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ON RINGS WHOSE NON-CONSTANT
SEMIGROUP ENDOMORPHISMS ARE RING
ENDOMORPHISMS

YASUYUKI HIRANO and Hisa0 TOMINAGA

Throughout the present note, R will represent a ring (different from 0),
J the Jacobson radical of R, and R’ the subset {xy|x, yeR}. If R=FR’
and 2x=0=x" for all x=R, then Ris called a power ring. Following [3],
Ris called a right perfect ring if J is right T-nilpotent and R/J is Artinian.
A ring Ris called a right duo ring if every right ideal of R is two-sided. As
is easily seen, every prime ideal of a right duo ring is completely prime.

In [2], J. Cresp and R. P. Sullivan considered the following property
of rings : (¢/) every non-constant (multiplicative) semigroup endomorphism
is a ring endomorphism, and dealt with commutative rings with the property.

The purpose of this note is to prove the following theorems.

Theorem 1. If a right perfect ring R has the property (¢'), then R is
either GF(2) or a zero-ring of order 2, and conversely.

Theorem 2. Suppose R has the property (¢). If Ris a right duo ring
or a P. I.-ring, then there holds one of the following :

1) R is a completely prime ving with no non-zero proper prime ideals.
2) Ris a zero-ring of ovder 2.
3) Ris a non-nilpotent, nil ring with R=R’.

In preparation for the proof of our theorems, we establish the following
lemmas,

Lemma 1. Suppose R has the property (¢'). If Pis a proper completely
prime ideal of R, then P=0.

Proof. Obviously, the map f: R—R defined by
f= 0 ifxeP
T lx  ifxEP
is a non-constant semigroup endomorphism, and so by (¢’), is a ring endo-
morphism. Hence, A=(R\P)U {0} is a subring of R. Since R=PU A
and R=~ P, by Brauer’s trick we obtain R= A, and hence P=0.
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Lemma 2 ([2, Theorem 1]). Let R be a Dedekind finite ring with 1.
If R has the property (¢’), then R=GF(2).

Proof. Let N be the set of all non-units in R. As is easily seen, the
map f: R—R defined by

_ (0 ifxEN
=11 ifxeN

is a non-constant semigroup endomorphism, and so by (¢’), is a ring endo-
morphism. Hence, N is a proper completely prime ideal, and so N=0 by
Lemma 1. We conclude therefore that f is an isomorphism of R onto GF(2).

Lemma 3. If R has the property (¢'), then there holds one of the
following :

1) Ris a completely prime ring with no non-zero proper completely
prime ideals.

2) R is a zeroring of order 2.

3) R is a non-reduced ring with R =R’.

Proof. If Ris areduced ring, then by [1, Theorem 2] R is a subdirect
sum of completely prime rings. Hence, by Lemma 1, R is a completely
prime ring without non-zero proper completely prime ideals. Next, assume
that R is a non-reduced ring with Rs~R’. Then there exists a non-zero
element ¢ with > =0. Given a proper subset S of R containing R’, we see
that the map f: R —R defined by

f= 0 ifzxES
Y= 1a ifzeS

is a non-constant semigroup endomorphism, and so as usual, is a ring
endomorphism. Thus, S is an ideal of R as the kernel of f, and R/S is of
order 2. Let b be an arbitrary element in R\R’. Since both R’ and R’U {4}
are ideals of R, we see that x’+b=>5 for all x’=R’, whence it follows R’
=(, We conclude therefore that R is a zero-ring of order 2.

We are now ready to complete the proof of our theorems.

Proof of Theorem 1. According to Lemma 3, we consider first the
case that Ris a completely prime ring. Obviously, R is then a division ring,
and therefore R =GF(2) by Lemma 2. Next, we consider the case that R
is a non-reduced ring with R =R’. Since R/ Rby [3, Lemma 2], J can-
not equal R. Let p be the natural homomorphism of Ronto R/J, M the set
of all non-units in R/J, and M=p"'(M). Let ¢ be an idempotent lifted
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from the identity of R/J, and define the map f: R—R by

f_{o if xe M
T=1e ifxzM.

Then f is a non-constant semigroup endomorphism, and therefore a ring
endomorphism. Hence, M is a proper completely prime ideal, and so M=0
(and R =GF(2)) by Lemma 1. But this is impossible.

Proof of Theorem 2. We consider first the case that R is a right duo
ring. According to Lemma 3, we consider the case that Ris a non-reduced
ring with R =R’. Obviously, R cannot be nilpotent. Moreover, R cannot
be completely prime, and so R contains no proper (completely) prime ideals
(Lemma 1). Hence, Ris a nil ring.

In what follows, we assume that R is a P. I -ring. If R has a proper
prime ideal P, then R/P is a Goldie ring (see, e. g. [4, Corollary 1]). Let
X be the subset of R consisting of all x& R such that x4+ P is regular in R/P.
Then we can define a non-constant semigroup endomorphism f by

0 ifxggX

xf:[x ifxeX.

By (¢'), fis a ring endomorphism, and so Ker f(2P) is a completely prime
ideal of R. Then, by Lemma 1, Ker f=0 (and so P=0) and R is com-
pletely prime. Now, our assertion is immediate by Lemma 3.

Finally, by making use of Lemma 2 and Theorem 2, we reprove
[5, Theorem 1].

Corollary 1. If a commutative ring R has the property ('), then there
holds one of the following :

1) R=GF().

2) Ris a zero-ring of order 2.

3) Ris a power ring.

Proof. First, we claim that for any x, yER, 2xy=0, x’y=0=xy’,
and x* is an idempotent. If x*=0 for all x, then 0=(x+y)*=2xy and x*y=
xy®. Next, assume that ¢’5~0 for some a. Then (x+3y)?=x*+y* by (¢’).
Hence, 2xy=0. If x*=0 for all x, then 0=(x+y)’=x’y—xy>. On the
other hand, if #*=40 for some b, then (x+y)*=x*+3* by (¢’), whence it
follows 0=x%y —xy%. We have therefore proved the claim except the last
one. When y=4x2, x’y=xy® implies x*=x°. Hence, x*is an idempotent.

Now, we proceed to complete the proof. If R is completely prime,
then R contains 1 by the above, and hence R=GF(2) by Lemma 2. Next,
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assume that R is a non-nilpotent, nil ring with R=R’ (see Theorem 2).
Then, for every a=uvE R’= R we have 2¢=0 and a*=u*»*=u*v=0 by the
above claim. This completes the proof.
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