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J-GROUPS OF THE ORBIT MANIFOLDS (S27+1XS%) /D,
BY THE DIHEDRAL GROUP D,

Ssusumu KONO, AKIE TAMAMURA and MICHIKAZU FUJII

Introduction. Let » (=3) be an odd integer, and D, the dihedral
group of order 2n. Let S™*' (resp. S be the unit sphere in C™*' (resp.
R ™). Let D,(m, I) be the orbit manifold (S*'xS)/D, (see §1). The
Kring of D,(m, 1) has been studied by Imaoka and Sugawara [8]. The

purpose of this paper is to calculate the J-group f(D,, (m, 1)) for odd prime
#. The main theorem of §1 will give the direct sum decomposition of
KO(D,(m, 1)) (Theorem 1.12). The direct sum decomposition of J(D, (s, 1))
will be given in §2 (Theorem 2. 4), and the direct summands of _T(D,l (m, D)
will be discussed in §3.

1. Preliminaries and decompositions of KO D,.(m, 1)). Let

# (= 3) be an odd integer and D, the dihedral group of order 2» generated

by two elements g and # with relations g"=#*=gigt=1. Let S*™'! and

S? be the unit spheres in the complex (m -+ 1)-space C™''! and the real

(I + 1)-space R'*! respectively. Then D, operates freely on the product

space S™*!'x S by

g (z, x) = (z exp 27y —1/m), x)
te(z, x) = (2, —x) (28, z& 8,
~where z is the conjugate of 2z, Then we have the orbit manifold
D,(m, I) = (8" X §%)/D, = (L™(n) X SY/ Z,,

where L"(n) = S**1/Z, is the standard lens space, and the action of Z,

is given by .
te(([z], ) =([z], —2) ([zZ1€ L"(n), x€ 3.

The lens space L™(n) has the cell decompsition
Lm(n) =C'UC'Uu---uUcCc™y CZm+l’ 8(C‘Zi+l) =0, a(cm) — nch’—l’
which is invariant under the conjugation. Also, S' has the cell decom-
position
St=DpDuDUDLUDU---UD- UDL

such that S/ = D, UD? DDiND. =81 Let m: L™(n) X S'—> D,(m, )
be the projection. Then it is known that D,(m, ) is the cell complex with
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cells defined by
(CY, D))y==(C'x D.) 0=i<2m+1, 0<;)),
which have the boundary operations
a(C*, D)= ((—1)'+ (=1’ (C**!, D'™)
3(C¥, D)= n(C*, D)+ (—1)' + (—1))(C¥, DY)
(cf. [9]). Consider the 2m-skeleton
Liym)y=C°ucC'U--uC™
of L™(n), and the subcomplex
Dy(m, ) = (L3(n) X §Y)/Z,

of D,(m, ) with cells {(C’, D')|0<i<2m, 0<j<l}, and identify the
real /dimensional projective space RP(J) with the subcomplex D3(0, /) of
Di(m, 1). Denote by (¢!, d’) the dual cochain of (C’, D). Then we have
the following

Lemma 1.1 ([8, Lemma 1. 8]).
(1) H*(Dy(m, 1), RP())
[m/2) [Cm+13(2] i
SV ZAc*, dY D 2 Z.(chdY) (I even)
—_— =] i=1
[m)2] [m/)2]
22", d) D L Zu(c", dY) (I: odd),
=1 i=1
where Z,(c', d’) means the cyclic group of order n generated by (c', d”).
The following lemma can be obtained by making use of Lemma 1. 1 and
the Atiyah-Hirzebruch spectral sequence for KO-theory.

Lemma 1.2, The order of KO'(D:(m, 1)/RP(l)) is a divisor of n™.

Especially,
n" (=2 (mod 4))
(1) ord KO(D!(m, 1)/ RP(l)) ={ n™™H (=0 (mod 4))
a divisor of n ™" (I : odd),

. 0 (1 5= 3 (mod 4))
(2) ord KO(Di(m, D)/ RP(®)= { a divisor of n'™'* (I = 3 (mod 4)),

where ord. G means the order of a finite group G.

~ We consider the following maps
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i L'(n) —> D,(m, 1), io: L7 (n) —> Di(m, 1),
(1.3) k: RP(l) —> D,(m, 1), j: Di(m, ) —> D, (m, 1),
p: Dn(my l) —— RP(I)’ q: Dn(m: l) —— Dn(ﬂz; l)/Dg(m, I)y

where i([Z])= [[Z:I, (1) 0’ T 0)]! k([x]) = [[(1; 0’ Ty O)]’ x]’ P([[Z], x])
= [x], j is the inclusion map, g¢; is the quotient map and i, is the
restriction of 7.

It is known that there is a homeomorphism

1.4  f: D.(m, )/D'(m, ) —> S" A(RP(m + | + 1)/ RP (m)),

where the right hand term is the suspension of the stunted real projective
space (cf. [8, Lemma 1.12]). The next proposition is shown in [6].

Proposition 1.5. The order of the torsion part of the group
KO'(RP(m + 1 + 1)/ RP(m)) is a power of 2. Especially, the groups
KO(S™" A(RP(m~+1+1)/ RP(m))) are tabled as follows, where (f) is a cyclic
group of order t, and H(n,, n,) is the number of integers s with n,<<s<mn,
and s=0,1,2 or 4 (mod 8).

\I(mod 8) ‘ ' ‘
0 1 2 | 3 4 5 6 | 7
m (mod 4)\ . L |
0 (2!(2m+1+1, 2m))
| 1 | 0 | (o0) 0 0 0 (2 | 0| 0
2 "o | o 0 (2> [@d@ | @ oo
3 | 0 (o0) (2) | (2)®(2) (2) (e0) 0 0

By making use of Lemma 1. 2, Proposition 1. 5 and the fact pek=1zpu),
we can easily obtain

Lemma 1.6, There is a commutative diagram

0 0
!
IFO(Sm/l\ (RP(m+1+1)/ RP(m)))= KOS \ (RP(m+1+1)/ RP(m)))
laif! L gif! Y
(1.7 0—KO{(D,(m, 1)/ RP(l)) ———— KO(D"(m, 1)) >KO(RP()) = 0
L e
0—>KO(D%(m, D)/ RP(])) ——— KO(D%(m, 1)) > KO(RP(l)) — 0
d {

0 0
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of exact sequences. Especially, the rows are split exact, and j':
KO(D,(m, 1)) —> KO(D(m, 1)) is monomorphic on odd torsion.

Considering the D,-action on $™*! x §' x C given by
t-(z,x,u) =z —x, u)
g (z,%,u) = (zexp(zV/ —1/#), 2, u exp(2nV/ —1/#))

for (z,x,u) € S™'xS'XC, we have a real 2-plane bundle
e (8™ X §' X C)/D, —> D,(m, ).

Denote by £ the canonical real line bundle over RP(J), and & = p*{ the
induced bundle of & by the projection p: D,.(m,I) —> RP(l) in (1.3);
by » the canonical complex line bundle over L™(#). Then we have the
following elements :

1= E —1 & KO(RPQ)), o=1n—1& K(L"(n)),
(L8)  o=j'(o) € KL, 7= 7o) € KO(LY (n)),
a=m—E —1€ KO(D.(m, 1), a=ju) € KO(D3(m, 1),

where 7 is the real restriction. Since i*&, =1, i*y = ry, £*E, = £ and
k*np, = E+1, we have the the following

Lemma 1.9. () = o, k'(ay) = 0.

By definition, we readily see

Lemma 1,10, The elements o of (1. 8) are natural with respect to
the inclusions D,(m’, I)C Di(m, I')C D,(m, 1) for m' <m, ' <.

Let
(1.11) Wt © KO(Du(m, 1)),  Un,io © KO(D3 (0, 1))
be the subrings generated by «, of (1.8). Then we have

Lemma 1.12. 920, is isomorphic to Nn.o by 7't KO(D,(m, 1)) —>

KO(D(m, 1)) and Um,. is isomorphic to KO(Lr(n)). And their lorders
are n™9,

Proof. Assume that /522 (mod 4), and consider the diagram (1.7).
In the lower exact row of the diagram %'(a;) = 0 by Lemma 1.9. Hence
ord 9,.., is a divisor of #™?% by Lemma 1.2(1). Therefore, since U,
is the image of ..o by Lemma 1.10, ord %, is a divisor of #™™+>2,
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Then Lemma 1. 6 implies 2, = Unn,r0-
Now consider the homomorphism

it: KO(DL(m, 1)) —> KO(LT(n)).

The ring KO(L7 (n)) is generated by & of (1. 8) and contains exactly »n™%
elements (cf. [12, Proposition 2. 11]). By Lemma 1.9 we have () = ¢
Therefore .., is isomorphic to KO(L}(n)) by 4. Similarly we can
prove the case /=2 (mod 4). g.e.d.

The following result is immediate by Lemmas 1. 2, 1. 6 and 1. 12,

Proposition 1.13. Suppose that ! =2 (mod 4). Then we have the
direct sum decompositions

(1) KO(DA(m, 1)) = Un,.. © p' (KO(RP()),
(2) KOD,(m, D) = 2. g FKO(S™ A\ (RP(m+ I+ 1)/ RP(m))))
D p'(KO(RP (D))

The projection =: L™(n) X S'—> D,(m, ) induces naturally the
homeomorphism

h: D.(m,1)/(Da(m,1—1) U RP())

~ (L™(n) x DL)/(L™(n) x 8" U * x D)

~ (L™(n) x SH/(L™(m) x * U * x S

=S A L"(n).
The restriction of £

hy: DS(m, 1)/(Di(m,1— 1) U RP()) —> S'\ Ly (n)
is also a homeomorphism.
We consider the homomorphisms
R(S' A L"(n) —> KO(S' A\ L™ ()
(1. 14) s ROD,(m, D/D.(m, 1-1) U RP))
L. RO, (m, 1),

where gq:D,.(m, 1) —> D, (m,D)/(D.(m,l—1) U RP(})) is the natural pro-
jection. Let

(1.15) B C KO(D,(m, 21))
be the image of K(S* A\ L™(n) by q'h'r.
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Consider the following exact and commutative diagram :

E(S* A L") =25 R(S" A L)) —> 0

[ L
M1
0—> KO(S™ 1) —> KO(S® A\ L™ (n))——»] KO(S*A Ly (n))—>0,
where j: S¥A L% (n) —> S* A L™(n) is the inclusion map and j§ is an
isomorphism (cf. [12, Lemma 2. 4]). Since KO(S* A L?(n)) and
K(S*ALP(n) are of odd orders and KO(S™**') has no odd torsion,
there exists a splitting

¢: KO(S" \ Ly (n)) —> KO(S™ A\ L" (),

which maps KO(S? A L*(n)) isomorphically onto »(K(S* A L"(n)). We
consider further
(1.16) v=g'he

Then we obtain

Propesition 1.17. (1) KO(S“*' A\ Ly(n)) is mapped isomorphically
onto %m.;jl-{»z by v, -

(2) EO(D.(m, 41+ 2)) = U 40: DB 14:D p' (KO(RP(4I + 2)))
@ i F(EO(S™ \ (RP(m + 41 + 3)/ RP(m)))).

Proof. The exact sequence of the triple (D)(m, 41+2), Di(m, 41 +1)
U RP(4] + 2), RP(41 + 2)) becomes

zirfo-* (DY (m, 41 + 1)/ RP(41 + 1)) —>.IF{VO(S“” ALy (n)

M, ROD(m, Al + 2)/ RP(4] + 2))—2—> BO(D 2 (m, 41 + 1)/ RP(4] + 1))
—> KO (S** \ LY (n)) = 0,

in which KO~'(D(m, 41 +1)/RP(4+1))=0 by Lemma 1.2 (2). Let
Zo: L) —> DP(m, 1)/ RP(I) be the composition of i, in (1.3) and the
quotient map Di(m, 1) —> D¥m, )/ RP(I). Then, by the proof of Lemma
1.12, the induced homomorphism 7,: KO(DL(m, 1)/ RP(l)) —> KO(L(n))
is an isomorphism for /=2 (mod 4). Hence we see that #, has a right
inverse. This implies KO(D!(m, 41 +2)/ RP(41+2)) = KO(S*** \ Ly (n))
@ KO(L{ ().

Let ¢, be the restriction of ¢ in (1.14), and consider the following
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commutative diagram

0 —> KO(S"™*\ Ly (1)) —= KO(D\(m, 4 + 2)/ RP(4] + 2))
I ,

KO(D! (m, 41+2)/(Dt(m, 41+1) U RP&I+2))) —> KO(DS (m, 41+2))—

kl

(1.18) KO(RP(41+2))

B, KO(D(m, 414+1)/ RP (41 +1)) —> 0

in which the upper row and the column are exact. Then ¢k is monomor-
phic and (1) follows from the commutative diagram

R(S"* \ L™(n)) —— KO(S™? \ L™(n)) 9, %0~ D(m, 41+2))

(1. 19) T |
o @y
KO(S"* A\ Li(n)) — KO(D;,(m, 41 + 2)).

Moreover the diagram (1. 18) shows that
KO(D)(m, 41 + 2)) = pi(KO(RP(4! + 2))) @ Wn, ar20
D qiki (KO(S™* N\ L7(n)) .
Since 7': Buare == gihh(KO(S“* A Li(n))), (2) is an easy consequence
of Lemmas 1.6 and 1. 12. q.e.d.

Remark. Inspecting the diagrams which are similar to (1.18) and
(1.19), we cansee B, = 0.

By Lemma 1. 12, we have a homomorphism
(1. 20) p: KO(Li () —> KO(Du(m, 1))

defined by p(s) = . Now, by Lemma 1. 6 and Propositions 1. 13, 1.17,
we can see the following
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Theorem 1.21. (1) If I %2 (mod 4), then the map :

¢: KO(RP()) @ KO(S" A\ (RP(m + 1 + 1)/ RP(m))) @ KO(LT ()
—> KO(D"(m, 1))
defined by '
0(x,9,2) = p'(x) + aif'(y) + n(2)

is an isomorphism.
(2) If I=2 (mod 4), then the map
#: KO(RP()) @ KO(S* \ (RP(m + 1+ 1)/ RP(m))) @ KO(L (n))
® KO(S* A\ L (n)) —> KO(D,.(m, 1))
defined by
0(x, 3, z, w) = p'(x) + qif () + p(2) + v(w)

s an isomorphism.

Remark. (1) The groups KO(RP(})) and KO(S* \ (RP(m+1+1)/
RP(m))) are known in [1] and [6]. The groups KO(L!(n)) and
KO(S' A L(n)) are known in [13].

(2) By definition, it is easy to see that the element «,& I’{VO(D,, (m, D)
in (1. 8) corresponds to a = K (D.(m, D) in [8, (1.13)] by the comlexifica-
tion. Also, the ideal B.x of K(D.(m, 1) in [8, (2. 23)] satisfies 7 B(m )=
Bnu In short, the direct sum decompositions in Theorem 1.21 and [8,
Theorem 3, 9] are compatible with the real restriction » and the complexi-
fication ¢,

2. Decompositions of J(D, (m, 1)). In this section we recall from
[2], [3] and [14] the basic properties of the J-groups for finite CW-com-
plexes, and give direct sum decompositions of ,7(D,. (m, D).

A +rgroup is an abelian group Y together with given endomorphisms
V¥: Y—> Y for each k= Z A +r~map between +~groups is a homo-
morphism which commutes with the operations +*. Let ¢ be a function
which assigns to each pair # € Z, y € Y a non-negative integer e(k, y).
Then Y. is defined to be the subgroup of Y generated by {k“®V(y*—1)y]|
keEZ, yEY): Y= ("N —1)ylkEZ y= Y} >. We now define

J(¥)=Y/NY.,

where the intersection runs over all functions e (cf. [3, p. 144]).
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If Y is a finite +~group, we have

2.1 7 = Y/S(0 - DY),

where the intersection runs over all non-negative integers e. 3
Since a Y~map f: Y, —> Y, induces the homomorphism f: J'' (Y1)
—> J”(Y,) (cf. [3, p. 145]), we can easily obtain

Lemma 2.2. For any short exact sequence

(%) 0 Y]fY,gY3 0

of r~groups and ~r-maps, the following three statements are equivalent :
(1) The yr-map f has a left inverse.
(2) The r-map g has a vight inverse.
(3) The short exact sequence () splits. That is, the \y-subgroup
fY) of Y, isadirect summand of Y.
When this is the case, (*) induces the split exact sequence

0— (¥ L 7 (v) E J7(7) — 0
of abelian groups and homomorphisms.

For each finite CW-complex X, KO(X) is a vr-group by the Adams
operations v*. Denote by J(X) the image of KO(X) by the homomor-
phism J: KO(X) —> J(X). According to Adams [2], [3] and Quillen
[14], we have ‘
2.3) J(X) = J"(KO(x)).

We can check easily that the all splitting homomorphisms used in the
proof of Theorem 1. 21 are Y~maps. Hence by making use of Lemma 2. 2
and (2. 3), we readily obtain the following theorem from Theorem 1. 21.

Theorem 2.4. (1)If [~ 2 (mod 4), then the map

8: F(RP()) ® J(S™ N\ (RP(m + 1+ 1)/ RP(m))) @ J(LF (n)) —>J (D, (m, 1))
defined by
0(J(x), J(3), J(@) = J(p'@ + aif' () + n(2)

is an isomorphism.

(2) If I=2 (mod4), thenthe map
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0: JCRPU) @ T(S" A\ (RP(m + 1 + 1)/ RP(m))) @ J(Lt (n)
DT(S' A Ly (n)) —> T(D,(m, 1)

defined by
0(J(x), J(9), J(2), J(w)) = J(p'(x) + ¢if'(9) + p(2) + v(w))

is an isomorphism.

Remark. The partial result for m =3 (mod 4), =7 (mod 8) and
odd prime #» is obtained in [7, Theorem 2.3]. The method used in the
proof of [7] is available for the case KO(S™ A\ (RP(m+ I+ 1)/ RP(m)))=0
and /%2 (mod 4).

3. Determination of J (D,(m, D)) for odd prime n. In this section
we shall determine the structure of the direct summands of f(D,,(m, I3)
given in Theorem 2. 4, where p is an odd prime.

The first direct summand 7(RP(I)) has been known in Adams [3]:
TJ(RP(D) is a cyclic group of order 2*"® generated by J(4).

And the third direct summand f(L{," (p)) has been known in Kambe,
Matsunaga and Toda [11]: J(L2(p)) is a cyclic group of order pt»/(r—bl
generated by J(7).

In order to determine the second direct summand 7(8"‘ N(RP(m—+1+1)/
RP(m))) we recall first the following Propositions.

Proposition 3.1 ([1, Theorem 7. 4]). If m =3 (mod 4), then
KO(RP(l)/ RP(m)) is a cyclic group of order 2*“™ generated by 1" "P
which maps into P*™O"' & KO(RP(l)) by the projection. Moreover the
Adams operations are given by

0D {O (k: even)

A(#(ﬂr,o)ﬂ) (k: Odd).

Proposition 3.2 ([1, Corollary 5.3]). Let X be a finite CW-complex.
Then the following diagrams

K(X) N K(S* A\ X) KO(X) s KO(S* A X)
vl o | o
KX)—> K(S* A\ X), KO(X) —= KO(S* \ X)

are commutative, wher W& (resp. ) is the Adams operation and I, (resp.
I.) is the Bott isomorphism in K-theory (resp. KO-theory).
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Let v,(m) denote the exponent of the prime ¢ in the prime power
decomposition of m. Then we have

Lemma 3.3. Let g be a prime. Given a non-negative inleger i, we
put g(i) to be the greatest common divisor of {(k -+ qj) — k' |j, kE Z
0< k<q}. Then we have

v,(i) +2 (¢g=2 and i=0 (mod 2))

vy (g(@)) = {Vq () + 1 (otherwise).

Proof. Assume that ¢ =2, i=0 (mod2) and w= 1+ 2j. We
have an equality w® — 1= (w — 1)(w + 1)((@**' +@?* %+ -+ +1). Since
W) + w?*? + --- + 1 is odd for each odd integer », we see that the
lemma is true for the case »,(i) = 1. Let u be a positive integer and v
an odd integer. Then w™ T — 1= " — 1)+ 1), where w'*+1=2
(mod 4). Thus we can proceed by the induction with respect to »,(i).
Similarly we can prove the other cases. g.e.d

Let m(#) be the function defined on positive integers as follows (cf.
[3, p. 139]):

0 if g2, t=0 (mod (q — 1))
_ 1+ »(@) if g2, t=0(mod (q — 1))
@4 rm@) =0 if g=2, ¢%0 (mod2)

24+ w() if g=2, t=0 (mod 2).

Then we obtain

Theorem 3.5. (1) If m=0 (mod 4), then
J(S™ A (RP(m + 1 + 1)/ RP(m))) = Z,,
where h = min {P@m +1+ 1,2m), v.(m) + 1}.

(2) If m=%£0 (mod4), the groups J(S" N\ (RP(m + I+ 1)/ RP(m)))
are tabled as follows, where N(m,l) = m((2m + ! + 1)/2):

’\](modS) \

N 0 1 2 3 4 .5 6 | T

‘1n(m0d45\ l
1 0 (NemI| o 0 0 ‘ (NG, 1) 0 | o
2 0 0 o | (2 |@mem @ |olo
3 o | wWon |2 |83 (20 N | o | o
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Proof. (1) Let m=0 (mod 8). Then, by Proposition 3.1
KO(S™ N(RP(m+ 1+1)/ RP(m)))==Zsn+1+1.m> is generated by I7/4()¢#m0+D),
By Proposition 3. 2 we have *eoIz#=k™*[n/o* (k=Z), and hence for
x€ KO(S™ A\ (RP(m + I+ 1)/ RP(m)))

0 (k: even)
E(g) = {
Vi@ k™2 x (k: odd).

Therefore we have

L(NEA~1) KO(S™ A\ (RP(m + 1+ 1)/ RP(m))))
= Z (w —1)KO(S™ A\ (RP(m + 1+ 1)/ RP(m)))
= Z(k""Z 1) KO(S™ A\ (RP(m + 1 + 1)/ RP(m))).
Now, using (2. 1), (2. 3) and Lemma 3. 3, it follows that
J(S™ A\ (RP(m + 1+ 1)/ RP(m))) = Z,.,
where & = min {¢(m+1+1,m), v,(m)+ 1}.
Let m=4 (mod 8). Then we have the following short exact sequence :
0 —> KO(S* \ (RP(m + I+ 1)/ RP(m))) —> KO(S* A RP(m +141)
—> KO(S* \ RP(m)) —> 0.
Hence, using [1, Corollary 5. 2] and [5, Theorem 1. 2)], it follows that
KO(S* A\ (RP(m + I + 1)/ RP(m))) = Zpem+1+12m and for
x € KO(S* A\ RP(m + I + 1)/ RP(m)))
0 (k: even)
x I —%
@) { ks (k: odd).
This implies that for x & KO(S™ A\ (RP(m + 1 + 1)/ RP(m)))
0 (k: even)
k™ x (k: odd).
The rest of the proof for thls case is quite similar to that for the case m=0
(mod 8).

(2) Inspect the following commutative diagram, in which the rows
and columns are exact :

v -

KO(S™ A\ (RP(m +1— 1)/ RP(m)))

"
RO(S™ \ RP(m+1+1)/ RP(m+1))) B BO(S™ A\ (RP(m-+1+1)/ RP(m)))
Il T

KO(S™ \ RP(m-+1+1)/ RP(m~+1))) -——>K0(S”'/\ RP(m+1+4+1)/ RP(m+1—1)))
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= KO(S™ A\ (RP(m+ | — 1)/ RP(m)))
2, RO(S™ \ (RP(m + 1)/ RP(m)
s

—> KO(S™ \ RP(m + 1)/ RP(m +1—1))).

First we assume that m+ [+ 1 is odd. Then there exists a homotopy
equivalence g: RP(m+ 1+ 1)/RP(m + [ —1) —> S™"*'\/ S™**1, which
makes the following diagram homotopy commutative :

RP(m-+1-+1)/ RP(m-+ 1) RP(m+1+1)/ RP(m-+1—1)— RP(m+1)/ RP(m+1—1)

[~ s . |-
qz - 13 v

Sm+£+1 Sm+l V Sm+l+1 (_—Sm+l ,

where i, is the inclusion map and ¢; is defined by g; (x) = * for x = S™*,
Therefore, we have the split exact sequence

— q» __ f2 __
0 KO(S™ )= BO(S™ \ RP(m+ 1-+1)/ RP(m-+ 1 — 1)) —> EO(S™*) -0

of +Jr-maps.

Especially, in case m=2 (mod 4) and /=4 (mod 8), we have
KO(S™ N\ RP(m~+1—1)/RP(m)))=0 and KO(S™ A\ RP(m -+ I+ 1)/ RP(m)))
=7, Z, by Proposition 1. 5. Hence we obtain the split exact sequence

0 —> KO(S™+*) &, KO(S™ A\ RP(m + 1 + 1)/ RP(m)))

2, RO(S™ A\ (RP(m+1) RPm)) —> 0

of Yr-maps. It follows from Lemma 2. 2 that J(S™ A (RP(m~+ 1 +1)/ RP(m)))
= J(S™ )@ J(S™ \(RP(m-+1)/ RP(m))). Moreover, the Adams operations
on KO(S"A\(RP(m~+ 1)/ RP(m))) are given by *=k®"*"2  And the fact
f(S"‘ N(RP(m + 1)/ RP(m))) == Z, follows from Propositition 1.5. This and
the fact 7 (8™t = Z, (cf. [3, p146]) imply the part of m=2 (mod 4)
and /=3, 4 (mod 8) in the table. Similarly, we can determine the case
m=23 (mod 4) and /=2, 3 (mod 8).

When m=3 (mod 4) and /=5 (mod 8), we have the exact sequence

Z= KO(S™*") 2, RO(S™ \ RP(m + 1 + 1)/ RPm)))
(5

— KO(S™ A\ (RP(m -+ 1)/ RP(m))) —> 0,
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where KO(S™ \ RP(m+1+1)/ RP(m)))== Z and KO(S™ \ RP(m~+1)/ RP(m)))
=27, by Proposition 1. 5. Then, it is easy to see that the Adams operations
on KO(S™ A(RP(m~+1+1)/ RP(m))) and KO(S’"/\ (RP(m+1)/ RP(m))) are
given by 11»* = g@»ri*D2  This implies that [ (S"‘ N\ RP(m -+ 1)/ RP(m)))
= 7, and ](Sm/\(RP(m-i—l-i— 1)/ RP(m))) = Zym.1, by the same way as [3,
p 147].  This shows the part of =3 (mod 4) and /=4, 5 (mod 8) in the
table.
The rest is similar to the above. q.e.d.

Finally, we determine the group f(S” A Ly(p)). To this end, we
borrow the following from Kambe [10].

Propositon 3.6. (1) K(L)(p)) is a ring generated by o with
velations (1 + ¢)? =1 and o' = 0.

(2) K(L» (p)) is the direct sum of cyclic groups generated by o, a,
= 6"l Let m=r(p—1)+s, 0<s<p—1. Then the order of o' is p'*"
or p" accordingas 0 <i<<s or s<i<p—1.

In advance of proving our final theorem, we state the next lemma.

Lemma 3.7. Let i and k be positive integers with k <i. Then it
holds
S ()= {9 <D
12=1(])( DA il (k=1).
P
Proof. For each %, consider fi(x)= Z}(;)(—— 1)~%*x’. 'Then
=

fi(x) = ix(x—1)"" and fi{x) =% 2% fi(x). Therefore we can show that

there exists gi(x) € Z[x] such that f.(x) = g&(x) (x — 1)* + (51/
(z-—k)')x"(x—l)‘ * by the induction on k. Noting that f.(1)=

Z ( ) (—1)~'7* we readily see the lemma.

J=1

Theorem 3.8. Lef I=tHp —1D+w for 0<w<<p—1  Then
TJSEANL D) isa cyclic group of order p" generated by Jor(It(a)), where
h=min {v,() + 1, [(m+ w)/(p — 1]}

Proof. Consider the real restriction r and the J-homomorphism

~ v J -
K(S* A L5 (p)) —> KO(S* A\ L3 (p)) —> J(S* A\ L3 (p)).
Since KO(S% A\ L%(p)) is of odd order, 7 and Jo7 are epimorphic.
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Moreover, the Adams operations commute with the real restriction
[4, Lemma A 2]. Therefore ker Jo7 is generated by the elements of

ker 7 and T(NA(We—1) K(S*ALHp):
ker Jor = ker r U S(N Kk (Wé— 1) KS2A L)) .

Put x, = Ii(7' — 1) € K(S™ A\ L7( p)). Then it follows from Proposi-
tion 3. 6 that
(3. 9) _ Xivp = X
and

KS*AL(p) = < {m|0<i<p}>.
By Proposition 3. 2 we have
(3.10) Vé(x) = k'xu.

Let ¢: KO—— K and {: K——> K be the complexification and
conjugation. Then ¢+ 1=cor and r=7rcf. Hence r((1 —#x)=20
for x= K(S* A L7(p)). Conversely, assume 7(y) = 0. Then y+#(y)=
cor( y)=0. Since K(S*AL%T(p)) is of odd order, y=2x for some
xE K(S® A\ L% (p)), and the equality 2y = y — #(y) = 2(1 — £)x implies

y=(1—%)x. Therefore kerr = (1 — HE(S A L% (p)). Since f(x) =
Yot (x) = (— 1) 2, by (3.9) and (3. 10), we have

(3.11) ker r= {{(— )%, — 5, |0<<i<<p} D>.
K(SEAL™(p)) is of order p™. This implies that Nk (YE—1)K(S*AL™(p))

is 0 or (g — 1)%(821&1"1""(?)) according as k=0 (mod p) or 2540
(mod p). And (Ye—DEK(S*ALT ()= { {k'zu—2]0<<i<<p}> by
(3.10). Thus 2(NE (¥t — DK(S* N\ L%(p)) is generated by A, =

(k2 — 2,]0<<i<<p, £7=0(modp)}. Since A, contains the generators
of ker  in (3.11), we have

ker Jor= < 4 >.

Choose an integer N, with N.&k'=1 (mod p™) for each 2550 (mod p).
Then we have Ni(k'xi— %,) = 2 — Nix;, and (Ni — Niap)) %1 = (Zispy —
Niips %) — (2 — Nixy) by (8.9). Thus, ker Jo7 contains A, = {x; —
Nuxy |0<k<<p)} and A; = {(Ni— Npps) %, |0<<k<<p, = Z}. Conversely,
every element in A4; is a linear combination of the elements in A4, U A;.
Hence ker Jor = < A, U A; >. Thus

(3.12) TSEAL) = < Tor(x) >.
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To determine the order of J o r(x,) we set y,=I¢ (eHYEK(S*A L (D).
Then K(S%* A L™(p)) is the direct sum of cyclic groups generated by
Y1= X1, Y2, ***, ¥»—1, and the order of y; is p"*' or p" according as 0<<i<s
or s<<i<p, where v and s are those of Proposition 3.6 (2). By the

equality (—1)'= ( )( 1)~7(y'—1), we have y,= zl( )( 1)~ x,=
51(]-)(—“1)'—“’(96;‘ N,x.)+(2(‘)( 1)’ N,)x,. Therefore < 4,> coincides

with the subgroup generated by A,= { y,-—(jgl (j)( —1D)T Nz |0<i< p} .
This together with the above remark on the order of y, enables us to see
that < {x} > N<A,> coincides with the subgroup generated by

= (7 (G (F) 0 Mmlo<i s U (S () (- N mls<i<p).

Denote by H the quotient group of K(S” ALy (p)) by < 4, >.
Thenord H is p™' if Z}(z)( 1) N;=0 (mod p) for s<<i<<p and p

if E(;)(——I)‘. IN; =0 (mod p) for some 7 with s <<i<<p.

If %0 (mod p), we have j'=1 (mod ), and hence j* = j* (mod
). Therefore, by the definition of N;, we have N, =j;""'""(mod p).
Thus, by making use of Lemma 3. 7, we see that

ord H = p[(m-i w)/(p—1]

The greatest common divisor of pi™*+*¥®=1) gnd the integers Ni—Nj.
O<k<p, jE Z) equals pmmlvpW+:UnteXe-Dll Ky Lemma 3.3, because
we have &'(k+ p7)' (Ni — Nivps) = (B + pj) — ' (mod p™) for 0 <<k <<p.
Thus the order of Jor(x,) equals pm¥p®+1.insw(p=D1] g.e.d.
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