have

(. 3) IVR|2+%7|R|2+;9+47‘=0.

In the proofs of our theorems, we shall use the following expression
for Gauss-Bonnet theorem ({9]).

Lemma 1. Let M be a 6-dimensional compact orientable Riemannian
manifold. Then
—_ .—1_. 3 __ T 2 12 Jipk i
ne D= mi [, = 12¢lpl*+ 35| RI* + 16R/R R,
— 24R*R" Riju — 24R™ R,ju R* + 87 — 48} dM,

where dM denotes the volume element of M.

Since M is Einstein, (2. 4) takes the following form

(2. 5) x(M)=L§ {f—r|R|2+sz-—4ﬂ}dM
: 3843w LO :

Eliminating 8, 7 from (2.2), (2.3) and (2.5), we have
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20-384 = X( M) — Su{%rs 164, | R1? - 151200/ (0) } ans
@0 = —s{ IPRPam.
Frém (2. 1) and (2. 6) we have
(M) + Gt S (5£(0) + 82F(0)£(0) + 140£(0)) d

4-3847:“' SM“’R' aM,

whence it follows Theorem 1.
3. Proof of Theorem 2. Let M be a 2n-dimensional compact

Kaehler manifold, and #', ---, 8" a local field of unitary frames. The
Chern form 7. of M is given by

b : ol ol
T 2V = l)kk'z"’l s G N N 2y,
where 2;:= — X R;30" A 0°. Let 4 be the operator of the interior
product by the fundamental 2-form o = u 20N O°. Then, after

calculations, we obtain the following

;"'37‘1 /\ Tz =

62”3 {©*—8z|p|2+ 7| RI* + 16 R Rs Rz

@D — 325 R Re Ry — 645 Riz R R%3).

In particular, if M is Einstein, then we have

e - n—3 __ 3(11—‘1)! S 2 n+1
(3.2) SM AT N = 3840+ 1) =(z + A) dM, where

A:=|R|?—2%/n(n+1). Thecase =3 in (3. 2) is given by

vl M _ 1 ( s T
(3.3) e [M] 53807 — 3847 g”r | R) E) dM, where

Ci1Cy [M] V= SJ{TI /\ Tz-
In order to prove Theorem 2, we use the following

Lemma 2 ([4], [7]). Let M be a 2n-dimensional compact Kaehler
manifold. Then the inequality A=0 holds and the equality holds if and
only if M is of constant holomorphic sectional curvature.
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By (3. 2) and Lemma 2 we have

Lemma 3. Let M be a 2n-dimensional compact Einstein Kaehler
manifold. If t>0(r<<C0), then 384 z°n (n+1) 5 TiAT N0 =3(n—-1)!
M

vol M=0 (< 0) and the equality holds if and only if M is of constant
holomor phic sectional curvature.

Remark. For the case =3 in Lemma 3, putting a(M): =
cic. [ M]/24, we obtain a generalization of Proposition 2 in [7]. The
arithmetic genus of M is defined by a(M):=1— A"+ K> — 1*’, where
h*" denotes the dimension of the space of holomorphic p-forms of M. If
>0, then M is algebraic (Kodaira-Spencer, see [5]), and consequently
a(M) = ¢,c,{ M]/24 (Riemann-Roch-Hirzebruch, see [5]).

Proof of Theorem 2. Let M be a 6-dimensional compact harmonic
Kaehler manifold. Then the equality 47 — 28 = — 45¢£(0) holds ([11]).
Making use of this equality and (2. 5), we obtain

1 2 2
2.384 7% Sﬂl T(? — Rl )dM
From (3. 3) and (3. 4) we have

rSVOIM}_ Svol M
48.3847° |~ 12.384x° X(M).

(3.4) X(M) =

(3.5) 12[a(M) -

Now, from the above remark and (3.5) we obtain the assertion (3) of
Theorem 2. The assertion (2) is obvious.

Finally, we prove the assertion (1). Assume z>0. As M is
Einstein, (i) M is simply connected ([6]), and (ii) a¢(M) = 1 because
of #"°=0 for 1 <p=<3 ([13]). By (i) and the harmonicity of M, for
every point p in M, all geodesics starting from p are simply closed and
of the same length, and consequently X(M)=4 ([1], [2]). By a(M)=1,
X(M) = 4 and (3.5), we have

Zvol M

a(M) = 15284 -

Therefore, again by the above remark, M is of constant holomorphic
sectional curvature.

4. Appendix. In this section we calculate the characteristic functions
of compact symmetric spaces of rank one. Let A be an #s-dimensional
Riemannian manifold (#=2), and m a point of M. We denote by s
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the geodesic distance from m to the point in a normal neighborhood of .
Let (s, u):= (s, u,, ---, u.) be a system of geodesic polar coordinates at m.
Then the Riemannian metric is given by the form (g;), g; = ¢ Fix
§>0, and put 7(¢): = exp.(t#). We take linearly independent vectors
A,, -+, A, on the tangent space to M at m orthogonal to # such that
Y. ()= (expm) « ¢A) (i =2, ---, n) are Jacobi fields along the geodesic
7 and Y,(s), -, Y.(s) are orthonormal. Put

Ou): =Y, @O\ - AY. @OV /"7 A A - NA,| and g(s, u) : = det(g;)).
Then we have the following equalities ([3]):

D SN er s S o
ds = _\/m‘) aslg(s, u) =% +

s = 2 <Y Y.
Using the well-known Jacobi fields of compact symmetric spaces of rank
one (see, for instance [2]) and the formula mentioned above, we obtain
the following equalities :

1. The sphere S”(with constant sectional curvature k):

f(@)=1+2(m—1)! cot 2/, where I:= Vks/2.

2. The complex projective space PC"(with constant holomorphic
sectional curvature k):

f@=1+@n—1)! cot / —1 tan /.

3. The quaternion projective space PQ" (with maximal sectional
curvature k):

F@ =1+ 4n—1)! cot ! — 3/ tan /.

4, The Cayley projective plane PC: (with maximal sectional curva-
ture k):

f{(Q) =1+ 15l cot I — 7] tan I.
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