A NOTE ON ISOMORPHISM INVARIANTS OF A MODULAR GROUP ALGEBRA

Tôru FURUKAWA

- 1. Introduction. Let F(G) be the group algebra of a group G over the prime field F = GF(p) and let $\{M_{i,p}(G)\}_{i \geq 1}$ be the Brauer-Jennings-Zassenhaus M-series of G relative to the prime $p: M_{1,p}(G) = G$ and $M_{i,p}(G) = (G, M_{i-1,p}(G))M_{(i/p),p}(G)^p$ for $i \geq 2$, where (i/p) is the least integer not smaller than i/p and $(G, M_{i-1,p}(G))$ is the subgroup generated by all commutators $(x,y) = x^{-1}y^{-1}xy$, $x \in G$, $y \in M_{i-1,p}(G)$. In [4], I. B. S. Passi and S. K. Sehgal showed that for each $i \geq 1$ the factor groups $M_{i,p}(G)/M_{i+1,p}(G)$ and $M_{i,p}(G)/M_{i+2,p}(G)$ are isomorphism invariants of F(G). In this note we shall show that the factor groups $M_{i,p}(G)/M_{i+j,p}(G)$ are isomorphism invariants of F(G) for all $i \geq 1$ and all j with $1 \leq j \leq i+1$, too.
- 2. Notations and preliminary results. Let G be a group, N a normal subgroup of G, and R a commutative ring with identity. We adopt the following notations:

R(G) = the group ring of G with coefficients in R.

 $\Delta_R(G, N)$ = the kernel of the natural homomorphism $R(G) \to R(G/N)$.

 $\Delta_R(G) = \Delta_R(G, G)$ (the augmentation ideal of R(G)).

 $\Delta_R^i(G)$ = the *i*-th power of $\Delta_R(G)$.

U(R(G)) =the unit group of R(G).

It is easy to verify that if S and I are subrings of a ring such that $SI + IS \subseteq I$ then S + I is a subring which contains I as an ideal. Now, let G^* be a subgroup of G, and I an R-submodule of R(G) satisfying $I^2 \subseteq I$ and $\Delta_R(G^*)I + I\Delta_R(G^*) \subseteq I$. Since $R(G^*) = \Delta_R(G^*) + R$, we see that $R(G^*) + I$ forms a ring containing I as an ideal. Let

$$\nu: U(R(G^*)) \to U(R(G^*) + I/I); u \longrightarrow u + I$$

be the group homomorphism induced by the natural ring homomorphism $R(G^*) \to R(G^*) + I/I$. Denoting by ν^* the restriction of ν to G^* , we see that the kernel of ν^* coincides with $G^* \cap (1+I)$ and the image of ν^* is $G^* + I/I$. Hence, we have an isomorphism $G^*/G^* \cap (1+I) \cong G^* + I/I$. The next is an immediate consequence of this fact.

Lemma 1. Let $\theta: R(G) \to R(H)$ be an R-algebra isomorphism. Let G^* and H^* be subgroups of G and H respectively, and I an R-submodule of R(G) such that $I^2 \subseteq I$, $\Delta_R(G^*)I + I\Delta_R(G^*) \subseteq I$ and $\theta(G^* + I) = H^* + \theta(I)$, then $G^*/G^* \cap (1 + I) \cong H^*/H^* \cap (1 + \theta(I))$.

Let F be the prime field GF(p). Then, it is known that for each $i \ge 1$, $M_{i,p}(G)$ coincides with $D_{i,F}(G) = G \cap (1 + \Delta_F^i(G))$, the *i*-th dimension subgroup of G over F (see, e. g. [1, 2, 3, 5 and 6]). Now, let $L_{i,p}(G) = \Delta_F(G, M_{i,p}(G)) + \Delta_F^{i+1}(G)$ for $i \ge 1$.

We borrow the following in [4].

Lemma 2. (1) $L_{i,p}(G) = \{x - 1 + \alpha \mid x \in M_{i,p}(G), \alpha \in \Delta_F^{i+1}(G)\}$ for $i \ge 1$.

- (2) Let $\theta: F(G) \to F(H)$ be a normalized isomorphism in the sense that the sum of the coefficients of $\theta(g)$ is 1 for all $g \in G$. Then $\theta(L_{i,p}(G)) = L_{i,p}(H)$ for all $i \ge 1$.
- 3. Main theorem. We are now in a position to prove our main theorem.

Theorem. Let F be the prime field GF(p), and $\{M_{i,p}(G)\}_{i\geq 1}$ the Brauer-Jennings-Zassenhaus M-series of G relative to the prime p. If $F(G) \cong F(H)$, then $M_{i,p}(G)/M_{i+j,p}(G) \cong M_{i,p}(H)/M_{i+j,p}(H)$ for all $i \geq 1$ and all j with $1 \leq i \leq j+1$.

Proof. Throughout the proof, we shall omit their subscripts p and F from $M_{i,p}(\)$, $L_{i,p}(\)$ and $\Delta_F(\)$, which are denoted by $M_i(\)$, $L_i(\)$ and $\Delta(\)$, respectively.

Let $I_{i,i} = L_i(G)$, and $I_{i,i+1} = \Delta^{i+1}(G)$ $(i \ge 1)$. Since

$$I_{i,i+1} \supseteq I_{i+1,i+1} \supseteq I_{i+1,i-2} \qquad (i \ge 1),$$

we can find subspaces $I_{i,i+2}$ of $I_{i,i+1}$ containing $I_{i+1,i+2}$ such that $I_{i,i+1} = I_{i+1,i+1} + I_{i,i+2}$ and $I_{i+1,i+2} \supseteq I_{i+1,i+1} \cap I_{i,i+2}$. Obviously,

$$I_{i,i+2} \supseteq I_{i+1,i+2} \supseteq I_{i+1,i+3} \qquad (i \ge 1),$$

and so we can repeat the same procedure to obtain subspaces $I_{i,i+3}$ of $I_{i,i+2}$ containing $I_{i+1,i+3}$ such that $I_{i,i+2} = I_{i+1,i+2} + I_{i,i+3}$ and $I_{i+1,i+3} \supseteq I_{i+1,i+2} \cap I_{i,i+3}$. In this way, for $j \ge 0$ we can construct inductively the series $\{I_{i,i+j}\}_{i\ge 1}$ of subspaces of F(G) such that

(1)
$$I_{l,i+j} \supseteq I_{l,i+j+1} \supseteq I_{l+1,i+1+j}$$
 $(i \ge 1; j \ge 0)$

$$(2) \quad I_{l,i+j} = I_{i+1,i+j} + I_{i,i+j+1} \qquad (i \ge 1; j \ge 1)$$

(3)
$$I_{i+1,i+1+j} \supseteq I_{i+1,i+j} \cap I_{i,i+j+1}$$
 $(i \ge 1; j \ge 1).$

From (1), we see that $\{I_{i,i+j}\}_{j\geq 0}$ is a decreasing series for $i\geq 1$, and moreover if $1 \leq i \leq k$ then $I_{i,k+1} \supseteq I_{i+1,k+1}$. We have therefore

(4)
$$I_{1,k+1} \supseteq I_{2,k+1} \supseteq \cdots \supseteq I_{k,k+1} \supseteq I_{k+1,k+1}$$
 $(k \ge 1)$. Similarly, by (2) and (3), we can prove

$$(5) \quad I_{i,k+1} = I_{i+1,k+1} + I_{i,k+2} \qquad (1 \le i \le k)$$

(6)
$$I_{i+1,k+2} \supseteq I_{i+1,k+1} \cap I_{i,k+2}$$
 $(1 \le i \le k)$.
Combining (4) and (5), we obtain

$$(7) \quad I_{i,k+1} = I_{k+1,k+1} + I_{i,k+2} \qquad (1 \le i \le k).$$

Since $I_{k+1,k+1} = \{x-1+\alpha \mid x \in M_{k+1}(G), \alpha \in I_{k+1,k+2}\}$ by Lemma 2 (1),

(7) together with (1) and (4) implies

(8)
$$I_{i,i+j} = \{x-1+\alpha \mid x \in M_{i+j}(G), \alpha \in I_{i,i+j+1}\}$$
 $(i \ge 1; j \ge 0).$ Now, we claim that

 $(9) \quad I_{i,i} = \{x - 1 + \alpha \mid x \in M_i(G), \ \alpha \in I_{i,i+j+1}\}$ $(i \ge 1; j \ge 0).$ According to (1), it suffices to show that the left-hand side of (9) is contained in the right-hand side. We shall proceed by induction on j, keeping i fixed. The first step of induction, when j = 0, is assured by Suppose $j \ge 1$ and the statement holds for j-1. Given $\beta \in I_{i,j}$, by the induction hypothesis, $\beta = x - 1 + \alpha$ with some $x \in M_i(G)$ and $\alpha \in I_{i,i+j}$. By (8), $\alpha = y - 1 + \tilde{r}$ with some $y \in M_{i+j}(G)$ and $\tilde{r} \in I_{i,i+j+1}$. Therefore,

$$\beta = x - 1 + y - 1 + \gamma$$

$$= xy - 1 + \delta, \quad \text{where } \delta = \gamma - (x - 1)(y - 1).$$

By (4),

 $(x-1)(y-1) \in \Delta^{i}(G)\Delta^{i+j}(G) \subseteq \Delta^{i+j+1}(G) = I_{i+j,i+j+1} \subseteq I_{i,i+j+1}$ which implies $\delta \in I_{i,i+j+1}$. Since $xy \in M_i(G)$, the induction is complete and hence (9) is established.

Next, we claim that

(10)
$$G \cap (1 + I_{i,k+1}) = M_{k+1}(G) \quad (1 \le i \le k).$$

By (4), the right-hand side of (10) is contained in the left-hand side. To show the reverse inclusion, we proceed by induction on k, the statement being clear for k=1. Suppose $G \cap (1+I_{i,k+1}) \subseteq M_{k+1}(G)$ $(1 \le i \le k)$. To complete the induction, we have to show that

$$G \cap (1 + I_{\iota,k+2}) \subseteq M_{k+2}(G) \qquad (1 \leq \iota \leq k+1).$$

To see this, we use descending induction on t, the above being obvious

for t=k+1. Assume that $G\cap (1+I_{t,k+2})\subseteq M_{k+2}(G)$ for some t with $2\le t\le k+1$. Then, by our induction hypothesis $G\cap (1+I_{t-1,k+1})\subseteq M_{k+1}(G)$. Let g be in $G\cap (1+I_{t-1,k+2})(\subseteq G\cap (1+I_{t-1,k+1})$ by (1)). Then, $g\in M_{k+1}(G)$, and hence $g-1\in L_{k+1}(G)=I_{k+1,k+1}\subseteq I_{t,k+1}$ by (4). Noting here that $I_{t,k+1}\cap I_{t-1,k+2}\subseteq I_{t,k+2}$ by (6), we obtain $g-1\in I_{t,k+2}$. Now, according to the decreasing induction hypothesis, it follows $g\in M_{k+2}(G)$. This completes the induction on k, and hence (10) has been proved.

Now, assume that an isomorphism $\theta: F(G) \to F(H)$ is given. Then, without loss of generality, we may assume that θ is normalized, and therefore $\theta(\Delta^i(G)) = \Delta^i(H)$ and $\theta(L_i(G)) = L_i(H)$ (Lemma 2 (2)). Hence, applying the above argument to the subspaces $\theta(I_{l,i+j})$ of F(H), we do have the following:

- (9') $\theta(I_{i,i}) = \{h-1+\beta \mid h \in M_i(H), \beta \in \theta(I_{i,i+j+1})\} \ (i \ge 1; j \ge 0).$
- $(10') \quad H \cap (1 + \theta(I_{i,k+1})) = M_{k+1}(H) \qquad (1 \le i \le k).$
- (9) and (9') immediately imply

(11)
$$\theta(M_i(G) + I_{i,i+j+1}) = M_i(H) + \theta(I_{i,i+j+1})$$
 $(i \ge 1; j \ge 0).$

We are now ready to complete the proof of our theorem. Let i, j satisfy $i \ge 1$ and $1 \le j \le i + 1$. Then, since $I_{i+j-1,i+j} \subseteq I_{i,i+j} \subseteq I_{i,i+1} = \Delta^{i+1}(G)$ by (1) and (4), there holds that

$$I_{i,i+1}^2 \subseteq \Delta^{2i+1}(G) \subseteq \Delta^{i+j}(G) = I_{i+j-1,i+j} \subseteq I_{i,i+j}$$
.

Similarly,

$$\Delta(M_i(G))I_{i,i+j}+I_{i,i+j}\Delta(M_i(G))\subseteq I_{i,i+j}.$$

Finally, by (11)

$$\theta (M_i(G) + I_{i,i+j}) = M_i(H) + \theta(I_{i,i+j}).$$

Thus, in virtue of Lemma 1, we get

 $M_i(G)/M_i(G) \cap (1 + I_{i,i+j}) \cong M_i(H)/M_i(H) \cap (1 + \theta(I_{i,i+j})).$ Since $M_i(G) \cap (1 + I_{i,i+j}) = M_{i+j}(G)$ and $M_i(H) \cap (1 + \theta(I_{i,i+j})) = M_{i+j}(H)$ by (10) and (10'), the theorem has been proved.

REFERENCES

- [1] A. A. Bovdi: Dimension subgroups, Proc. Riga Seminar on Algebra, Latv. Gos. Univ., Riga, 1969, 5-7.
- [2] S. A. Jennings: The structure of the group ring of a group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175—185.
- [3] M. LAZARD: Sur les giroupes nilpotents et les anneaux de Lie, Ann. Sc. École Norm. Sup. (3) 71 (1954), 101—190.
- [4] I. B. S. Passi and S. K. Sehgal: Isomorphism of modular group algebras, Math. Z. 129 (1972), 65-73.

- [5] R. SANDLING: The modular group rings of p-groups, Thesis, Univ. of Chicago, 1969.
- [6] H. ZASSENHAUS: Ein Verfahren jeder endlichen p-Gruppe einen Lie-Ring mit der Charakteristik p zuzuordnen, Abh. Math. Sem. Univ. Hamburg 13 (1940), 200-207.

DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY

(Received September 1, 1980)