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A NOTE ON ISOMORPHISM INVARIANTS OF
A MODULAR GROUP ALGEBRA

TOrRU FURUKAWA

1. Introduction. Let F(G) be the group algebra of a group G over
the prime field F = GF(p) and let {M;,(G)}:= be the Brauer-Jennings-
Zassenhaus M-series of G relative to the prime p: M, (G) = G and
M;,(G) = (G, M., XG)) M. (G for i=2, where (i/p) is the least
integer not smaller than i/p and (G, M., ,(G)) is the subgroup generated
by all commutators (x,3) = x7y 'xy, x € G, y € M:_,(G. In [4], L
B. S. Passi and S. K. Sehgal showed that for each /=>1 the factor
groups M, (G)/ M..,,,(G) and M., (G)/M.;., (G) are isomorphism invari-
ants of F(G). In this note we shall show that the factor groups
M. ,(G)/M;.;,(G) are isomorphism invariants of F(G) for all i =1
and all 7 with 1<;<7+ 1, too.

2. Notations and preliminary results. Let G be a group, N a
normal subgroup of G, and R a commutative ring with identity. We
adopt the following notations :

R(G) = the group ring of G with coefficients in &.
Ax(G, N) = the kernel of the natural homomorphism R(G) = R(G/N).
Ar(G) = Ax(G, G) (the augmentation ideal of R(G)).
2(G) = the {-th power of Az(G).
U(R(G)) = the unit group of R(G).

It is easy to verify that if S and I are subrings of a ring such that
SI'+ IS < I then S+ I is a subring which contains 7 as an ideal. Now,
let G* be a subgroup of G, and I an R-submodule of R(G) satisfying
IPS T and Ap(G*)I+ IAx(G*) S 1 Since R(G*) = Ax(G*) + R, we
see that R(G*) + I forms a ring containing I as an ideal. Let

v: URGH)) > URG + I/I); u—>u—+1

be the group homomorphism induced by the natural ring homomorphism
R(G*) > R(G*) + I/I. Denoting by »* the restriction of » to G*, we
see that the kernel of »* coincides with G* N(1 + I) and the image of
v* is G*+ I/ Hence, we have an isomorphism G*/G*N(1 + I)=
G*+1I/I. 'The next is an immediate consequence of this fact.
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Lemma 1. Let 0: R(G) — R(H) be an R-algebra isomorphism. Let
G* and H* be subgroups of G and H respectively, and I an R-submodule
of R(G) such that I* S I, A(G*)I+ IA(G*)S T and 0(G*+ 1) =
H* + 0(I), then G*/G*NQA + I)=H*/H*NQ + 0)).

Let F be the prime field GF(p). Then, it is known that for each
i=1, M, (G) coincides with D, (G) = GN (1 + A%(G)), the i-th dimen-
sion subgroup of G over F (see, e.g. [1,2, 3,5 and 6]). Now, let
L. (G) = A(G, M, (G)) + A¥(G) for i=1.

We borrow the following in [4].

Lemma 2. (1) L,(G)={x—1+a|xeE M, (G), ac AF(G)}
for i =1.

(2) Let 0: F(G) —» F(H) be a normalized isomorphism in the sense
that the sum of the coefficients of 0(g) is 1 for all g= G Then
0(L.,(G)) = L ,(H) forall i=1.

3. Main theorem. We are now in a position to prove our main
theorem.

Theorem. Let F be the prime field GF(p), and {M;,(G)}.z the
Brauer-Jennings-Zassenhaus M-series of G relative to the prime p. If
F(G) == F(H), then M, {G)/ M., ,(G)=M, (H)/My.; (H) forall i=1
and all 7 with 1<i<j+ 1.

Proof. Throughout the proof, we shall omit their subscripts p and F
from M,,( ), L. ) and A,( ), which are denoted by M( ), L{ )
and A( ), respectively.

Let L; = L{G), and I, = A™'(G) :=1). Since

Ii.t+l 2 Ii+l,i<r] 2 L+],Z—2 (i 2 1) >

we can find subspaces [, ., of I, containing I, . such that [, ;.=
L+ L and Livive 2 Livrinn N Ligea Obviously,

I;,idrz ;) L‘+l.z‘+?_ _—D—-_ Iffl,i+3 (i ‘_.2_ 1) »

and so we can repeat the same procedure to obtain subspaces I;..; of i+
containing fi.i,:+3 such that I = Ly + Livy and L eas 2 L2 N
L. In this way, for j =0 we can construct inductively the series
{I.¢-j} = of subspaces of F(G) such that

(1) Liws 2 Livin 2 Laryivneg ((=1;;=0)
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(2) Il.i+j = Ii+1.t+j + Ii,i+j+1 (ig 1; .7 2 1)
(3) Lirisirs 2 Dorns N Liegn G=1;jj=1).

From (1), we see that {..,} ;= is a decreasing series for {=1, and
moreover if 1 <:i<k then L. 2 Lier. We have therefore

(4) Nav1 2 Lan1 2 2 Lkt 2 Livren (k=1).
Similarly, by (2) and (3), we can prove

(5) Lin = Liwn + Lze (1 <i< k)

(6) Lurrse 2 Lornaer O Likez 1si<hk).
Combining (4 ) and (5 ), we obtain

(7)) Lo = Lurenr + Lixee AiLe).

Since L=t — 1+« {2 € Misi(G), & € Lisyk+o) by Lemma 2 (1),
(7) together with (1) and (4 ) implies
(8) Liy=lx—1+a|xE€ M.[G), a € L.y} ((=1;=0).
Now, we claim that
(9) [,-,.;={x—1+a|xEM(G),aEIi,i+j+1} f=1; j=0).
According to (1), it suffices to show that the left-hand side of (9) is
contained in the right-hand side. We shall proceed by induction on j,
keeping i fixed. The first step of induction, when j =0, is assured by
(8). Suppose j =1 and the statement holds for j —1. Given 81, ,,
by the induction hypothesis, 3 =% — 14 a with some x € M;(G) and
a € Iy By(8), a=y—1+7 withsome y&E M, ;(G) and 7 E [, ;4.1
Therefore,

g=x—1+y—-1+7
=zxy— 144, where 6 =7 — (x — 1) (y — 1).
By (4), _
(x — 1) (J? -De A'(G)AHI(G) < A“’H(G) = Lijivir1 & Lsegen

which implies 6 & I,;,;.,. Since xy € M;(G), the induction is complete
and hence (9) is established.

Next, we claim that
(10) GNQA + L) = M (G) 1<i<k).

By (4), the right-hand side of (10) is contained in the left-hand side.
To show the reverse inclusion, we proceed by induction on %, the statement
being clear for # =1. Suppose GN (1 + L)) E Mt (G) A < i < k).
To complete the induction, we have to show that

GN QA+ L) E MeooG) Atk + 1)

To see this, we use descending induction on #, the above being obvious
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for t =k + 1. Assume that GN(1 + L iss) & M:i..(G) for some ¢ with
2<¢t<k+ 1. Then, by our induction hypothesis GN(L + I._; i) S
MI:'H(G)" Let g bein GN(1+ I-142) (S GN(1+ L_1 x+) by (1)). Then,
£€ M,.:(G), andhence g—1€E L. i(G) = Lis1.441E 11 by (4). Noting
here that L 41 N L1542 & L4+ by (6), we obtain g — 1 & [, ;... Now,
according to the decreasing induction hypothesis, it follows g & M..,(G).
This completes the induction on %, and hence (10) has been proved.

Now, assume that an isomorphism ¢: F(G) — F(H) is given. Then,
without loss of generality, we may assume that ¢ is normalized, and
therefore 6(A*(G)) = A(H) and 0(L{G)) = L{H) (Lemma 2 (2)). Hence,
applying the above argument to the subspaces 0([,..;) of F(H), we do
have the following :

(9,) B(Ii.t) ={h—1+8 | he MH), pe 0(L’.i+j+l)} f=1; 7=0).
(10) HOQ + 0(Len)) = Min(H) (1 =i< k).

(9) and (9’) immediately imply

(11) 0(Mi(G) + Li1541) = Mi(H) + 0(Lysag41) ((=1;=0).

We are now ready to complete the proof of our theorem. Let 7,;
satisfy 7=1 and 1<j<i+ 1. Then, since L 1i; S Lis; E L=
A*1(G) by (1) and (4), there holds that

I?,zu = AZH'(G) = Ai+j(G) = Livjorivs & Ling.

Similarly,
A(M(G))L,;-ﬂ + Ii,i+j A(Mi(G)) g Il.i+j'

Finally, by (11)
0 (M(G) + L. J) = M(H) + 0(L.i+}')'

Thus, in virtue of Lemma 1, we get

M(G)/M(G) N A + Lusg) = M(H)/M(H) N (1 + 6(,:+5). Since
M(G) N A+ L) = MiuAG) and M.(H) N A + 0(Liiss) = Mu(H)
by (10) and (10’), the theorem has been proved.
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