ERGODIC THEOREMS FOR d-PARAMETER SEMIGROUPS OF DUNFORD-SCHWARTZ OPERATORS

RYOTARO SATO

1. Introduction. Let $\Gamma = \{T(t_1, \cdots, t_d); t_1, \cdots, t_d > 0\}$ be a strongly continuous d-parameter semigroup of Dunford-Schwartz operators on $L_1(\Omega) = L_1(\Omega, \mathcal{F}, \mu)$, where $(\Omega, \mathcal{F}, \mu)$ is a σ -finite measure space. In this paper Γ will be extended to a semigroup of linear operators on the class $L_1(\Omega) + L_{\infty}(\Omega)$ of all functions f of the form f = g + h, with $g \in L_1(\Omega)$ and $h \in L_{\infty}(\Omega)$, so that $\|T(t_1, \cdots, t_d)\|_p \le 1$ for every $1 \le p \le \infty$ and also so that $\lim_n T(t_1, \cdots, t_d)f_n = T(t_1, \cdots, t_d)f$ almost everywhere on Ω whenever $f_n \in L_{\infty}(\Omega)$, $\sup_n \|f_n\|_{\infty} < \infty$ and $\lim_n f_n = f$ almost everywhere on Ω . Then for every $f \in L_1(\Omega) + L_{\infty}(\Omega)$ the averages

$$A(\alpha_1, \dots, \alpha_d)f = \frac{1}{\alpha_1 \dots \alpha_d} \int_0^{\alpha_1} \dots \int_0^{\alpha_d} T(t_1, \dots, t_d) f dt_1 \dots dt_d$$

are well-defined, and now it would be interesting to ask the following questions: For what functions f does the almost everywhere convergence of the averages $A(\alpha_1, \dots, \alpha_d)f$ hold as $\alpha_1 \longrightarrow 0, \dots, \alpha_d \longrightarrow 0$ independently? For what functions f does the almost everywhere convergence of the averages $A(\alpha_1, \dots, \alpha_d)f$ hold as $\alpha_1 \longrightarrow \infty, \dots, \alpha_d \longrightarrow \infty$ independently?

It will be proved below that if $f \in L_1(Q) + L_{\infty}(Q)$ satisfies

$$\int_{\{|f|>t\}} \frac{|f|}{t} \left[\log \frac{|f|}{t} \right]^{d-1} d\mu < \infty$$

for every t > 0, then the averages $A(\alpha_1, \dots, \alpha_d)f$ converge almost everywhere on Ω as $\alpha_1 \longrightarrow 0, \dots, \alpha_d \longrightarrow 0$ independently, and also the averages $A(\alpha_1, \dots, \alpha_d)f$ converge almost everywhere on Ω as $\alpha_1 \longrightarrow \infty, \dots, \alpha_d \longrightarrow \infty$ independently. This may be considered to be an extension of Terrell's local ergodic theorem [10] and Dunford-Schwartz's ergodic theorem [2].

The method of proof chiefly depends upon a weak type maximal inequality similar to Fava's [4].

2. Preliminaries. Let $(\mathcal{Q}, \mathcal{F}, \mu)$ be a σ -finite measure space and let $L_p(\mathcal{Q}) = L_p(\mathcal{Q}, \mathcal{F}, \mu)$, $1 \leq p \leq \infty$, be the usual Banach spaces of real or complex functions on $(\mathcal{Q}, \mathcal{F}, \mu)$. A Dunford-Schwartz operator T on $L_1(\mathcal{Q})$

is a linear contraction on $L_1(\mathcal{Q})$ (i. e. $||T||_1 \leq 1$) such that for every $f \in L_1(\mathcal{Q}) \cap L_{\infty}(\mathcal{Q})$

$$||Tf||_{\infty} \leq ||f||_{\infty}$$
.

It is well-known that a Dunford-Schwartz operator T on $L_1(\Omega)$ satisfies

$$||Tf||_p \leq ||f||_p$$

for all $f \in L_1(\Omega) \cap L_p(\Omega)$, with 1 . By this, <math>T can be uniquely extended to a linear contraction on each $L_p(\Omega)$, with $1 . Furthermore it can be extended to a linear contraction on <math>L_{\infty}(\Omega)$ as follows. If $0 \le f \in L_{\infty}(\Omega)$, choose $f_n \in L_1(\Omega)$ so that $0 \le f_n \le f_{n+1} \le f$ and $\lim_n f_n = f$ almost everywhere (a. e.) on Ω . Then for n > m we have

$$|Tf_n - Tf_m| \le \tau(f_n - f_m) \le (\lim_k \tau f_k) - \tau f_m$$
 a.e. on Ω

where τ denotes the linear modulus of T in the sense of Chacon-Krengel [1]. (Thus τ is a positive Dunford-Schwartz operator on $L_1(\Omega)$ such that

$$\tau g = \sup \{ |Th| : h \in L_1(\Omega), |h| \leq g \text{ a. e. on } \Omega \}$$

for any $0 \le g \in L_1(\Omega)$.) On the other hand, if $0 \le u \in L_1(\Omega) \cap L_{\infty}(\Omega)$ and 0 < u a. e. on Ω , then it may be readily seen that $0 \le \tau^* \ u \in L_1(\Omega)$ and $\|\tau^* u\|_1 \le \|u\|_1$, where τ^* denotes the adjoint operator of τ , acting on $L_{\infty}(\Omega) = L_1(\Omega)^*$. Thus, putting

$$g_m = (\lim_k \tau f_k) - \tau f_m$$
 a. e. on Ω ,

we have, by Lebesgue's dominated convergence theorem,

$$\int g_m u \ d\mu = \int (\lim_k f_k) \tau^* u \ d\mu - \int f_m \tau^* u \ d\mu \longrightarrow 0$$

as $m \longrightarrow \infty$. Since u > 0 a. e. on Ω and $g_m \ge g_{m+1} \ge 0$ a. e. on Ω , this proves that $\lim_{m} g_m = 0$ a. e. on Ω , and hence for almost all $\omega \in \Omega$ the sequence $Tf_n(\omega)$, $n = 1, 2, \dots$, is a Cauchy sequence. Therefore it is possible to define

$$Tf(\omega) = \lim_{n} Tf_{n}(\omega)$$
 a. e. on Ω .

It is now a routine matter to check that this definition of Tf does not depend upon the particular choice of such a sequence (f_n) in $L_1(\mathcal{Q})$, and so by linearity T can be extended to a linear operator on $L_{\infty}(\mathcal{Q})$. From the definition of T on $L_{\infty}(\mathcal{Q})$, it follows that $||T||_{\infty} \leq 1$ and that if $f_n \in L_{\infty}(\mathcal{Q})$, $n=1,2,\cdots$, is a sequence satisfying $\sup_n ||f_n||_{\infty} < \infty$ and $\lim_n f_n = f$ a. e. on \mathcal{Q} for some $f \in L_{\infty}(\mathcal{Q})$, then

$$Tf = \lim_{n} Tf_{n}$$
 a. e. on Ω .

The above discussion ensures that we may and will assume, throughout this paper, that a Dunford-Schwartz operator T is a linear operator on the class $L_1(\Omega) + L_{\infty}(\Omega)$ such that $||T||_p \leq 1$ on each $L_p(\Omega)$ with $1 \leq p \leq \infty$ and also such that

$$Tf = \lim_{n \to \infty} Tf_n$$
 a. e. on Ω

whenever $f_n \in L_{\infty}(\Omega)$, sup $\{\|f_n\|_{\infty} : n \ge 1\} < \infty$ and $f = \lim_{n} f_n$ a. e. on Ω .

Let us now consider a d-parameter semigroup $\Gamma = \{T(t_1, \dots, t_d) ; t_1, \dots, t_d > 0\}$ of Dunford-Schwartz operators on $L_1(\mathcal{Q}) + L_{\infty}(\mathcal{Q}), d \geq 1$ being a fixed integer. Thus each $T(t_1, \dots, t_d)$ is a Dunford-Schwartz operator on $L_1(\mathcal{Q}) + L_{\infty}(\mathcal{Q}),$ and Γ satisfies

$$T(t_1, \dots, t_d)T(s_1, \dots, s_d) = T(t_1 + s_1, \dots, t_d + s_d).$$

Throughout this paper we shall assume that Γ is strongly continuous with respect to the norm topology of $L_1(\Omega)$, i. e. for each $f \in L_1(\Omega)$ the function $T(t_1, \dots, t_d) f$ of $(t_1, \dots, t_d) \in \mathbb{R}^d_+$, where $\mathbb{R}^d_+ = \{(t_1, \dots, t_d) : t_1, \dots, t_d\}$ > 0, is continuous with respect to the norm topology of $L_1(\Omega)$. It then follows from an approximation argument that Γ is strongly continuous with respect to the norm topology of each $L_p(Q)$ with $1 \le p < \infty$, and that for each $f \in L_p(\Omega)$ with $1 \le p < \infty$ there exists a scalar function $g(t_1, \dots, t_d, \omega)$, defined on $R^d_+ \times \Omega$ and measurable with respect to the product of the Lebesgue measurable subsets of R_+^d and \mathcal{F} , such that for each fixed $(t_1, \dots, t_d) \in R_+^d$, $g(t_1,\,\cdots,t_d,\,\omega)$ as a function of $\omega\!\in\!\mathcal{Q}$ belongs to the equivalence class of $T(t_1, \dots, t_d) f \in L_p(\Omega)$. Therefore, in the sequel, $g(t_1, \dots, t_d, \omega)$ will be denoted by $T(t_1, \dots, t_d) f(\omega)$. It then follows from Fubini's theorem that there exists a μ -null set E(f), dependent on f but independent of (t_1, \dots, t_d) , such that for each fixed $\omega \notin E(f)$, $T(t_1, \dots, t_d) f(\omega)$ as a function of $(t_1, \dots, t_d) f(\omega)$ $(\alpha_1, \beta_1) \in \mathbb{R}^d$ is Lebesgue integrable over every finite interval $(\alpha_1, \beta_1) \times \cdots \times (\alpha_d, \beta_d)$ β_d) $\subset R^d$ with respect to the Lebesgue measure, and the integral

$$\int_{a_1}^{\beta_1} \cdots \int_{a_d}^{\beta_d} T(t_1, \dots, t_d) f(\omega) dt_1 \cdots dt_d \quad (\omega \not\in E(f))$$

as a function of $\omega \in \mathcal{Q}$ belongs to the equivalence class of the Bochner integral

$$\int_{a_1}^{\beta_1} \cdots \int_{a_d}^{\beta_d} T(t_1, \, \cdots, t_d) f \, dt_1 \cdots dt_d \quad (\subseteq L_p(\Omega)).$$

Next we will observe that a similar situation holds for $f \in L_{\infty}(Q)$. In fact, let (f_n) be a sequence in $L_1(Q)$ such that $|f_n| \leq |f|$ and $\lim f_n = f$ a. e.

on Ω . Then for every $(t_1, \dots, t_d) \in \mathbb{R}^d$

$$T(t_1, \dots, t_d) f = \lim_{n \to \infty} T(t_1, \dots, t_d) f_n$$
 a.e. on Q ,

and hence by Fubini's theorem we may define

$$g(t_1, \dots, t_d, \omega) = \lim_n T(\mathbf{t}_1, \dots, t_d) f_n(\omega)$$

for almost all $(t_1, \dots, t_d, \omega) \in R_+^d \times \mathcal{Q}$ with respect to the product of the Lebesgue measure and μ . Since, for each fixed $(t_1, \dots, t_d) \in R_+^d$, $g(t_1, \dots, t_d, \omega)$ as a function of $\omega \in \mathcal{Q}$ belongs to the equivalence class of $T(t_1, \dots, t_d)f \in L_{\infty}(\mathcal{Q})$, $g(t_1, \dots, t_d, \omega)$ will be again denoted by $T(t_1, \dots, t_d)f(\omega)$. It then follows from Fubini's theorem that there exists a μ -null set E(f), dependent on f but independent of (t_1, \dots, t_d) , such that for each fixed $\omega \notin E(f)$, $T(t_1, \dots, t_d)f(\omega)$ as a function of $(t_1, \dots, t_d) \in R_+^d$ is Lebesgue integrable over every finite interval $(\alpha_1, \beta_1) \times \dots \times (\alpha_d, \beta_d) \subset R_+^d$, and the integral

$$\int_{a_1}^{b_1} \cdots \int_{a_d}^{b_d} T(t_1, \, \cdots, t_d) f(\omega) \, dt_1 \cdots dt_d \quad (\omega \notin E(f))$$

as a function of $\omega \in \Omega$ belongs to $L_{\infty}(\Omega)$ and satisfies

$$<\int_{a_1}^{eta_1}\cdots\int_{a_d}^{eta_d}T(t_1,\,\cdots,t_d)f(\omega)\;dt_1\cdots dt_d,\;\;u(\omega)> \ =\int_{a_1}^{eta_1}\cdots\int_{a_d}^{eta_d}< f,\;\;T(t_1,\,\cdots,t_d)^*u>dt_1\cdots dt_d$$

for all $u \in L_1(\Omega) \cap L_{\infty}(\Omega)$ (where we let $\langle f, u \rangle = \int_{\Omega} f u \, d\mu$) and hence for all $u \in L_1(\Omega)$, because the adjoint semigroup $\Gamma^* = \{T(t_1, \dots, t_d)^*; t_1, \dots, t_d > 0\}$ may be regarded as a semigroup of Dunford-Schwartz operators on $L_1(\Omega) + L_{\infty}(\Omega)$ which is strongly continuous with respect to the norm topology of $L_1(\Omega)$.

Now let f be in the class $L_1(\mathcal{Q}) + L_{\infty}(\mathcal{Q})$ and write f = g + h with $g \in L_1(\mathcal{Q})$ and $h \in L_{\infty}(\mathcal{Q})$. Then we may define the integral

$$\int_{a_1}^{\beta_1} \cdots \int_{a_d}^{\beta_d} T(t_1, \, \cdots, t_d) f \, dt_1 \cdots dt_d \quad (\subseteq L_1(\mathcal{Q}) + L_{\infty}(\mathcal{Q}))$$

over the finite interval $(\alpha_1, \beta_1) \times \cdots \times (\alpha_d, \beta_d) \subset \mathbb{R}^d_+$ to be the function

$$\begin{split} &(\int_{a_1}^{\beta_1} \cdots \int_{a_d}^{\beta_d} T(t_1, \, \cdots, t_d) f \, dt_1 \cdots dt_d) \, (\omega) \\ &= \int_{a_1}^{\beta_1} \cdots \int_{a_d}^{\beta_d} T(t_1, \, \cdots, t_d) g(\omega) \, dt_1 \cdots dt_d \\ &+ \int_{a_1}^{\beta_1} \cdots \int_{a_d}^{\beta_d} T(t_1, \, \cdots, t_d) h(\omega) \, dt_1 \cdots dt_d \quad \text{a. e. on } \Omega. \end{split}$$

It is clear that this definition of the integral does not depend upon the particular choice of such a decomposition f=g+h, and we have the relation

$$<\int_{u_1}^{\hat{
ho}_1} \cdots \int_{a_d}^{\hat{
ho}_d} T(t_1, \dots, t_d) f dt_1 \cdots dt_d, u>$$

$$= \int_{u_1}^{\hat{
ho}_1} \cdots \int_{a_d}^{\hat{
ho}_d} < T(t_1, \dots, t_d) f, u> dt_1 \cdots dt_d$$

for all $u \in L_1(\Omega) \cap L_{\infty}(\Omega)$.

- 3. Maximal operators and inequalities. We will call an operator M, which maps functions in $L_1(\Omega) + L_{\infty}(\Omega)$ into measurable functions on (Ω, \mathcal{F}) , a maximal operator if it satisfies:
- (a) $|M(f+g)| \le |Mf| + |Mg|$ and |M(cf)| = |c| |Mf| a. e. on \mathcal{Q} where c is a constant;
- (b) There exists a constant A>0 such that for every $f\in L_1(\mathcal{Q})+L_\infty(\mathcal{Q})$ and all $\lambda>0$

$$||Mf||_{\infty} \leq A||f||_{\infty}$$
 and $\mu\{|Mf| > \lambda\} \leq \frac{A}{\lambda}||f||_{1}$.

Lemma 1. If M is a maximal operator on $L_1(\Omega) + L_{\infty}(\Omega)$ then for every $f \in L_1(\Omega) + L_{\infty}(\Omega)$ and all t > 0

$$\mu\{|Mf|>(A+1)t\} \leq \frac{A}{t} \int_{\{|f|>t\}} |f| d\mu.$$

Proof. Putting $f'(\omega) = f(\omega) 1_{\{|f| > t\}}(\omega)$ and $f_t(\omega) = f(\omega) - f'(\omega)$, we have $||f_t||_{\infty} \le t$ and

$$|Mf| \leq |M(f')| + |M(f_i)| \leq |M(f')| + At.$$

Thus $\{|Mf|>(A+1)t\}\subset\{|M(f')|>t\}$ and consequently we have

$$\mu\{|Mf| > (A+1)t\} \le \mu\{|M(f^i)| > t\}$$

$$\le \frac{A}{t} \int_{|f| > t} |f| d\mu,$$

which completes the proof.

Corollary. If M is a maximal operator on $L_1(\Omega) + L_{\infty}(\Omega)$ then for every $f \in L_1(\Omega) + L_{\infty}(\Omega)$

$$\int |Mf|^{p} d\mu \leq \frac{pA(A+1)^{p}}{p-1} \int |f|^{p} d\mu \quad (1$$

and

$$\int |Mf| \ d\mu \le (A+1) \left[\mu(\mathcal{Q}) + A \int_{\{|f| > 1\}} |f| \log |f| \ d\mu \right].$$

Proof. If 1 then, by Fubini's theorem,

$$\int |Mf|^{p} d\mu = p \int_{0}^{\infty} r^{p-1} \mu\{|Mf| > r\} dr
\leq p \int_{0}^{\infty} dr \left[r^{p-1} \frac{A(A+1)}{r} \int_{||f| > \frac{r}{A+1}|} |f| d\mu \right]
= p A(A+1) \int_{0}^{\infty} d\mu(\omega) [|f(\omega)| \int_{0}^{(A+1)|f(\omega)|} r^{p-2} dr]
= \frac{p A(A+1)^{p}}{p-1} \int_{0}^{\infty} |f(\omega)|^{p} d\mu(\omega),$$

and if p=1 then, again by Fubini's theorem,

$$\int |Mf| d\mu = \int_{0}^{\infty} \mu\{|Mf| > r\} dr$$

$$\leq (A+1) \mu(\mathcal{Q}) + \int_{A+1}^{\infty} \mu\{|Mf| > r\} dr$$

$$\leq (A+1) \mu(\mathcal{Q}) + \int_{A+1}^{\infty} dr \left[\frac{A(A+1)}{r} \int_{\{|f| > 1\}} |f| d\mu \right]$$

$$= (A+1) \mu(\mathcal{Q}) + A(A+1) \int_{\{|f| > 1\}} d\mu(\omega) \left[|f(\omega)| \int_{1}^{|f(\omega)|} \frac{1}{r} dr \right]$$

$$= (A+1) \mu(\mathcal{Q}) + A(A+1) \int_{\{|f| > 1\}} |f(\omega)| \log |f(\omega)| d\mu(\omega)$$

Hence the proof is completed. (This argument is standard.)

For each $n \ge 0$, let $R_n(Q)$ be the class of all functions f in $L_1(Q) + L_{\infty}(Q)$ such that

$$\int_{||f| \ge 0} \frac{|f|}{t} \left[\log \frac{|f|}{t} \right]^n d\mu < \infty$$

for all t>0, and let $L(\mathcal{Q})[\log^+ L(\mathcal{Q})]^n$ be the class of all functions f in $L_1(\mathcal{Q})+L_\infty(\mathcal{Q})$ such that

$$\int_{\{|f|>1\}} |f| [\log|f|]^n d\mu < \infty.$$

The classes $R_n(\Omega)$, $n \ge 0$, originally introduced by Fava [4] in order to

obtain a weak type inequality for a product of maximal operators, have the following properties:

- (i) For each $n \ge 0$, $R_n(\Omega) \subset L(\Omega)[\log^- L(\Omega)]^n$ and both classes coincide if and only if $\mu(\Omega) < \infty$.
 - (ii) $L_1(\Omega) \subset R_0(\Omega)$ and both classes coincide if and only if $\mu(\Omega) < \infty$.
- (iii) For each $n \ge 0$, $R_{n+1}(\Omega) \subset R_n(\Omega)$ and both classes coincide if and only if there exists a constant $\delta > 0$ such that $E \in \mathscr{F}$ and $\mu(E) > 0$ implies $\mu(E) > \delta$.
 - (iv) For each $n \ge 0$, $R_n(\Omega)$ is a linear manifold of $L_1(\Omega) + L_{\infty}(\Omega)$.
- (v) For each $n \ge 0$, $R_n(\Omega)$ includes the linear manifold generated by $\bigcup_{1 \le p \le \infty} L_p(\Omega)$, and both manifolds coincide if and only if $\mu(\Omega) < \infty$ and there exists a constant $\delta > 0$ such that $E \in \mathscr{F}$ and $\mu(E) > 0$ implies $\mu(E) > \delta$.

Some of the above properties are found in [4] and the others may be directly proved, and hence we omit the details.

The following maximal theorem is a key lemma to prove individual ergodic theorems for d-parameter semigroups $\Gamma = \{T(t_1, \dots, t_d); t_1, \dots, t_d > 0\}$ of Dunford-Schwartz operators on $L_1(\mathcal{Q}) + L_{\infty}(\mathcal{Q})$.

Theorem 1. Let M be a maximal operator on $L_1(\Omega) + L_{\infty}(\Omega)$, and let A>0 be the constant relating to M as in the definition of a maximal operator. Then for each $n \ge 0$ there corresponds a constant $B_n = B(n, A) > 0$ so that for every $f \in R_{n+1}(\Omega)$ and all t > 0

$$\int\limits_{\{|Mf|>t\}} \frac{|Mf|}{t} \left[\log \frac{|Mf|}{t}\right]^n d\mu \leq \int\limits_{\{B_n|f|>t\}} \frac{B_n|f|}{t} \left[\log \frac{B_n|f|}{t}\right]^{n+1} d\mu.$$

Consequently $f \in R_{n+1}(\Omega)$ implies $Mf \in R_n(\Omega)$.

Proof. Fix any a>1. Then for $f \in R_{n+1}(Q)$ and t>0, putting g=f/t, we have by Fubini's theorem

$$\int_{\{|Mf|>at\}} \frac{|Mf|}{t} \left[\log \frac{|Mf|}{t} \right]^n d\mu = \int_{\{|Mg|>at\}} |Mg| [\log |Mg|]^n d\mu$$

$$= \int_1^{\infty} \mu(\{|Mg|>a\} \cap \{|Mg|>r\}) ([\log r]^n + n[\log r]^{n-1}) dr$$

$$= \int_1^a \mu\{|Mg|>a\} ([\log r]^n + n[\log r]^{n-1}) dr$$

$$+ \int_a^{\infty} \mu\{|Mg|>r\} ([\log r]^n + n[\log r]^{n-1}) dr$$

$$= I + II.$$

Since Lemma 1 implies that

$$\mu\{|Mg|>r\} \leq \frac{A(A+1)}{r} \int_{\{(A+1)[g]>r\}} |g| \ d\mu \qquad (r>0),$$

it follows that

$$I \leq \frac{A}{a} \int\limits_{\{(A+1)|g| > a\}} (A+1)|g| \ d\mu \times \int_{1}^{a} ([\log r]^{n} + n[\log r]^{n-1}) \ dr$$

$$\leq I(A) \int\limits_{\{(A+1)|g| > a\}} (A+1)|g| [\log (A+1)|g|]^{n-1} \ d\mu,$$

where

$$I(A) = \frac{A}{a} [\log a]^{-(n+1)} \int_{1}^{a} ([\log r]^{n} + n[\log r]^{n-1}) dr.$$

Further, since a > 1 and $n \ge 0$, it follows that

$$II \leq \int_{a}^{\infty} \left[\left(\frac{A(A+1)}{r} \int_{((A+1))|g| > r)} |g| \ d\mu \right) ([\log r]^{n} + n [\log r]^{n-1}) \right] dr$$

$$= \int_{\{(A+1)|g| > a\}} d\mu(\omega) \left[A(A+1)|g(\omega)| \int_{a}^{(A+1)|g(\omega)|} \left(\frac{1}{r} [\log r]^{n} + \frac{n}{r} [\log r]^{n-1}) \ dr \right]$$

$$\leq \int_{\{(A+1)|g| > a\}} d\mu(\omega) \left[A(A+1)|g(\omega)| ([\log (A+1)|g(\omega)|]^{n+1} + [\log (A+1)|g(\omega)|]^{n}) \right]$$

$$\leq A(1 + [\log a]^{-1}) \int_{\{(A+1)|g| > a\}} (A+1)|g(\omega)| [\log (A+1)|g(\omega)|]^{n+1} \ d\mu(\omega).$$
Thus, letting $B_{n} = \left[I(A) + A(1 + [\log a]^{-1}) + 1 \right] (A+1)$, we get
$$\int_{\{(Mf) > ad\}} \frac{|Mf|}{t} [\log \frac{|Mf|}{t}]^{n} \ d\mu \leq \int_{\{(B, |f| > ad\}} \frac{B_{n}|f|}{t} [\log \frac{B_{n}|f|}{t}]^{n+1} \ d\mu,$$

which completes the proof.

Theorem 2. Let $\Gamma = \{T(t_1, \dots, t_d); t_1, \dots, t_d > 0\}$ be a d-parameter semigroup of Dunford-Schwartz operators on $L_1(\Omega) + L_{\infty}(\Omega)$ which is assumed to be strongly continuous with respect to the norm topology of $L_1(\Omega)$. For $f \in L_1(\Omega) + L_{\infty}(\Omega)$, define

$$f^*(\omega) = \sup_{\alpha_1, \dots, \alpha_d > 0} \frac{1}{\alpha_1 \cdots \alpha_d} \left| \int_0^{\alpha_1} \cdots \int_0^{\alpha_d} T(t_1, \dots, t_d) f(\omega) dt_1 \cdots dt_d \right|.$$

Then for each $k \ge d-1$ there corresponds a constant $C_k(d) > 0$ so that

(i) if $k \ge d$ then for every $f \in R_k(\Omega)$ and all t > 0

$$\int_{\{f^*>t\}} \frac{f^*}{t} \left[\log \frac{f^*}{t}\right]^{k-d} d\mu$$

$$\leq \int_{\{C_k(d)|f|>t\}} \frac{C_k(d)|f|}{t} \left[\log \frac{C_k(d)|f|}{t}\right]^k d\mu \ (<\infty),$$

(ii) if k=d-1 then for every $f \in R_{d-1}(\Omega)$ and all t>0

$$\mu\{f^*>t\} \leq \int_{\{c_{d-1}(d)|f|>t\}} \frac{C_{d-1}(d)|f|}{t} \left[\log \frac{C_{d-1}(d)|f|}{t}\right]^{d-1} d\mu \ (<\infty).$$

Consequently $f \in R_k(Q)$ with $k \ge d$ implies $f^* \in R_{k-d}(Q)$.

Proof. We proceed by induction on d.

First suppose that d=1. It is then known by [7] that there exists a one-parameter semigroup $\{\tau_1(t_1) ; t_1>0\}$ of positive Dunford-Schwartz operators on $L_1(\Omega)+L_{\infty}(\Omega)$, strongly continuous with respect to the norm topology of $L_1(\Omega)$, such that for every $f \in L_1(\Omega)+L_{\infty}(\Omega)$ and all $t_1>0$

$$|T(t_1)f| \leq \tau_1(t_1)|f|$$
 a. e. on Ω .

Thus, for $f \in L_1(\Omega) + L_{\infty}(\Omega)$, if we set

$$M\tilde{f}(\omega) = \sup_{\alpha>0} \frac{1}{\alpha} \int_0^{\alpha} \tau_1(t_1) |f|(\omega) dt_1,$$

then we have

$$f^* \leq M^- f$$
 a. e. on Q .

Since M^{\sim} is a maximal operator on $L_1(\Omega) + L_{\infty}(\Omega)$ with A = 1 (cf. [4] or [5]), we observe by Lemma 1 and Theorem 1 that the theorem holds for d=1.

Next let us assume that the theorem holds for d = i - 1. To show that the theorem holds for d = i, we define for each $n \ge 1$ an *i*-parameter semigroup $\Gamma_n = \{T_n(t_1, \dots, t_i) ; t_1, \dots, t_i \ge 0\}$ of Dunford-Schwartz operators on $L_1(\Omega) + L_{\infty}(\Omega)$ by the relation

$$T_n(t_1, \dots, t_i) = \begin{cases} I & \text{if } t_1 = t_2 = \dots = t_i = 0 \\ T(t_1 + u_1/n, \dots, t_i + u_i/n) & \text{otherwise} \end{cases}$$

where $u_k = (t_1 + \dots + t_i) - t_k$ for $1 \le k \le i$. Put, for $f \in L_1(\Omega) + L_{\infty}(\Omega)$,

$$M_n f(\omega) = \sup_{\alpha_1, \dots, \alpha_i > 0} \frac{1}{\alpha_1 \cdots \alpha_i} \left| \int_0^{\alpha_1} \cdots \int_0^{\alpha_i} T_n(t_1, \dots, t_i) f(\omega) dt_1 \cdots dt_i \right|.$$

Then clearly we have

$$f^*(\omega) \le \lim \inf M_n f(\omega)$$
 a.e. on Ω ,

and hence by Fatou's lemma it is sufficient to observe that the inequalities of the theorem hold, replacing f^* by $M_n f$.

For this purpose we next define, for each $n \ge 1$, an (i-1)-parameter semigroup $\Delta_n = \{S_n(t_2, \dots, t_i) ; t_2, \dots, t_i > 0\}$ of Dunford-Schwartz operators on $L_1(\Omega) + L_{\infty}(\Omega)$ by the following relation

$$S_n(t_2, \dots, t_i) = T_n(0, t_2, \dots, t_i).$$

Let us denote by $\{\tau_n(t_1) ; t_1>0\}$ a one-parameter semigroup of positive Dunford-Schwartz operators on $L_1(\mathcal{Q})+L_{\infty}(\mathcal{Q})$, strongly continuous with repect to the norm topology of $L_1(\mathcal{Q})$, such that for every $f\in L_1(\mathcal{Q})+L_{\infty}(\mathcal{Q})$ and all $t_1>0$

$$|T_n(t_1)f| \leq \tau_n(t_1)|f|$$
 a. e. on Ω ,

where we let $T_n(t_1) = T_n(t_1, 0, \dots, 0)$ for $t_1 > 0$. Then for $f \in L_1(\Omega) + L_{\infty}(\Omega)$ and $\alpha_1, \dots, \alpha_t > 0$ we have

$$\begin{split} &\frac{1}{\alpha_1\cdots\alpha_i}\big|\int_0^{\alpha_1}\cdots\int_0^{\alpha_i}\,T_n(t_1,\,\cdots,t_i)f\,dt_1\cdots dt_i\,\big|\\ &=\frac{1}{\alpha_1}\,\big|\int_0^{\alpha_1}T_n(t_1)\,\big[\frac{1}{\alpha_2\cdots\alpha_i}\int_0^{\alpha_2}\cdots\int_0^{\alpha_i}\,S_n(t_2,\,\cdots,t_i)f\,dt_2\cdots dt_i\,\big]\,dt_1\big|\\ &\leq\frac{1}{\alpha_1}\int_0^{\alpha_1}\,\tau_n(t_1)\,\big|\frac{1}{\alpha_2\cdots\alpha_i}\int_0^{\alpha_2}\cdots\int_0^{\alpha_i}\,S_n(t_2,\,\cdots,t_i)f\,dt_2\cdots dt_i\,\big|\,dt_1\end{split}$$

Therefore if $f \in R_k(\Omega)$ and $k \ge i - 1$ then the function g_n defined by

$$g_n(\omega) = \sup_{\alpha_1, \dots, \alpha_i > 0} \frac{1}{\alpha_1 \cdots \alpha_i} \left| \int_0^{\alpha_2} \cdots \int_0^{\alpha_i} S_n(t_2, \dots, t_i) f(\omega) dt_2 \cdots dt_i \right|$$

is, by induction hypothesis, in $R_{k-i+1}(\Omega)$, and for every t>0

$$\int_{\{g_n>t\}} \frac{g_n}{t} \left[\log \frac{g_n}{t} \right]^{k-t+1} d\mu$$

$$\leq \int_{\{C_k(t-1)|f|>t\}} \frac{C_k(i-1)|f|}{t} \left[\log \frac{C_k(i-1)|f|}{t} \right]^k d\mu < \infty,$$

and thus if we set

$$M_n^- g_n(\omega) = \sup_{\alpha>0} \frac{1}{\alpha} \int_0^{\alpha} \tau_n(t_1) g_n(\omega) dt_1,$$

then $M_n f \leq M_n^{\tilde{n}} g_n$ a. e. on Ω , and furthermore we have:

(i) if $k \ge i$ and $f \in R_k(\omega)$ then for every t > 0

$$\int_{\{M_{n}^{-}v_{n}>\iota\}} \frac{M_{n}^{-}g_{n}}{t} \left[\log \frac{M_{n}^{-}g_{n}}{t}\right]^{k-i} d\mu$$

$$\leq \int_{\{C_{k-i+1}(1)g_{n}>\iota\}} \frac{C_{k-i+1}(1)g_{n}}{t} \left[\log \frac{C_{k-i+1}(1)g_{n}}{t}\right]^{k-i+1} d\mu,$$

(ii) if k=i-1 and $f \in R_{i-1}(Q)$ then for every t>0

$$\mu\{M_n^- g_n > t\} \leq \int_{\{C_0(1)g_n > t\}} \frac{C_0(1)g_n}{t} d\mu.$$

Therefore, replacing f^* by $M_n f$, the inequalities of the theorem hold with $C_k(i) = C_k(i-1)C_{k-i-1}(1)$, and so the theorem holds for d = i.

The proof is completed.

Remark. It may be readily seen from the above-given argument that if $1 and <math>f \in L_p(Q)$ then the function f^* of Theorem 2 is in $L_p(Q)$ and also satisfies

$$\int |f^*|^p d\mu \leq \left[\frac{p2^p}{p-1}\right]^d \int |f|^p d\mu.$$

4. Ergodic theorems.

Theorem 3. Let $\Gamma = \{ T(t_1, \dots, t_d) ; t_1, \dots, t_d > 0 \}$ be a d-parameter semigroup of Dunford-Schwartz operators on $L_1(\Omega) + L_{\infty}(\Omega)$ which is assumed to be strongly continuous with respect to the norm topology of $L_1(\Omega)$. If $1 \le p < \infty$ and $f \in L_p(\Omega)$, then $T(t_1, \dots, t_d) f$ converges in the norm topology of $L_p(\Omega)$ as $t_1 \longrightarrow 0, \dots, t_d \longrightarrow 0$ independently.

Proof. Put, for t > 0,

$$S(t) = T(t, \dots, t)$$

Since $J = \{S(t) ; t > 0\}$ is a one-parameter semigroup of Dunford-Schwartz operators on $L_1(Q) + L_{\infty}(Q)$ which is strongly continuous with repect to the norm topology of $L_1(Q)$, it follows from [6] together with an approximation argument that if $1 \le p < \infty$ and $f \in L_p(Q)$ then S(t)f converges in the norm topology of $L_p(Q)$ as $t \longrightarrow 0$. Write

$$f_0 = \lim_{t \to 0} S(t) f \quad (\subseteq L_p(Q)),$$

then we have $S(t)f_0=S(t)f$ for all t>0, and thus if $t_1, \dots, t_d>t>0$ then we have

$$T(t_1, \dots, t_d) f = T(t_1 - t, \dots, t_d - t) S(t) f$$

= $T(t_1 - t, \dots, t_d - t) S(t) f_0 = T(t_1, \dots, t_d) f_0$.

Therefore for each fixed a > 0, it follows that

$$||T(t_1, \dots, t_d)f - f_0||_p = ||T(t_1, \dots, t_d)f_0 - f_0||_p$$

$$\leq ||T(t_1, \dots, t_d)S(a)f_0 - S(a)f_0||_p + ||S(a)f_0 - f_0||_p$$

$$+ ||T(t_1, \dots, t_d)[f_0 - S(a)f_0]||_p.$$

Since $||S(a)f_0-f_0||_p \longrightarrow 0$ as $a \longrightarrow 0$, given an $\varepsilon > 0$ there exists an a > 0 so that $||S(a)f_0-f_0||_p < \varepsilon$. Then we get

$$||T(t_1, \dots, t_d)f - f_0||_p < ||T(t_1, \dots, t_d)S(a)f_0 - S(a)f_0||_p + 2\varepsilon.$$

On the other hand, since $\Gamma = \{T(t_1, \dots, t_d) ; t_1, \dots, t_d > 0\}$ is strongly continuous with respect to the norm topology of $L_p(\Omega)$ for $1 \le p < \infty$, it follows that

$$||T(t_1, \dots, t_d)S(a)f_0 - S(a)f_0||_p \longrightarrow 0$$

as $t_1 \longrightarrow 0$, ..., $t_d \longrightarrow 0$ independently. Therefore $T(t_1, \dots, t_d) f$ converges to f_0 in the norm topology of $L_p(\Omega)$ as $t_1 \longrightarrow 0$, ..., $t_d \longrightarrow 0$ independently. The proof is complete.

Theorem 4. Let $\Gamma = \{T(t_1, \dots, t_d) : t_1, \dots, t_d > 0\}$ be a d-parameter semigroup of Dunford-Schwartz operators on $L_1(\Omega) + L_{\infty}(\Omega)$ which is assumed to be strongly continuous with respect to the norm topology of $L_1(\Omega)$. If $f \in R_{d-1}(\Omega)$ then the averages

$$A(\alpha_1, \dots, \alpha_d) f(\omega) = \frac{1}{\alpha_1 \cdots \alpha_d} \int_0^{\alpha_1} \cdots \int_0^{\alpha_d} T(t_1, \dots, t_d) f(\omega) dt_1 \cdots dt_d$$

converge almost everywhere on Ω as $\alpha_1 \longrightarrow 0, \dots, \alpha_d \longrightarrow 0$ independently.

Proof. Theorem 3 ensures us to define an operator T_0 on $L_1(\Omega)$ by the relation

$$T_0 f = \lim_{t_1, \dots, t_d \to 0} T(t_1, \dots, t_d) f \qquad (f \in L_1(\mathcal{Q}))$$

where the limit is in the norm topology of $L_1(\Omega)$ and where t_1, \dots, t_d tend to zero independently. Then we have $||T_0||_1 \leq 1$ and furthermore $||T_0f||_{\infty} \leq ||f||_{\infty}$ for every $f \in L_1(\Omega) \cap L_{\infty}(\Omega)$. Thus, as in Section 2, we may and will assume that T_0 is a Dunford-Schwartz operator on $L_1(\Omega) \cap L_{\infty}(\Omega)$.

It will be proved that if $f \in R_{d-1}(\Omega)$ then

$$A(\alpha_1, \dots, \alpha_d) f(\omega) \longrightarrow T_0 f(\omega)$$
 a. e. on Ω

as $\alpha_1 \longrightarrow 0, \dots, \alpha_d \longrightarrow 0$ independently.

To do this, first suppose that $1 and <math>f \in L_p(Q)$. Let, for each $n \ge 1$,

$$f_n=(n^d)\int_0^{1/n}\cdots\int_0^{1/n}T(t_1,\,\cdots,\,t_d)f\;dt_1\cdots dt_t\;(\in L_p(\mathcal{Q})).$$

Then we see that

$$\lim \|f_n - T_0 f\|_p = 0.$$

Furthermore it may be readily seen that for almost all $(t_1, \dots, t_d, \omega) \in \mathbb{R}^d_+ \times \Omega$ with respect to the product of the Lebesgue measure and μ we have

$$T(t_1, \dots, t_d) f_n(\omega) = (n^d) \int_0^{1/n} \dots \int_0^{1/n} T(t_1 + s_1, \dots, t_d + s_d) f(\omega) ds_1 \dots ds_d$$

where of course $T(t_1, \dots, t_d) f_n(\omega)$ denotes a scalar representation of $T(t_1, \dots, t_d) f_n$, $(t_1, \dots, t_d) \in \mathbb{R}^d_+$. Thus for almost all $\omega \in \mathcal{Q}$, $T(t_1, \dots, t_d) f_n(\omega)$ as a function of $(t_1, \dots, t_d) \in \mathbb{R}^d_+$ is continuous, and clearly

$$A(\alpha_1, \dots, \alpha_d) f_n(\omega) \longrightarrow f_n(\omega)$$
 a. e. on Ω

as $\alpha_1 \longrightarrow 0, \dots, \alpha_d \longrightarrow 0$ independently. Since $T_0 f_n = f_n$, it then follows that

$$\lim_{\alpha_1, \dots, \alpha_d \to 0} \sup |A(\alpha_1, \dots, \alpha_d) f(\omega) - T_0 f(\omega)|$$

$$\leq \lim_{\alpha_1, \dots, \alpha_d \to 0} \sup |A(\alpha_1, \dots, \alpha_d) (f - f_n) (\omega) - T_0 (f - f_n) (\omega)|$$

$$\leq \sup_{\alpha_1, \dots, \alpha_d \to 0} |A(\alpha_1, \dots, \alpha_d) (f - f_n) (\omega)| + |T_0 (f - f_n) (\omega)|$$

$$\leq (f - f_n)^*(\omega) + |T_0 (f - f_n) (\omega)| \quad \text{a. e. on } \Omega.$$

Since $\lim_{n} ||(f-f_n)^*||_p = 0$ by the remark in the preceding section and $\lim_{n} ||T_0(f-f_n)||_p = \lim_{n} ||f-f_n||_p = 0$, this implies that for $f \in L_p(\Omega)$ with $1 , <math>A(\alpha_1, \dots, \alpha_d) f(\omega)$ converges to $T_0 f(\omega)$ a. e. on Ω as $\alpha_1 \longrightarrow 0, \dots, \alpha_d \longrightarrow 0$ independently.

Next suppose that $f \in R_{d-1}(\mathcal{Q})$, and then take $f_n \in L_p(\mathcal{Q})$, where $1 , so that <math>|f - f_n| \le |f|$ and $\lim_{n \to \infty} f_n = f$ a. e. on \mathcal{Q} . Then

$$\lim_{\substack{\alpha_1, \dots, \alpha_d \to 0 \\ \alpha_1, \dots, \alpha_d \to 0}} |A(\alpha_1, \dots, \alpha_d) f(\omega) - T_0 f(\omega)|$$

$$\leq \lim_{\substack{\alpha_1, \dots, \alpha_d \to 0 \\ \alpha_1, \dots, \alpha_d \to 0}} |A(\alpha_1, \dots, \alpha_d) (f - f_n) (\omega) - T_0 (f - f_n) (\omega)|$$

$$\leq (f - f_n)^* (\omega) + |T_0 (f - f_n) (\omega)| \quad \text{a. e. on } \Omega,$$

and by Theorem 2, for every t>0

$$\mu\left\{(f-f_n)^*>t\right\} \leq \int\limits_{\{C_{d-1}(d)|f-f_n|>t\}} \frac{C_{d-1}(d)|f-f_n|}{t} \left[\log \frac{C_{d-1}(d)|f-f_n|}{t}\right]^{d-1} d\mu$$

where the right-hand side of the last inequality tends to zero as $n \longrightarrow \infty$, by virtue of Lebesgue's dominated convergence theorem. On the other hand, as in Lemma 1, we have for every t>0

$$\mu\{|T_0(f-f_n)|>t\}\leq \frac{2}{t}\int_{\{2|f-f_n|>t\}}|f-f_n|\ d\mu,$$

and the right-hand side of this inequality tends to zero as $n \longrightarrow \infty$, by Lebesgue's convergence theorem, too. Therefore we observe that the theorem holds for $f \in R_{d-1}(\Omega)$, and the proof is completed.

Remark. It is known (cf. [9]) that if d=1 then Theorem 4 holds for every $f \in L_1(\Omega) + L_{\infty}(\Omega)$. But, as is well-known (cf. [4] or [10]), if $d \geq 2$ then the theorem may fail to hold for some $f \in L_1(\Omega)$.

Lemma 2. Let $\Gamma = \{T(t_1, \dots, t_d) : t_1, \dots, t_d > 0\}$ be a d-parameter semigroup of Dunford-Schwartz operators on $L_1(\Omega) + L_{\infty}(\Omega)$ which is assumed to be strongly continuous with respect to the norm topology of $L_1(\Omega)$. If 1 < p $< \infty$ and $f \in L_p(\Omega)$, then the averages $A(\alpha_1, \dots, \alpha_d)$ converge in the norm topology of $L_p(\Omega)$ as $\alpha_1 \longrightarrow \infty$, \ldots , $\alpha_d \longrightarrow \infty$ independently.

Proof. $\{A(\alpha_1, \dots, \alpha_d) : \alpha_1, \dots, \alpha_d > 0\}$ may and will be regarded as a net of bounded linear operators on $L_p(\Omega)$. Then it follows that this net is Γ -ergodic in the sense of [8], and since $L_p(\Omega)$ with $1 is a reflexive Banach space, it follows from [8] that <math>A(\alpha_1, \dots, \alpha_d)$ converges in the strong operator topology as $\alpha_1 \longrightarrow \infty, \dots, \alpha_d \longrightarrow \infty$ independently. This completes the proof.

Theorem 5. Let $\Gamma = \{T(t_1, \dots, t_d) : t_1, \dots, t_d > 0\}$ be a d-parameter semigroup of Dunford-Schwartz operators on $L_1(\Omega) + L_{\infty}(\Omega)$ which is assumed to be strongly continuous with respect to the norm topology of $L_1(\Omega)$. If $f \in R_{d-1}(\Omega)$ then the averages $A(\alpha_1, \dots, \alpha_d) f(\omega)$ converge almost everywhere on Ω as $\alpha_1 \longrightarrow \infty, \dots, \alpha_d \longrightarrow \infty$ independently.

Proof. Let $1 . Lemma 2 enables us to define an operator <math>T_{\infty}$ on $L_n(\Omega)$ by the relation

$$T_{\infty}f = \lim_{\alpha_1, \dots, \alpha_d \to \infty} A(\alpha_1, \dots, \alpha_d) f \qquad (f \in L_p(\mathcal{Q}))$$

where the limit is in the norm topology of $L_p(\Omega)$ and where $\alpha_1, \dots, \alpha_d$ tend

to infinity independently. Then we have $||T_{\infty}||_p \leq 1$, and for $f \in L_1(\Omega) \cap L_p(\Omega)$ there exists a sequence (f_n) in the set $\{A(\alpha_1, \dots, \alpha_d)f : \alpha_1, \dots, \alpha_d > 0\}$ such that

$$T_{\infty}f = \lim_{n} f_{n}$$
 a. e. on Ω .

Since $||f_n||_1 \le ||f||_1$ for each $n \ge 1$, it follows from Fatou's lemma that

$$||T_{\infty}f||_1 \leq \liminf_{n} ||f_n||_1 \leq ||f||_1.$$

Hence T_{∞} can be uniquely extended to a linear contraction on $L_1(\Omega)$, which satisfies $||T_{\infty}f||_{\infty} \leq ||f||_{\infty}$ for every $f \in L_1(\Omega) \cap L_{\infty}(\Omega)$. Therefore, as in Section 2, we may and will assume that T_{∞} is a Dunford-Schwartz operator on $L_1(\Omega) + L_{\infty}(\Omega)$.

It will be proved that if $f \in R_{d-1}(\Omega)$ then

$$A(\alpha_1, \dots, \alpha_d) f(\omega) \longrightarrow T_{\infty} f(\omega)$$
 a. e. on Ω

as $\alpha_1 \longrightarrow \infty, \dots, \alpha_d \longrightarrow \infty$ independently.

To do this, however, in view of the proof of Theorem 4, it is enough to check that the theorem holds for every $f \in L_p(\Omega)$. And to check this it is also enough to notice that the theorem holds for every f in a dense linear manifold of $L_p(\Omega)$.

For this purpose, let M denote the linear manifold generated by the functions f of the form $f=h+\lceil g-T(s_1,\cdots,s_d)g\rceil$, where $h,\ g\in L_\nu(\Omega)$, $T(t_1,\cdots,t_d)h=h$ for all $t_1,\cdots,t_d>0$, and $g\in L_\infty(\Omega)$. Lemma 2 implies that M is dense in $L_p(\Omega)$ with respect to the norm topology of $L_p(\Omega)$, and for such a function f it follows easily that $T_\infty f=h$ and that

$$A(\alpha_1, \dots, \alpha_d) f(\omega) \longrightarrow h(\omega)$$
 a. e. on Ω

as $\alpha_1 \longrightarrow \infty, \dots, \alpha_d \longrightarrow \infty$ independently. This completes the proof.

Let $\Gamma_j = \{T_j(t) \; ; \; t > 0\}$, $1 \leq j \leq d$, be one-parameter semigroups of Dunford-Schwartz operators on $L_1(\mathcal{Q}) + L_{\infty}(\mathcal{Q})$ which are assumed to be strongly continuous with respect to the norm topology of $L_1(\mathcal{Q})$. (Here we do not assume that these one-parameter semigroups commute.) Then, since for each $f \in L_p(\mathcal{Q})$, with $1 \leq p < \infty$, the function $T_1(t_1) \cdots T_d(t_d) f$ of $(t_1, \cdots, t_d) \in \mathbb{R}^d_+$ is continuous with respect to the norm topology of $L_p(\mathcal{Q})$, it follows, as in Section 2, that for every $f \in L_1(\mathcal{Q}) + L_{\infty}(\mathcal{Q})$ there exists a scalar function $T_1(t_1) \cdots T_d(t_d) f(\omega)$, defined on $\mathbb{R}^d_+ \times \mathcal{Q}$ and measurable with respect to the product of the Lebesgue measurable subsets of \mathbb{R}^d_+ and \mathscr{F} , such that for each fixed $(t_1, \cdots, t_d) \in \mathbb{R}^d_+$, $T_1(t_1) \cdots T_d(t_d) f(\omega)$ as a function of $\omega \in \mathcal{Q}$ belongs to the equivalence class of $T_1(t_1) \cdots T_d(t_d) f$. Then we may define, for almost all $\omega \in \mathcal{Q}$,

$$A(\alpha_1, \dots, \alpha_d) f(\omega) = \frac{1}{\alpha_1 \cdots \alpha_d} \int_0^{\alpha_1} \dots \int_0^{\alpha_d} T_1(t_1) \cdots T_d(t_d) f(\omega) dt_1 \cdots dt_d$$

Then we have the following theorem which is similar to the above Theorem 5 and a generalization of Theorem 5 in Fava [4].

Theorem 6. Let $\Gamma_j = \{T_j(t) : t > 0\}$, $1 \le j \le d$, be one-parameter semigroups of Dunford-Schwartz operators on $L_1(\Omega) + L_{\infty}(\Omega)$ which are assumed to be strongly continuous with respect to the norm topology of $L_1(\Omega)$. If $f \in R_{d-1}(\Omega)$ then the averages $A(\alpha_1, \dots, \alpha_d) f(\omega)$ converge almost everywhere on Ω as $\alpha_1 \longrightarrow \infty, \dots, \alpha_d \longrightarrow \infty$ independently.

Proof. It is known (cf. [3], p. 694) that if $1 and <math>f \in L_p(\Omega)$ then the averages $A(\alpha_1, \dots, \alpha_d) f(\omega)$ converge almost everywhere on Ω and as well in the norm topology of $L_p(\Omega)$ as $\alpha_1 \longrightarrow \infty, \dots, \alpha_d \longrightarrow \infty$ independently. Thus, by using Theorem 1 repeatedly, we may see, as in Theorem 5, that the desired result holds for $f \in R_{d-1}(\Omega)$. We omit the details.

In conclusion we should like to remark that Yoshimoto [11] has obtained, using a maximal ergodic theorem due to Hasegawa-Sato-Tsurumi [5], vector valued ergodic theorems in the same direction for a one-parameter semigroup $\{T(t): t>0\}$ of linear operators on $L_1(\Omega,X)+L_{\infty}(\Omega,X)$ which satisfies some norm and integrability conditions, X being a reflexive Banach space. Since the scalar field is a reflexive Banach space, Yoshimoto's results generalize ours when restricted to one-parameter semigroups. But we could not extend his results to d-parameter semigroups with $d \ge 2$, because the existence of a positive one-parameter semigroup is not known which dominates a given $L_1(\Omega,X)$ contraction operator one-parameter semigroup.

Added in proof. Professor S. A. McGrath kindly informed me that he proved, in his recent paper [Local ergodic theorems for noncommuting semigroups, Proc. Amer. Math. Soc. 79 (1980), 212-216], the following local ergodic theorem:

Let $\Gamma_j = \{T_j(t) ; t>0\}$, $1 \le j \le d$, be as in Theorem 6. Assume, in addition, that $\lim_{t\to 0} ||T_j(t)-I||_1 = 0$ for each j. Then for any $f \in R_{d-1}(\Omega)$ the averages $A(\alpha_1, \dots, \alpha_d) f(\omega)$ converge almost everywhere on Ω as $\alpha_1 \longrightarrow 0$, \dots , $\alpha_d \longrightarrow 0$ independently.

Modifying his argument and using the local ergodic theorem in [6], it is easily seen that McGrath's theorem holds, without the additional hypothesis that $\lim_{t\to 0}||T_j(t)-I||_1=0$ for each j.

REFERENCES

- [1] R. V. Chacon and U. Krengel: Linear modulus of a linear operator, Proc. Amer. Math. Soc. 15 (1964), 553—559.
- [2] N. Dunford and J. T. Schwartz: Convergence almost everywhere of operator averages, J. Rational Mech. Anal. 5 (1956), 129—178.
- [3] N. DUNFORD and J. T. SCHWARTZ: Linear Operators. Part I, Interscience, Mew York, 1958,
- [4] N. A. FAVA: Weak type inequalities for product operators, Studia Math. 42 (1972), 271 -288.
- [5] S. HASEGAWA, R. SATO and S. TSURUMI: Vector valued ergodic theorems for a one-parameter semigroup of linear operators, Tohoku Math. J. 30 (1978), 95—106.
- [6] R. SATO: On a local ergodic theorem, Studia Math. 58 (1976), 1-5.
- [7] R. Sato: Contraction semigroups in Lebesgue space, Pacific J. Math. 78 (1978), 251— 259.
- [8] R.SATO: On abstract mean ergodic theorems, Tohoku Math. J. 30 (1978), 575-581.
- [9] R. Sato: Two local ergodic theorems on L_{∞} , J. Math. Soc. Japan 32 (1980). 415-423.
- [10] T. R. TERRELL: Local ergodic theorems for N-parameter semigroups of operators. Lecture Notes in Math., No. 160, pp. 262—278, Springer, Berlin, 1970.
- [11] T. YOSHIMOTO: Vector valued ergodic theorems for operators satisfying norm conditions, Pacific J. Math. 85 (1979), 485—499.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received February 9, 1980)