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NUMERICAL INVESTIGATIONS OF Ci-NUMBERS

MASATAKA YORINAGA

Let » be a C,-number, i.e. an integer such that #>%>0 and the
congruence

FA— (mod #)

is satisfied for any postitive integer @ relatively prime to 7.

In the previous note [2], we investigated the distribution of C,-numbers
for 1<k<60 up to #=<4-10" and observed some distinguished features
of it.

The present note is a report of our subsequent experiments on C,.-
numbers. This time, by applying one more results due to W. Knédel as
a sieve, we found an effective method of computing C.-numbers in the
definite range of %2 In the sequel, we have executed for 1<k <60
examining C,-numbers up to the bound 10°, with reflections on the results
obtained.

All of the computation of our experiments was accomplished by making
use of a computer HITAC 20 in the Department of Mathematics, Okayama
University.

1. Method. In principle, the computing method of the present
experiments is the same with the previous one, namely we have based on
the following.

Theorem 1 (W.Kniodel [1]). A positive integer n is a Ci-number if
and only if n>k>0 and n—k is divisible by ,(n), where i(n) is the
Carmichael function.

In the previous experiments, we attempted to investigate also the
distribution of the sums of the Carmichael function i(#), so that we had
to factorize a series of consecutive integers completely. Because of this
affair, we were obliged to waste the long computing time.

In the present experiments, we have devoted ourselves to computing
the Cynumbers for each & with 1<k=<60 up to the bound N as much
large as possible. To this end, we shall take advantage of the following
theorem as a sieve.

Theorem 2 (W.Knodel [1]). Let n be a C-number and let
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n= I_]o b and k= _I_Iopiki

be the canonical factorizations of n and k respectively, where p,=2.
Then, the following relations are satisfied.

1) aZk+1 for i =1,
(2) co=ky+ 2 for kg =1,
(3) eco=F for ko= 0.
Especially, when (n,k)=1, then n is an odd square-free integer.

In actual processes, we may run on the scope of the Eratosthenes’
sieve for each of a prime number p; and its powers not exceeding the
bound which is determined by the restriction 1<k<60, in view of the
conditions (1), (2) and (3) of Theorem 2.

2. Results and Considerations. Our results are summerized in
Tables I and II below.

Table I is the table of z(k N) for 1<%k=<60 and N=10°, where
z(k, N) designates the number of C.-numbers not exceeding N.

In Table II, we have tabulated the quotient Q(k, N)=*kz(k, N)/z(1, N)
for various bounds N. As is seen from the Table II, for each %, this
quotient Q(k, N) shows an inclination of converging to some stationary
value depending on k.

In the following, we shall describle some of our observations on the
dependence of this quotient Q(k, N) on k.

Let p denote a prime number such that p>%. A Cy-number will be
said to be of the first kind if it has the form kp, and otherwise of the
second kind. Evidently, the prime numbers are C,-numbers of the first
kind and the C,-numbers of the second kind are the Carmichael numbers.
On the numerical evidence we are convinced that the C,-numbers of the
first kind may take the principal part in the distribution of C,-numbers.

For examples, in the case of 2=2, an integer of the form 2p with
p odd prime is always a C,-number, since 2(2p)=p —1 divides 2p —2,
and therefore the asymptotic relation

2z(2, N) ~ z(1, N) (N — o0)

will probably be true. We believe that our experiments support this
relation.

For the cases where £ =3 and %2 =4, the aspects are the same as in
the case of k=2,
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For the case of k2 =25,

p—1 if p =1 (mod 4),
2(p—1) if p =3 (mod 4).
Therefore, 4(5p) divides 5p—5 only for the case of p=1 (mod 4). Since
the prime numbers are distributed with ejual density 1/2 in the arithmetic

progressions p=1 (mod 4) and p=3 (mod 4), we may expect that the
asymptotic relation

i(5p) =LCM (4,p—1) = {

52(5, N) ~ é 2(1,N) (N — oo)

will hold true. This assertion can also be infered from our experiments.
In general, let p be a prime number such that p=7 (mod 1(k)),
where 2(k) and 7 are naturally coprime. In this case, since

1kp) =LCM (), p—1) = £ &L (5 1),

where d=(1(k),r—1), and an integer of the form kp is a C,number of
the first kind, when and only when /(k)/d divides k.. Hence, if ¢ denotes
the number of », 0=<r<{i(k), such that % is divisible by i(%)/d, then,
we may consider that the asymptotic relation

kz(k, N)/z(1, N)~t/$((k)) (N — o)

takes place.
For example, in the case of k=25, we have i(k)=20, &(. (k) =38,
and so:

7 1 3 7 9 11 13 17 19
r—1= 2 8 10 12 16 18
d = 20 2 2 4 2 4 4 2
ik)/d= 1 10 10 5 10 5 5 10

My 0 x x O x O 0O x

Thus, we have t=4 and #/¢(1(k)) =4/8=0.5. This value is approx-
imately in conformity with our result Q(25, 10°) = 0. 5993.
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The number of Ci-numbers up to N=10°,

Table I.
k ‘ z(k, N)
1 | 50848180
2 26357120
3 | 17957072
4 13681572
5 5540534
6 9330155
7 4033324
8 7113135
9 6366010
10 5764476
11 1317454
12 4857438
13 1125712
14 2100739
15 1970139
16 3705342
17 437556
18 3318133
19 525552
20 3006019
21 2870101
22 687628
23 263761
24 2535080
25 1218975
26 1174347
217 2267369
28 1097846
29 176921
30 2057293

k z(k, N)
31 249093
32 1934928
33 470869
34 456892
35 446554
36 1736112
37 140996
38 274943
39 804036
40 1572544
41 96153
42 1501470
43 122450
44 360474
45 706897
46 138287
47 61818
48 1328168
49 648940
50 1274299
51 157382
52 615325
53 50621
54 1188158
55 583506
56 576661
57 563483
58 185310
59 39458
60 1081459
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Table II. The Quotients @(k, N).

I 107 10° 10° £/6 (1 (k)
LN

1 1.0000 1.0000 1.0000 —
2 1.0493 1.0419 1.0366 1.0000
3 1.0806 1.0682 1.0594 1.0000
4 1.1042 1.0877 1.0762 1.0000
5 0.5617 0.5517 0.5448 0.5000
6 1.1407 1.1169 1.1009 1.0000
7 0.5760 0.5639 0.5552 0.5000
8 1.1678 1.1385 1.1191 1.0000
9 1.1738 1.1474 1.1267 1.0000
10 1.1883 1.1558 1.1336 1.0000
11 0.2995 0.2908 0.2850 0.2500
12 1.2161 1.1722 1.1463 1.0000
13 0.3031 0.2941 0.2878 0.2500
14 0.6144 0.5922 0.5783 0.5000
15 0.6239 0.5965 0.5811 0.5000
16 1.2448 1.1954 1.1659 1.0000
17 0.1564 0.1501 0.1462 0.1250
18 1.2626 1.2070 1.1746 1.0000
19 0.2101 0.2016 0.1963 0.1666
20 1.2954 1.2168 1.1823 1.0000
21 1.2719 1.2186 1.1853 1.0000
22 0.3231 0.3065 0.2975 0.2500
23 0.1304 0.1231 0.1193 0.1000
24 1.3116 1.2368 1.1965 1.0000
25 0.6491 0.6180 0.5993 0.5000
26 0.6482 0.6188 0.6004 0.5000
27 1.3056 1.2423 1.2039 1.0000
28 0.6713 0.6272 0.6045 0.5000
29 0.1116 0.1046 0.1009 0.0833
30 1.3399 1.2584 1.2137 1.0000
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Table II. The Quotients Q(k, N).

\k< 107 108 10° t/o(1(k)
31 0.1666 0.1572 0.1518 0.1250
32 1.3400 1.2614 1.2176 1.0000
33 0.3412 0.3179 0.3055 0.2500
34 0.3351 0.3163 0.3055 0.2500
35 0.3479 0.3213 0.3073 0.2500
36 1.3913 1.2818 1.2291 1.0000
37 0.1162 0.1071 0.1025 0.0833
38 0.2317 0.2144 0.2054 0.1666
39 0.6833 0.6407 0.6166 0.5000
40 1.3961 1.2901 1.2370 1.0000
41 0.0898 0.0812 0.0775 0.0625
42 1.3860 1.2920 1.2401 1.0000
43 0.1166 0.1081 0.1035 0.0833
44 0.3615 0.3279 0.3119 0.2500
45 0.7311 0.6589 0.6255 0.5000
46 0.1483 0.1322 0.1251 0.1000
47 0.0690 0.0607 0.0571 0.0454
48 1.4562 1.3179 1.2537 1.0000
49 0.6932 0.6504 0.6253 0.5000
50 1.3971 1.3053 1.2530 1.0000
51 0.1878 0.1674 0.1578 0.1250
52 0.7197 0.6589 0.6292 0.5000
53 0.0660 0.0560 0.0527 0.0416
54 1.4476 1.3227 1.2618 1.0000
55 0.7105 0.6593 0.6311 0.5000
56 0.7553 0.6720 0.6350 0.5000
57 0.7035 0.6586 0.6316 0.5000
58 0.2462 0.2223 0.2113 0.1666
59 0.0595 0.0495 0.0457 0.0357
60 1.5343 1.3543 1.2761 1.0000
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