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SOME COMMUTATIVITY THEOREMS FOR
SEMI-PRIME RINGS. 1I

To Professor Kentaro Murata on his sixtieth birthday
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Throughout the present paper, R (~0) will represent an associative
ring (with or without 1), and C the center of R. Let N be the set of
all nilpotent elements of R. We denote by J and D the Jacobson radical
and the commutator ideal of R, respectively. A ring R is called s-unital
if for each x in R ,x € Rx N xR. Asstated in [9], if R is an s-unital
ring, then for any finite subset F of R, there exists an element ¢ in R
such that ex = xe = x for all ¥ in F. Such an element ¢ will be called
a pseudo-identity of F.

The present objective is to add to the study in the previous paper [8].

1. In this section, we shall prove a commutativity theorem for prime
rings which deduces the principal theorem of [1].

Lemma 1. Let R be a prime ring without non-zero nil ideals in which
Sfor every pair of elements x, y there exists a positive integer n = n(x, y)
such that [(xy)" — (yx)", x] = 0. If C contains a non-zero element c,
then for each quast-regular a & R and each x € R there exist positive
integers k, 1 suchthat [a, [a, 1] =0 and 1! [a, x*]' = 0.

Proof. Using hypothesis for elements ¢(1+ @) and x(1+ a)~!, there
exists a positive integer % such that c*[(1+a)x*(1+ @)~ ' —x*, ¢c(1 + a)] =0,
where 1 + a is formally invertible. Then

ca [a,x]]1=—-clQ+a)rQ+a)y ' —2 cA+a)]1+a)=0.

Since R is prime, we obtain [g, [, x*]] =0. Similarly, (g, (&, (x*)*]1=0
with some positive integer m. Hence, by [8, Lemma (3)], 0=,,[a, (x*)""]
= (2m) ! [a, £*]*™.

Lemma 2. Let R be a torsion-free prime ring without non-zero nil
ideals itn which for each pair of elements x, y there exists a positive integer
n = n(x, y) such that [(xy)" — (yx)", x] = 0. If C contains a non-zero
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element ¢, them R is a reduced ving.

Proof. Let a be an element of R with &> =0. Given x € R,
there exists a positive integer # such that [(ax)" — (xa)",2] = 0. Then
we have 2(ax)**! = [(ax)" — (x2)", a]Jx =0, and therefore (ax)"*' = 0.
Hence aR is a nil right ideal. Let #,» € ¢aR. Then, by Lemma 1, there
exists a positive integer % such that [«, [u, (v + ¢)*]]1 =0. If »*=0 then
k" u, [u,v]]=[u, (4, (v+¢)*]]1 =0, andso [, [#,v]] =0. By making
use of induction on the nilpotency indices of nilpotent elements v, we can
easily see that [«, [#,v]] =0 for all »,v=aR. Thus, [6, Lemma 2.1.1]
shows that ¢ = 0.

Theorem 1. Let R be a prime ving withoul non-zero nil ideals in
which for each pair of elements x,y there exists a positive integer n=n(x,y)
such that [(xy)* — (yx)", 2] = 0. If C contains a non-zero element, then
R is commutative.

Proof. First, we show that J is commutative. Let ¢, b = J. By
Lemma 1, there exist then positive integers %, [ such that [g, [a, b*]]1=0
and /![a, 8*]'=0. If R is of characteristic p >0, then [a” b*] =
pa*'[a,b*] =0, and hence J is commutative by [7, Theorem]. On the
other hand, if R is of characteristic 0, then [g, b*] = 0 by Lemma 2,
and hence J is commutative again by [7, Theorem]. Since DZ J by [8,
Corollary 1], D is a commutative ideal. Hence, D =C by [5, Lemma 1.5].
Thus, again by the same lemma, we obtain eventually R = C.

Corollary 1 ([1, Theorem 2]). Lef R be a ring without non-zero nil
ideals. If for each x,y € R there exists a positive integer n=n(x,y) such
that (xy)" — (yx)" € C, then R is commutative.

Proof. Asis well known, R is asubdirect sum of prime rings with-
out non-zero nil ideals. Thus, we may assume that R itself is prime.
Then, C is non-zero by [3, Theorem 3], and therefore is commutative by
Theorem 1.

2. In this section, we shall prove a commutativity theorem for s-unital
semi-prime rings which improves [4, Theorem 1].

Lemma 3. Suppose that for each x,y € R there exist positive integers
m=m(x,y) and n=n(x,y) such that [(xy)", [(xy)", (y2)"11=0. If a®=0
then aR is a nil right ideal.



SOME COMMUTATIVITY THEOREMS FOR SEMI-PRIME RINGS. 11 9

Proof. See the proof of [8, Theorem 1].

Lemma 4. If R is a semi-prime ring satisfying the polynomial identity
Ix4+y+axy,x+y+yx] =0 (or [xy, yx] =0), then R is commutative.

Proof. Since D is a nil ideal by [2, Theorem 1], D must be 0 by
'6, Lemma 2. 1. 1].

Theorem 2. Let I, m be fixed positive integers. If R is an s-unital
semi-prime ring, then the following are equivalent :

1) R is commutative.

2) For each x,y € R there exists a positive integer n = n(x, y) such
that [x*y* — (x9)*, 2] =0 and (2" — (xy), y] =0(k=n, n+1, n+2).

3) For each x, y E R there exists a positive integer n=mn(x, y) such
that [y*x* — (xy),x] =0 and [y*2* — (xy), 9] =0(k=n, n+1, n+2).

4) For each x, ¥y € R there exists a positive integer n = n(x,y) such
that [(xy), (yx)™] =0(k=mn, n+ ).

Proof. 1)=>2)—4). Trivial.

2)=—=>1). We first prove the case that R is semi-primitive. Note
that 2) is inherited by all subrings and homomorphic images of R. Note
also that no complete matrix ring (S). over a division ring S({(>1)
satisfies 2), as a consideration of x» = E;, and y = E,, shows. Because
of these facts and the structure theory of primitive rings, we may assume
that R is a division ring. Let x, y be non-zero elements of R. By 2),
there exists a positive integer # such that [x*y*—(xy)*, 2] =0 =
[x*y* — (x9)%,9] (k=n, n+1, n+2). Then, we get [(xy), yx]=0
(k=n,n+1). The last equalities yield [xy, yx] =0. Hence R is
commutative by Lemma 4.

We now proceed to the general case. Let x,y € J, and e¢ a pseudo-
identity of {x,y}. Then, by making use of the argument employed above,
we can easily see that [(e+ x)(e+ ), (e + ¥) (e + )] =0, namely
[x+y+ xy,x+y+yx] =0. Hence, J is commutative by Lemma 4.
Since D T J by the first step, D is a commutative ideal, and therefore
DC C by [5, Lemma 1.5]. Again by the same lemma, we obtain eventu-
ally R=C.

3)=>1). The proof is quite similar to that of 2) =>1).

4)=>1). Without loss of generality, we may assume that R is

prime. As is easily seen, [(xy)", (3x)*] =0 and [(xy)"", (yx)"] =0 yield
™ (xy)" [(x9), (92)"] = 0.
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Now, let a>=0. Let «,v be arbitrary elements of the nil right ideal R
(Lemma 3), and ¢ a pseudo-identity of {«, »}. Then, by (*), we readily
obtain [{(e+ u) (e + v)}’, {(e+ ) (e+u)}™] = 0. This means that ¢R is
a P. L -ring, and then [6, Lemma 2. 1. 1] shows that ¢ = 0; R is a reduced
ring. As is well known, the prime reduced ring R has no non-zero zero-
divisors. Consequently, again by (*), we get [(xy), (yx)"] = 0. Hence,
R is commutative by [8, Theorem 3].

3. Finally, we prove the following commutativity theorem for torsion-
free s-unital semi-prime rings.

Theorem 3. Let R be a torsionfree s-unital semi-prime ring. If
for each x,y € R there exists a positive infeger n=n(x,y) such that
[(xy)*—(yx)", ] = 0,then R is commutative.

In preparation for the proof of Theorem 3, we establish the following
lemmas.

Lemma 5. Let R be an s-unital ring in which for each pair of
elements x, y there exists a positive integer n =n(x,y) such that
[(xy)"—(yx)", x]1 = 0. If a is quasi-regular, then for each x € R there
exist positive integers k, | such that [a, [a,x*]] =0 and 1! [a, *]* = 0.

Proof. Let e be a pseudo-identity of {g, x}, and &’ the quasi-inverse
of @. Using the hypothesis for the elements ¢ + ¢ and x(e+ @), we can
find a positive integer % such that [x“— (¢ + @)x*(e + @'), e+ 2] =0. Then
[a, [a, x*]] =[«*— (e+a)x*(e+a’),e+ al (e+ a)=0, and we can apply the
argument employed in the last part of the proof of Lemma 1.

Lemma 6. Let R be a torsion-free s-unital semi-prime ring in which
for each pair of elements x, y there exists a posttive integer n = n(x, y)
such that [(xy)" — (yx)",x] = 0. Then R is a reduced ring.

Proof. Let ¢*=0. Then aR is a nil right ideal (see the proof of
Lemma 2). Let #,v=aR, and e a pseudo-identity of {«,v}. By Lemma 5,
there exists a positive integer % such that [« [«, (e+2)*]1]1=0. If »*=0,
then k[u, [, v]] = [u, (4, (e + v)*]] = 0. Hence [u, (¥, v]] =0. Now,
by making use of induction on the nilpotency indices of nilpotent elements
v, we can easily see that [, (#,v]] =0 for all #,v = aR. Thus,
[6, Lemma 2. 1. 1] shows that a = 0.

Proof of Theorem 3. In view of Lemmas 5 and 6, we can proceed in
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the same way as that of Theorem 1.
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