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ERGODIC THEOREMS FOR d-PARAMETER
SEMIGROUPS OF DUNFORD-SCHWARTZ
OPERATORS

RYOTARO SATO

1. Introduction. Let I'={T(,, -, t.); ¢, -, t.>0} be a strongly
continuous d-parameter semigroup of Dunford-Schwartz operators on L,(2)
=L.(0Q, F, 1), where (@, &, p) is a o-finite measure space. In this paper
I" will be extended to a semigroup of linear operators on the class L,(£)+
L.(2) of all functions f of the form f=g+h, with g& L,(2) and ke L.(Q),
so that ||T(®,, -, t)ll, <1 for every 1 <<p << oo and also so that lim

T(t,, -, t)fa=T(,, -+, ts)f almost everywhere on © whenever f,= L..(2),
sup l full << o0 and lim f,=f almost everywhere on £. Then for every

fe L(2)+ L..(Q) the averages

Alay, - al)f=

Q0 SO ‘“gﬁ T(tll B td)fdtl“'dtd

are well-defined, and now it would be interesting to ask the following
questions : For what functions f does the almost everywhere convergence
of the averages A«,, -+, ag)f hold as a; —>0, -+, &s—>0 independently ?
For what functions f does the almost everywhere convergence of the
averages A(a,, -+, au)f hold as @; —> o0, ---, @y —> oo independently ?

It will be proved below that if f& L,(2)+ L..(Q) satisfies

l{i I:logl—{l] ‘Hdﬂ: < o0

flri>e]

for every ¢ >0, then the averages A(a,, -+, as)f converge almost every-
where on 2 as a; —>0, .-, a;—>0 independently, and also the averages
Alay, -+, ag) f converge almost everywhere on £ as a;—> 00, -, @g—> o0
independently. This may be considered to be an extension of Terrell’s local
ergodic theorem [10] and Dunford-Schwartz’s ergodic theorem [2].

The method of proof chiefly depends upon a weak type maximal
inequality similar to Fava’s [4].

2. Preliminaries. Let (2, %, p) be a o-finite measure space and let
L ®)=L,(2, F,p), 1<p<oo, be the usual Banach spaces of real or
complex functions on (2, F , u). A Dunford-Schwartz operator T on L,(£2)
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is a linear contraction on L,(2) (i.e. ||T|l;<1) such that for every f&
L(@&NL.(2)

NTAlle <1 flle-
It is well-known that a Dunford-Schwartz operator 7" on L,(%2) satisfies
NTA Il < 1A Nl

for all fe L(@DNL,(2), with 1<<p<<oo. By this, T can be uniquely
extended to a linear contraction on each L, (@), with 1<<p<Coo, Further-
more it can be extended to a linear contraction on L.(#) as follows, If
0<feL.(2), choose f,EL,(2) so that 0<f, <fo1<<f and lim f,=f

almost everywhere (a. e. ) on £. Then for n>>m we have

| Tfa—Tfnl < o(fuFfm) S(li{n tfi)—tf, a.e. on L

where 7 denotes the linear modulus of 7 in the sense of Chacon-Krengel
[1]. (Thus = is a positive Dunford-Schwartz operator on L,(2) such that
wg=sup {|Th|:h € L,(Q), |k| <g a.e. on Q}

for any 0 < ge L,(2).) On the other hand, if 0 <ue L,(@)NL.(2) and
0<<u a.e. on £, then it may be readily seen that 0<<z* v & L,(2) and
[lz*ull; < [lu|l,, where =* denotes the adjoint operator of z, acting on L..(2)
=L,(2)*. Thus, putting

gm=(1i,1‘n tf)—7fa. a.e. on @,
we have, by Lebesgue’s dominated convergence theorem,
Sg,,,u d/b=§ (lim £3) =*u du— S Fu T dp—>0
as m—> oo, Since >0 a.e. on € and g,=>g,+1=>0 a.e. on 2, this
proves that lilm gn=0a. e. on £, and hence for almost all wE 2 the sequence

Tfw), n=1, 2, ---, is a Cauchy sequence. Therefore it is possible to
define

Tf(w)=1lim Tf.(w) a.e. on £,

It is now a routine matter to check that this definition of 7f does not
depend upon the particular choice of such a sequence (f,,) in L,(®2), and so
by linearity T can be extended to a linear operator on L..(£). From the
definition of T on L..(2), it follows that ||T||. < 1 and that if f,€L.(Q),
n=1,2, ---, is a sequence satisfying sup || f;||.. << o and lim f,=f a.e. on

2 for some f L..(2), then
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Tf=lm Tf, a.e. on 2.

The above discussion ensures that we may and will assume, throughout
this paper, that a Dunford-Schwartz operator T is a linear operator on the
class L,(2)+ L..(£2) such that ||T']}, <1 on each L, () with 1<<p<o and
also such that

Tf=lim Tf, a.e. on 2

whenever £, L..(2), sup {|{|full-: 2 =1} < oo and f=lim f, a.e. on 2.

Let us now consider a d-parameter semigroup I"'= {T(f,, ---, ts) ; t1, =+,
t; >0} of Dunford-Schwartz operators on L,(@)+L.(2), d =1 being a
fixed integer. Thus each T(¢,, -, ¢;) is a Dunford-Schwartz operator on
L(Q)+L..(2), and I satisfies

T(tl: Tty td)T(sl) R 34)=T(t1+81, T t,1+3d).

Throughout this paper we shall assume that I is strongly continuous
with respect to the norm topology of L,(®), i.e. for each f& L{(@) the
function T'(¢;, -, ts) f of (¢,, -+, t)E R™, where R:={(t,, -, ta) : t,, ", ta
> 0}, is continuous with respect to the norm topology of L,(€). It then
follows from an approximation argument that I" is strongly continuous with
respect to the norm topology of each L,(£) with 1<p<Ceo, and that for
each f € L,(2) with 1<{p<C oo there exists a scalar function g(t,, --*, £, ®),
defined on R% X £ and measurable with respect to the product of the Lebesgue
measurable subsets of R% and .#, such that for each fixed (¢,, -+, ts)E R,
g(t,, -+, t;, ®) as a function of wE 2 belongs to the equivalence class of
T(t,, -, tof € L{L). Therefore, in the sequel, g(t, -, ¢, w) will be
denoted by T(f,, -, %) f(w). It then follows from Fubini’s theorem that
there exists a p-null set E(f), dependent on f but independent of (¢, ++-, £,),
such that for each fixed w & E(f), T(#,, -+, ts) f(w) as a function of (¢,, ---,
t;)E R* is Lebesgue integrable over every finite interval (o, 8,) X -+ X (s,
B:)C R% with respect to the Lebesgue measure, and the integral

rl V“ T(ty, - t) flw) dby-dty (& E(f))

2] Jag
as a function of w €2 belongs to the equivalence class of the Bochner
integral

P s

S'---EaT(tl,---,td)fdtl---dtd (€L, (2)).
“ “d
Next we will observe that a similar situation holds for fEL.(2). In

fact, let (f.) be a sequence in L,(2) such that | f,|<|f| and lim f,=f a. e.
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on 2. Then for every (¢;, -+, t.)E R
T(tla R tri)leim T(tl» e} td)fn a.e. on 2,

and hence by Fubini’s theorem we may define

gy, - b, w)=lim T(t,, -+, te) fulw)

for almost all (¢, ---, fs, ) € R X2 with respect to the product of the
Lebesgue measure and w. Since, for each fixed (¢, ---, t,)ER%, g, -,

ts, w) as a function of w& & belongs to the equivalence class of T'(#,, -+, t.)f
€L.(9), g(t;, -, ts, w) will be again denoted by T'(t,, -, t,) f(w). It then
follows from Fubini’s theorem that there exists a pu-null set E(f), dependent
on f but independent of (¢, -+, %), such that for each fixed w& E(f), T,

-+, ts) f(w) as a function of (¢, -+, #,)= R} is Lebesgue integrable over every
finite interval (a;, 81) X *** X (o, 8)C R%, and the integral

E M S T(ty, -+ L) f(w) dtydts (0@ E(f))

1

as a function of w& 2 belongs to L..(2) and satisfies

8 7]
<S 5 Tty -+, ta) o) dtyedts, u(w)>

“1
Aq
= Sﬁl --'g ! <f, T(tl, cee, td)*% > dtl'"dtr;
ﬂl (!d

for all u € L(2) N L(2) (where we let { f, u> = Ea fu dp) and hence for

all #=L,(#), because the adjoint semigroup I'* = {T'(t,, -, to)*; #1, -+, ta
>0} may be regarded as a semigroup of Dunford-Schwartz operators on
L,(2)+ L.(2) which is strongly continuous with respect to the norm topol-
ogy of L,(9Q).

Now let f be in the class L,(2)+ L.(2) and write f=g+h with g€
L,(Q) and h=L.(2). Then we may define the integral

3 5
S 'S “T(ty, ey b f dtyedts (€ Ly (2)+ Lo(2))
fll ad
over the finite interval (@, 8;) X - X (&, 83:) C R% to be the function
L s
("B 1, 0 £ dtyeede )

al ad

= [ 1, s 0 8) dbyoats
a] ad

™

1

)
_|_g ...E"T(th...,t,,)h(w) dt,---dt, a.e. on Q.
1 “
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It is clear that this definition of the integral does not depend upon the
particular choice of such a decomposition f=g+ k, and we have the relation

< YS T, ot f dty-dte, u>
T

“y

3 5
= S l"' S ‘ < T(tly MY td)f, U > dtl"'dt(l
oy ay
for all u= L,(£) N L.(L).

3. Maximal operators and inequalities. We will call an operator
M, which maps functions in L,(2)+L.(£) into measurable functions on
(9, %), a maximal operator if it satisfies:

(@ |M(f+2)| <|Mfl+|Mg| and | M(cf)|=1c||Mf| a.e. on @
where ¢ is a constant ;

(b) There exists a constant A>>0 such that for every f & L,(2)+ L.(2)
and all 1>0

IMfll. < Allflie and (| MF 1> 2} < 22 1if.

Lemma 1. If Mis a maximal operator on L,(2)+ L.(Q) then for every
FEL(Q)+L(2) and all t >0

p{|Mf1>(A+1)t <

% | £ dp.

{1r1>¢}

Proof. Putting f'(w)=f (0)1ys1>4 (w) and f,(w)=f(w)—f'(w), we have
I flle < ¢ and
| MFI<IM(F)|+ MM+ At.
Thus {|Mf|>(A+ 1)t} C {IM(f9)|>1t} and consequently we have

p{ | Mf1> (A+ D < p{| M) > #}

<4 {\51au,

Wr>e)
which completes the proof.

Corollary. If M is a maximal operator on L,(2)+ L.(%) then for
every fE L(Q)+ L.(2)

10717 dp < PAALDLY £ (1 <poo)
and
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|11 du < (4+1) [u(0)+ 4 [ 171108111 au.

[r1>1}

Proof. If 1<<p<Too then, by Fubini's theorem,
[1m717 au=p |7t 1 A1> 1) ar

Sl A [ ]

»
n><51

A+ D 1)

=pACa+D) | du@ @I et an]

0

_ pA(A+1) »
= PAALI | | £l dis)

and if p=1 then, again by Fubini’s theorem,
[1M71 dp={" i1 M1 >7) ar

<A+ D u@+ | wlIMFI>7) dr

o0
A

S(A+1)p(!2)+g:“dr[44(/i—m— S Ifld;w]
(Ifl>A:1|
=(a+D) w@+ A4+ | du) 171 | Lar]

{(n1>n
= (4+D) w@+4(4+D) | 17()]| log | £(w)] duw)
ui>1
Hence the proof is completed. (This argument is standard. )

For each #=>0, let R,(£) be the class of all functions f in L,(2)+ L..(@)
such that

(mi”% I:lOgL{—qH dp << o0

for all t>>0, and let L(2)[log*L(£)]" be the class of all functions f in
L,(2)+ L..(Q) such that

| £1 Qlog| 1" du << oo.

ur1>1

The classes R,(#), »=0, originally introduced by Fava [4] in order to
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obtain a weak type inequality for a product of maximal operators, have the
following properties :

(i) For each n=>0, R.(2)CL(£2)[log™L(£)]" and both classes coincide
if and only if p(£2)<<oo.

(ii) L.(2)C R,(&) and both classes coincide if and only if () << oo,

(iii) For each #=>0, R,.,(2)CR.(2) and both classes coincide if and
only if there exists a constant #>>0 such that E€. % and p(E)>0 implies
#(E)>>6.

(iv) For each n=>0, R.(£)is a linear manifold of L,(2)+ L.(2).

(v) For each #>0, R,(%) includes the linear manifold generated by

<U< L,(2), and both manifolds coincide if and only if x(£2)<Cco and there
1 3

exists a constant 4 >0 such that E€.% and p(E)>0 implies p(E)>4.

Some of the above properties are found in [4] and the others may be
directly proved, and hence we omit the details.

The following maximal theorem is a key lemma to prove individual
ergodic theorems for d-parameter semigroups I'={T(#,, -+, t0); b, =, ta >
0} of Dunford-Schwartz operators on L,(2)+ L..(Q).

Theorem 1. Let M be a maximal operator on L(Q)+ L.(Q), and let
A>>0 be the constant relating to M as in the definition of a maximal operator.
Then for each n=>0 there corresponds a constant B,= B(n, A)>0 so that
for every fER,.(LQ) and all t >0

M1 [1og MALT g | BelfL[10g BLALT™
HE 2] {B,IS1>1)

Consequently f & R...(£) implies Mf € R.(£2).

Proof. Fixany a>>1. Thenfor fER,, () and >0, putting g=
f/t, we have by Fubini’s theorem

| 121 og AT au— || Mgl Uiog] Mgl 1" du

(Mr) > at} {1¥y| >a)

w({| Mg|>a} N {| Mg|>r})([log r]1"+n[log 1*"") dr

oo

R o

=" 01 Mg > ) (Ctog 17"+ nllog r1*~) ar

+§: w{| Mg|>r}([log r]"+nllog ]"") dr
=TI+ 1II.

Since Lemma 1 implies that
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wl|Mg)>rp < AAED [ g1 40 (>0),
{C4+Dlgl > r}
it follows that

1<4 | (gl dux (log 117+ nllog 11 ar

[(A+Dlg] > a)

<Ha) | (4+Dlgl Dog (4+D)]gl1 dm,

[CA+DIg) > a)

where

I(A)= é [log @]~V S‘: ([log 71"+ n[log 1) dr.
Further, since ¢>>1 and »>>0, it follows that

IISS:[(A—(A:L‘D E lg| dr)([log 1"+ n[log r]"”’):l dr
[CA= Dyl >7)

= S d;b(w)[A(A-f-l)lg(w)lS

{C4+Dlgl > a}

< S du(w)| ACA+1)|gw) | ([log (4+1)] g() |1

{C4+Dlgl >a)

CA+D ]yl

(% [log r]"+% [log ]*™") dr]

a

+ [1og (4+ 1) g(u) |17

<AQ+Dogal™) | (A+D)ge)] llog (A+D)] g1 du(u).
G+ Dlg) >a)

Thus, letting B,= I:I(A)+ A1+ [log a]l ™)+ 1] (A+1), we get

|Jl?f| [log l]li{fl:ln d/bg S Bnltfl [loanItf] :|7l+l d/L,
(LM > at) (B 171> at}

which completes the proof,

Theorem 2. Let I'={T(¢,, -, ts); t,, >+, £c=>0} be a d-parameter
semigroup of Dunford-Schwartz operators on L,(Q)+ L.(2) which is assumed
to be strongly continuous with respect to the norm topology of L,(Q). For
FEL(D)+ L(2), define

Frw= sip L )" T, 1) £) dtoat.

nl,..._ﬂd>0 al'"aa 0

Then for each k=>d — 1 there corresponds a constant C.(d)>0 so that
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(1) if k=>d then for every fE R(L) and all t=>0

f* FARTS
S e [log ; 1% dp
r >0
CdIf >0
(i1) if k=d—1 then for every f € R,_(2) and all t =0

I {f*>t} g g Cd—l(;i)lfl [log Cd—l(;i)l fl :Id—l d}lr (<°°)'

(Cq (@111 > 11

Consequently f € R(Q) with k=>d implies f*<E R, _(2).

Proof. We proceed by induction on d.

First suppose that d=1. It is then known by [7] that there exists a
one-parameter semigroup {z,(f,) ; £, >0} of positive Dunford-Schwartz
operators on L(2)+ L..(92), strongly continuous with respect to the norm
topology of L,(2), such that for every f € L,(£)+ L.(2) and all #,>0

[T fI<={)] f] a.e on
Thus, for f =L,(Q)+ L.(2), if we set

MF)=sup L et 71(0) at,

then we have
f*<Mf a.e. onf

Since M~ is a maximal operator on L,(@)+ L.(2) with A=1 (cf. [4] or
[5]), we observe by Lemma 1 and Theorem 1 that the theorem holds for
d=1.

Next let us assume that the theorem holds for d =7 —1. To show that
the theorem holds for d ={, we define for each #>>1 an i-parameter semi-
group I'y={T.(t;, -, t:); t1, -+, t: =0} of Dunford-Schwartz operators on
L(Q)+ L..(2) by the relation

I if fy =ty ==ty
Tty e £) :{ 1=1 ;=0
T(t,+u/n, -, t:+u;/n) otherwise
where u,=(f,+ -+ +¢)—t for 1<k<i. Put, for f=L,(2)+L..(Q),

M, f(w)= sup

g >0 Ko (24

l Soi‘ Tuts, o, £) f(w) dty-dt.|.

Then clearly we have
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f*(w)<lim inf M,f(w) a.e. on £,

and hence by Fatou ’s lemma it is sufficient to observe that the inequalities
of the theorem hold, replacing f* by M.f.

For this purpose we next define, for each #=>1, an ({ —1)-parameter
semigroup J,= {S.{ts, -+, #) ; £3, =+, £, >0} of Dunford-Schwartz operators
on L,(92)+ L..(2) by the following relation

Sn(tZ: ) tt)= T?(O’ t29 T t’i)

Let us denote by {z,(¢;) ; {£1>>0} a one-parameter semigroup of positive
Dunford-Schwartz operators on L.(2)+ L.(2), strongly continuous with
repect to the norm topology of L,(£), such that for every f& Ly(2)+ L.(2)
and all t,>0

I Tn(tl)fl é Tn(tl)lfl a. e, on .Q,
where we let Tu(t,)=T.(, 0, -+, 0) for £,>>0. Then for f& L,(£)+ L.(2)

and ay, -+, @; >0 we have

1 ul.‘. ui e e .
a1"‘az]go So T.(ty, -, t) f dt, dtll

-2 " ner

2 i
A st et f dty )

1 n L N v £ ceedts
_<—a1 So T“(tl)]ag-"aigo g“ Sn(tZr ,t:)fdtz dtll dt,

Therefore if f& R,(£) and #=>i — 1 then the function g, defined by

(7 s, o 200t

)= sup
gﬂ( ) n2.~~,ni>0a1“-a:‘:

is, by induction hypothesis, in Ri-;.1(2), and for every >0

| £ log £y
lg,>1}

[logck(i '"tl)lf[ 1 dp <oo,
(e Ce=DIfE >

and thus if we set
M ) =sup 1| =) o) s,
a>0 X Jo

then M, f < M, g.a.e. on £, and furthermore we have:
(i) if #>iand f& Rw) then for every >0
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M, g.

Mn- gn k—1
; [log === ¥t dp

(g 9,>1)

< Cr_¢+;(1)gn [log Ck—(+€(1)gn]k—i+l dps,

(Ch i+ DOg> 1}

(ii) if k=7¢—1 and f< R,_,(£) then for every t>0

pM; g >1 < S _____C.,(lt)g,. du.
16,050, > 1)

Therefore, replacing f* by M, f, the inequalities of the theorem hold
with Cy(¢)=Cy(f —1)Ci-¢-1(1), and so the theorem holds for d =1i.
The proof is completed.

Remark. It may be readily seen from the above-given argument that
if 1<<p<<oo and fE L,(¥) then the function f * of Theorem 2 is in L, ()
and also satisfies

firoranst 2o 151 an,
4. Ergodic theorems.

Theorem 8. Let I'={T(t;, -, ts); t1, *, s> 0} be a d-parameter
semigroup of Dunford-Schwartz operators on L\(2)+ L.(2) which is assumed
to be strongly continuous with respect to the norm topology of L(Q). If 1<
p<oo and FELQ), then T(t,, -+, ts) f converges in the norm topology of
L2) as t,—>0, -+, ts—>0 independently.

Proof. Put, for >0,
S)Y=T(, -, t).

Since 4= {§(¢) ; +=>0} is a one-parameter semigroup of Dunford-Schwartz
operators on L,(£2)+ L.(£) which is strongly continuous with repect to the
norm topology of L,(2), it follows from [6] together with an approximation
argument that if 1<{p<Coo and f&L,(£) then S(¢)f converges in the norm
topology of L,(2) as t—>0. Write

So= ‘lino St f (EL(Q),

then we have S(¢) fo=S(¢) f for all £>>0, and thus if ¢,, ---,#,>>¢>>0 then
we have
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Ty, - t) f=T @1, =, ta=1)S(t) f
=T(t1"‘t, °ty td—t)S(t)fo=T(t1, vty td)fg.

Therefore for each fixed >0, it follows that

”T(tl) ) td)f“fo”p:"”T(tn R td)fu —fu“p
< |IT@,, "',td)s(a)fo_s(a)fol|p+”S(a)fo_fo”p
+ Ty, -+, 2t fo— S(@) folll.

Since ||S(a) fo—foll,—>0 as a—>0, given an £>>0 there exists an ¢>0
so that ||S(a@) fo—foll,<<E. Then we get

I T, -+ ta) f=Sfoll, < T, -+, 2)S(@) fo—S(@) foll,+2€.

On the other hand, since I'={T({,, --*,%4); t1, ***, £a>>0} is strongly
continuous with respect to the norm topology of L,(2) for 1<<p<Ceo, it
follows that

Ty, -+, t)S(@) fo—S(a) fol ,—>0

as t;—>0, -, t,—>0 independently. Therefore T'(¢,, --*,s)f converges
to f, in the norm topology of L,(2) as {,—>0, ---, £,—>0 independently.
The proof is complete.

Theorem 4. Let I'={T({t,, -, ta); t1, -+, 2a=>0} be a d-parameter
semigroup of Dunford-Schwartz operators on L)+ L.(2) which is assumed
to be strongly continuous with respect to the norm topology of L,(9). If fe
R,_(2) then the averages

S“l."S:a T(t, - td)f(‘”) daty---dt,

A(al) ) ad)f(w)zal__'ad o

conver ge almost everywhere on 2 as cty—>0, -+, aa—>0 independently.

Proof. Theorem 3 ensures us to define an operator 7, on L.(2) by

the relation
TOf = lim T(tl) '“’td)f (fELl(-Q))
Ly tg—>0

where the limit is in the norm topology of L,(&£) and where ¢,, -+, f, tend to
zero independently. Then we have || 7yll; <1 and furthermore |7, f |l <
Il 1l for every fEL(£2) N L.(2). Thus, asin Section 2, we may and will
assume that 7} is a Dunford-Schwartz operator on L;(2) N L.(£).

It will be proved that if f € R,-,(£2) then

Alay, =, &) f@)—>Tof(w) a.e. on &

as o, —>0, --+, ay—>0 independently.
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To do this, first suppose that 1<{p<oo and fEL,(2). Let, for each
n>1,

fo= [T, ot 1 dtat, (L),

Then we see that
lim “fn_ T()f“p= 0.

Furthermore it may be readily seen that for almost all (¢;, -+, t;, ©)E R% X
£2 with respect to the product of the Lebesgue measure and ¢ we have

Ty, -, ) folw) = (n%) S:/n.-- g;/nT(t1+$1: e, tat+54) fw) dsy-+-ds,

where of course T'(¢,, :*+, ts) fo{w) denotes a scalar representation of T'(¢,,
s ta) fuy @1y t)ERY. Thus for almost all wEQ, T, -, to) fo(w) as
a function of (¢,, :--, £,)E R% is continuous, and clearly

Alaty, -+, @) folw) —> fo(w) a.e. on 2

as a;—>0, ---, a&,—>0 independently. Since T,f,=f., it then follows
that

lll‘ﬂ sup | A(ay, -, a,,)f((u)—- Tof(w)l

prag=—>0

< lim sup | Ay, -+, &) (f—F2) (@) — To( f—f) () |

apereay —> 0

< sup |Alay, -, a) (f=fa) (@) |+ | To( f—f2) ()]

al.m,ad)ﬂ
< (f—fa) @)+ | To(f—f2) (w)| a.e. on L.
Since liin H(f—=f)*II,=0 by the remark in the preceding section and lim
IITo(f—f,.)H,,=li,m | f—fall,=0, this implies that for fEL,(Q) with 1 <<p

<00, Alay, -+, as) f(w) converges to T, f(w) a.e. on 2 as a;—>0, -+, az
—— 0 independently.
Next suppose that f& R, ,(2), and then take f,&L,(£), where 1 < p
<Coo, sothat | f—f,| <|f| and lim f,=fa.e. on £. Then
lim supnl Alay, -+, aa) fw)— Ty f (o) |
nx,-n,ad-—-)

< lim sup iA(a] y % ad) (f_fn) (w)_ To(f—fn) ("))l

ap ey —> 0
< (f=f)* )+ | To(f—fa) ()| a.e. on &,
and by Theorem 2, for every =0
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plif=ryr>n< | Collffl g Codlihalyenr g,
(Cq_DIF=11>8) ¢

where the right-hand side of the last inequality tends to zero as # — oo,
by virtue of Lebesgue’s dominated convergence theorem. On the other
hand, as in Lemma 1, we have for every >0

plITr—>n<2 | 1r—nla,

(215=7, 1>t}

and the right-hand side of this inequality tends to zero as # —> oo, by
Lebesgue’s convergence theorem, too. Therefore we observe that the theo-
rem holds for f= R, ,(£2), and the proof is completed.

Remark. It is known (cf. [9]) that if =1 then Theorem 4 holds for
every feL,(2)+ L..(2). But, as is well-known (cf. [4] or [10]), if d >2
then the theorem may fail to hold for some f& L,(£).

Lemma 2, Let '={T(t,, -, ts); b1, -+, ta = O} be a d-parameter semi-
group of Dunford-Schwartz operators on Li(2)+ L.{(2) which is assumed to
be strongly continuous with respect to the norm topology of L,(£2). If 1<p
<o and fEL{R), then the averages A(ay, -+, a.) f converge in the norm
topology of L () as oy —> o0, »++, ag—> oo independently.

Proof. {A(ay, -, au); oy, -+, a;>>0} may and will be regarded as a
net of bounded linear operators on L,(£). Then it follows that this net is
I'ergodic in the sense of [8], and since L, (@) with 1<<p<C oo is a reflexive
Banach space, it follows from [8] that A(a;, -+, &) converges in the strong
operator topology as q; —>oo, -+, @;—>oc independently. This completes
the proof.

Theorem 5. Let I'= {T({t,, -, t); t1, =+, ta=>0} be a d-parameter
semigroup of Dunford-Schwartz operators on L,(2)+ L.(2) which is assumed
to be strongly continuous with respect to the norm topology of L\(2). If f€
Ri_, (Q) then the averages Alay, -+, az) f(w) converge almost everywhere on
2 as ay—> o0, +++, @g—> o° independently.

Proof. Let 1<<p<Coco. Lemma 2 enables us to define an operator
T.. on L(2) by the relation

T.f= lim Ala, - a)f (fEL(Q)

le.---, 'rd —> 00

where the limit is in the norm topology of L,(2) and where «;, -+, @, tend
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to infinity independently. Then we have || T..|l,<<1, and for f&€ L,(2) N L,(£2)
there exists a sequence (f,) in the set {A(,, -, a.) f: oy, -+, @ >0} such
that

T.f=lim f, a.e. on £.
n

Since |l £.ll, < || fIl; for each n=>1, it follows from Fatou’s lemma that

1T £l < lim inf || £l < 11 £

Hence T.. can be uniquely extended to a linear contraction on L,(£), which
satisfies || 7w flle < |l fll. for every fEL(2)NL.(L2). Therefore, as in
Section 2, we may and will assume that T.. is a Dunford-Schwartz operator
on L,(2)+ L..(2).

It will be proved that if f& R,_,(2) then

Alay, -+, ao) f(@) —> Tw. f(w) a.e. on &

as q, —> o0, --+, s —> oo independently.

To do this, however, in view of the proof of Theorem 4, it is enough
to check that the theorem holds for every f€ L,(£). And to check this it is
also enough to notice that the theorem holds for every f in a dense linear
manifold of L,{£).

For this purpose, let M denote the linear manifold generated by the
functions f of the form f=h+[g— T(s:, -**,5¢)&], where h, gEL(2),
T, t)h=hforall ¢, -, >0, and g€ L.(2). Lemma 2 implies that
M is dense in L,(2) with respect to the norm topology of L, (%), and for
such a function f it follows easily that T.. f=# and that

Alay, -+, o) f{w) —> h{w) a.e. on 2

as a; —> o0, -+, a,—> 20 independently. This completes the proof.

Let Iy = {T,(¢); t>0}, 1<j<d, be one-parameter semigroups of
Dunford-Schwartz operators on L,(2)+ L.(2) which are assumed to be
strongly continuous with respect to the norm topology of L,(2). (Here we
do not assume that these one-parameter semigroups commute. ) Then, since
for each f € L,(2), with 1<<p<Coo, the function T,(,)---Tu(ts) f of (¢, -,
t)E R% is continuous with respect to the norm topology of L,(2), it follows,
as in Section 2, that for every f & L,(2)+ L..(2Q) there exists a scalar func-
tion T4y(#,)-:* Tults) f(w), defined on R% X2 and measurable with respect to
the product of the Lebesgue measurable subsets of R% and %, such that
for each fixed (¢, -+, t)ERL, Ty(t) -+ Tults) f(w) as a function of wEL
belongs to the equivalence class of T(#,) - Tu(f.) f. Then we may define,
for almost all wE 2,
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A(al.! R ad)f((')):

g S:l g:d Ti(t)- Tults) f () dty-+-dt,

Then we have the following theorem which is similar to the above
Theorem 5 and a generalization of Theorem 5 in Fava [4].

Theorem 6. Let I'y={T,(t);¢t>0}, 1<j<d, be one-parameter semi-
groups of Dunford-Schwartz operators on L,(2)+ L..(2) which are assumed
to be strongly continuous with respect to the norm topology of L,(£). If f&
R;(Q) then the averages A(ay, -+, as) f(w) converge almost everywhere on
2 as a;—> 00, o, qg—> o0 independently.

Proof. It is known (cf. [3], p.694) that if 1<<p<<oo and fEL,(2)
then the averages A(a,, -, a;) f(w) converge almost everywhere on £ and
as well in the norm topology of L,(2) as a;—> o0, -+, ay—> oo independ-
ently. Thus, by using Theorem 1 repeatedly, we may see, as in Theorem
5, that the desired result holds for f& R,_,(2). We omit the details.

In conclusion we should like to remark that Yoshimoto [11] has obtained,
using a maximal ergodic theorem due to Hasegawa-Sato-Tsurumi [5],
vector valued ergodic theorems in the same direction for a one-parameter
semigroup {7'(¢); t>0} of linear operators on L,(2, X)+ L..(#2, X) which
satisfies some norm and integrability conditions, X being a reflexive Banach
space. Since the scalar field is a reflexive Banach space, Yoshimoto’s
results generalize ours when restricted to one-parameter semigroups. But
we could not extend his results to d-parameter semigroups with d>2,
because the existence of a positive one-parameter semigroup is not known
which dominates a given L,(@2, X) contraction operator one-parameter semi
group.

Added in proof. Professor S. A. McGrath kindly informed me that
he proved, in his recent paper [Local ergodic theorems for noncommuting
semigroups, Proc. Amer. Math. Soc. 79 (1980), 212-216], the following
local ergodic theorem :

Let I'y={T,(¢); t>0}, 1<j<d, be as in Theorem 6. Assume, in
addition, that ll'gnall’.l‘,(t)—l ;=0 for each j. Then for any f< R,.,(2) the

averages A(q,, -+, au) f(w) converge almost everywhere on £ as o, —>0,
-+, aiz—> 0 independently.

Modifying his argument and using the local ergodic theorem in [6],
it is easily seen that McGrath’s theorem holds, without the additional
hypothesis that tli_rﬂ) | T5(¢)—I]],=0 for each j.
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