ON CONFORMAL KILLING FORMS AND THE PROPER SPACE OF \(\Delta \) FOR \(p\)-FORMS

MITSURU KORA

In 1975, S. Gallot and D. Meyer [2] discussed the proper value λ of Δ for p-forms in compact Riemannian manifolds of positive curvature operator and found its lower bound λ_1 . Recently, S. Tachibana and S. Yamaguchi [10] have investigated and determined the proper space V_{λ_1} of such a manifold in terms of Killing, closed conformal Killing and special Killing p-forms. On the other hand, H. Maillot [5] studied the dual * ω of a Killing p-form ω . In connection with this, H. Yanamoto [11] has conjectured that in any orientable Riemannian manifold M^n the dual * ω of a conformal Killing p-form ω would be conformal Killing, and proved it when n=3 and p=1.

In this paper, we show the conjecture to be true and express the space V_{λ} , in a better form by making use of this duality.

The author wishes to express his gratitude to Prof. S. Tachibana who gave him useful comments and continuous encouragement.

1. Preliminaries. Let $M^n(n>1)$ be an n dimensional Riemannian manifold. Denote by $g=(g_{ab})$, R_{abc}^e and R_{ab} respectively the metric, the curvature and the Ricci tensor, where the indices a, b, c, \cdots run over the range $\{1, 2, \dots, n\}$. We represent tensors by their components with respect to the natural base and the summation convention is assumed throughout the paper.

A skew symmetric covariant tensor $\omega = (\omega_{a_1 \cdots a_p})$ is identified with the differential p-form

$$\omega = \frac{1}{p!} \, \omega_{a_1 \cdots a_p} dx^{a_1} \, \wedge \, \cdots \, \wedge \, dx^{a_p} \,,$$

and the coefficients of its exterior differential $d\omega$ and the co-differential $\delta\omega$ are given dy

$$\begin{split} (d\omega)_{a_1\cdots a_{p+1}} &= \sum_{i=1}^{p+1} (-1)^{i+1} \nabla_{a_i} \omega_{a_1\cdots \widehat{a}_i\cdots a_{p+1}} \\ (\delta\omega)_{a_2\cdots a_p} &= -\nabla^b \omega_{ba_2\cdots a_p} \end{split}$$

where $\nabla^b = g^{ba} \nabla_a$, ∇_a denotes the operator of covariant differentiation and \hat{a}_i means a_i to be deleted.

By the natural identification with respect to g, a vector field Y on M^n

can be regarded as a 1-form which is denoted by Y again. $e(Y)_{\omega}$ and $i(Y)_{\omega}$ denote respectively the exterior and the interior product of ω by Y and they have the components

$$(e(Y)\omega)_{a_1\cdots a_{p+1}} = \sum_{i=1}^{p+1} (-1)^{i-1} Y_{a_i}\omega_{a_1\cdots \hat{a}_i\cdots a_{p+1}}$$

 $(i(Y)\omega)_{a_2\cdots a_p} = Y^b\omega_{ba_2\cdots a_p}.$

Denoting by $\Delta = d\delta + \delta d$ the Laplacian operator, we have

$$(1.1) \qquad (\Delta \omega)_{a_1 \cdots a_n} = - \nabla^b \nabla_b \omega_{a_1 \cdots a_n} + H(\omega)_{a_1 \cdots a_n}$$

as the coefficients of $\Delta \omega$, where $H(\omega)_{a_1 \cdots a_p}$ are the components of $H(\omega)$ given by $H(\omega)_a = R_{ab}\omega^b$ for p = 1 and

(1.2)
$$H(\omega)_{a_1\cdots a_p} = \sum_{i=1}^p R_{a_i}{}^b \omega_{a_1\cdots b\cdots a_p} + \sum_{i < j} R_{a_j a_j}{}^{bc} \omega_{a_1\cdots b\cdots c\cdots a_p}$$

for $n \ge p \ge 2$. (1.1) may de written as

$$(1.3) \Delta \omega = - \nabla^b \nabla_b \omega + H(\omega).$$

The quadratic form $F_v(\omega)$ of ω is defined by

$$egin{aligned} F_p(\omega) &= \left< H(\omega), \; \omega
ight> \ &= rac{1}{(p-1)!} (R_{ab}\omega^a_{\;a_2\cdots a_p}\omega^{ba}z^{\cdots a_p} + rac{p-1}{2} \; R_{abce}\omega^{ab}_{\;a_3\cdots a_p}\omega^{cca}z^{\cdots a_p}) \end{aligned}$$

and it appears in the well known formula which is valid for any p-form ω :

(1.4)
$$F_p(\omega) = \langle \Delta \omega, \, \omega \rangle - |\nabla \omega|^2 - \frac{1}{2} \, \Delta |\omega|^2,$$

where we have put for p-forms ω and τ , $|\omega|^2 = \langle \omega, \omega \rangle$,

$$\begin{split} \langle \omega, \; \tau \rangle &= \frac{1}{p\,!} \, \omega_{a_1 \cdots a_p} \tau^{a_1 \cdots a_p}, \\ | \; \nabla \omega \, |^2 &= \frac{1}{p\,!} \; \nabla_b \omega_{a_1 \cdots a_p} \, \nabla^b \omega^{a_1 \cdots a_p}. \end{split}$$

If a non-zero p-form ω satisfies $\nabla \omega = \lambda \omega$ with a constant λ , it is called a proper form of Δ corresponding to the proper value λ . The space of all proper p-forms corresponding to λ is denoted by V_{λ}^{p} . If M^{n} is compact and orientable, the decomposition $V_{\lambda}^{p} = (V_{\lambda}^{p} \cap d^{-1}(0)) \oplus (V_{\lambda}^{p} \cap \delta^{-1}(0))$ holds for $\lambda \neq 0$ from the decomposition theorem of Hodge-de Rham.

2. The Killing and the conformal Killing p-forms. Following [7] and [4], a p-form ω is called conformal Killing, if there exists a (p-1)-form ρ satisfying

$$(2.1) \qquad \begin{aligned} \nabla_{b}\omega_{a_{1}\cdots a_{p}} + \nabla_{a_{1}}\omega_{ba_{2}\cdots a_{p}} \\ = 2\rho_{a_{2}\cdots a_{p}}g_{ba_{1}} - \sum_{i=2}^{p} (-1)^{i}(\rho_{a_{1}\cdots \hat{a}_{i}\cdots a_{p}}g_{ba_{i}} + \rho_{ba_{2}\cdots \hat{a}_{i}\cdots a_{p}}g_{a_{i}a_{1}}). \end{aligned}$$

As was shown in [4], ω and ρ satisfy

$$\rho = -\frac{1}{n-p+1} \delta \omega$$

$$(2.3) \quad \nabla_{b}\omega_{a_{1}\cdots a_{p}} = \frac{1}{p+1}(d\omega)_{ba_{1}\cdots a_{p}} - \frac{1}{n-p+1} \sum_{i=1}^{p} (-1)^{i-1}g_{a_{i}b}(\delta\omega)_{a_{1}\cdots \hat{a}_{i}\cdots a_{p}}$$

$$\nabla_{b}\nabla_{c}\omega_{a_{1}\cdots a_{p}} + U(\omega)_{cb,a_{1}\cdots a_{p}}$$

$$= \nabla_{b}\rho_{a_{2}\cdots a_{p}}g_{a_{1}c} + \nabla_{c}\rho_{a_{2}\cdots a_{p}}g_{a_{1}b} - \nabla_{a_{1}}\rho_{a_{2}\cdots a_{p}}g_{bc}$$

$$(2.4) \quad -\frac{1}{2} \sum_{i=2}^{p} (-1)^{i} (\nabla_{b}\rho_{ca_{2}\cdots \hat{a}_{i}\cdots a_{p}} + \nabla_{c}\rho_{ba_{2}\cdots \hat{a}_{i}\cdots a_{p}})g_{a_{1}a_{i}}$$

$$-\frac{1}{2} \sum_{i=2}^{p} (-1)^{i} (\nabla_{b}\rho_{a_{1}\cdots \hat{a}_{i}\cdots a_{p}} - \nabla_{a_{1}}\rho_{ba_{2}\cdots \hat{a}_{i}\cdots a_{p}})g_{ca_{i}}$$

$$-\frac{1}{2} \sum_{i=2}^{p} (-1)^{i} (\nabla_{c}\rho_{a_{1}\cdots \hat{a}_{i}\cdots a_{p}} - \nabla_{a_{1}}\rho_{ca_{2}\cdots \hat{a}_{i}\cdots a_{p}})g_{ba_{i}} ,$$

where we have put

$$(2.5) U(\omega)_{bc, a_{1}\cdots a_{p}} = \frac{1}{2} \sum_{i=1}^{p} R_{bca_{i}}^{e} \omega_{a_{1}\overset{e}{\cup}(i)} a_{p} - \frac{1}{2} (R_{ba_{1}c}^{e} + R_{ca_{1}b}^{e}) \omega_{ea_{2}\cdots a_{p}} - \frac{1}{2} \sum_{i=1}^{p} (R_{ba_{1}a_{i}}^{e} \omega_{ca_{2}\overset{e}{\cup}(i)} a_{p} + R_{ca_{1}a_{i}} \omega_{ba_{2}\overset{e}{\cup}(i)} a_{p}).$$

If we transvect (2.4) with g^{bc} , we get

(2.6)
$$\nabla^{b}\nabla_{b}\omega_{a_{1}\cdots a_{p}} + U(\omega)^{b}_{b,a_{1}\cdots a_{p}} \\ = -(n-p)\nabla_{a_{1}}\rho_{a_{2}\cdots a_{p}} + (d\rho)_{a_{1}\cdots a_{p}}.$$

Taking the skew symmetric part in (2.6) with respect to the indices a_1, \dots, a_{p-1} and a_p and substituting (1.2) and (2.2), we have

(2.7)
$$p\nabla^b\nabla_b\omega + H(\omega) + \frac{2p-n}{n-p+1}d\delta\omega = 0.$$

A p-form ω is called Killing [9], if $\nabla \omega$ is a (p+1)-form. It follows

from (2. 1), (2. 2) and (2. 3) that ω is Killing if and only if it is co-closed conformal Killing, and consequently, any Killing p-form ω satisfies

(2.8)
$$\nabla_b \nabla_c \omega_{a_1 \cdots a_n} + U(\omega)_{bc, a_1 \cdots a_n} = 0.$$

We are interested in the vector spaces with natural structure defined by

 C^{r} = the space of all conformal Killing *p*-forms,

 $C^{p}(d) = C^{p} \cap d^{-1}(0) =$ the space of all closed conformal Killing p-forms

 $K^p = C^p \cap \delta^{-1}(0) =$ the space of all Killing *p*-forms.

Lemma 1 (cf. [10, Lemma 2.5] and [5, $\S 1$]). Let ω be a p-form, and Y any vector field. We then have the following:

(i) $\omega \in C^p$ if and only if ω satisfies

(2.9)
$$\nabla_{Y}\omega = \frac{1}{p+1}i(Y)d\omega - \frac{1}{n-p+1}e(Y)\delta\omega.$$

(ii) $\omega \in K^p$ if and only if ω satisfies

(2. 10)
$$\nabla_{Y}\omega = \frac{1}{p+1}i(Y)d\omega.$$

(iii) $\omega \in C^{p}(d)$ if and only if ω satisfies

(2.11)
$$\nabla_{Y}\omega = -\frac{1}{n-p+1}e(Y)\delta\omega.$$

Proof. (i) If ω satisfies (2.3), by interchanging the indices b and a_1 in (2.3) and taking their sum, we have (2.1) with the (p-1)-form $-(n-p+1)\rho = \delta \omega$. This means that $\omega \in C^p$ if and only if ω satisfies (2.3), or equivalently (2.9).

(ii), (iii) (2.10) and (2.11) give us $\delta \omega = 0$ and $d\omega = 0$, respectively. The desired results then follow from (i).

Now we suppose that M^n is orientable. If we denote by W^* the dual space of a vector space W of p-forms with respect to *, we have the following.

Theorem 1. In any orientable Riemannian manifold M^n ,

(i)
$$C^p = (C^{n-p})^*$$

(ii)
$$C^{p}(d) = (K^{n-p})^{*} \text{ or } K^{p} = (C^{n-p}(d))^{*}$$

hold for $n > p \ge 1$.

Proof. Since the volume element of M^n is parallel, we get ${}^*\nabla_{Y}\omega = \nabla_{Y}{}^*\omega$ for any p-form ω and any vector field Y. We also have ${}^*i(Y)d\omega = -e(Y)\delta^*\omega$ and ${}^*e(Y)\delta\omega = -i(Y)d^*\omega$. By means of these identities and Lemma 1, we obtain (i) and (ii).

Next we give an application of Theorem 1. As is well known, $\langle \Delta \omega, \omega \rangle = \langle \Delta^* \omega, ^* \omega \rangle, \ |\omega|^2 = |^* \omega|^2 \text{ and } |\nabla \omega|^2 = |\nabla^* \omega|^2.$ Substituting them into (1.4), we get

$$(2.12) F_p(\omega) = F_{n-p}(^*\omega)$$

for any p-form ω $(n>p\geq 1)$. If we take account of Theorem 1 and (2.12), we can remove the assumption $p\geq \frac{n}{2}$ in Theorem 4 of Kashiwada's paper [4], i.e., we have

Corollary 1. In a compact orientable Riemannian manifold M^n , if a conformal Killing p-form ω $(n > p \ge 1)$ satisfies $F_p(\omega) \le 0$, then it is parallel. Especially, if $F_p(\omega)$ is negative definite, then there exists no conformal Killing p-form other than the zero form.

Remark. Denote by $\theta(X)=di(X)+i(X)d$ the operator of Lie derivative by X. As is known in [3, p. 109], for a Killing vector field X, $\theta(X)=-\delta e(X)-e(X)\delta$ holds. Making use of this and Lemma 1, we can see that if $\omega \in C^p$ and X is a Killing vector field $\theta(X) \omega \in C^p$ holds.

3. The special Killing and the special conformal Killing p-forms. A p-form ω is called special with k, if it satisfies

(3.1)
$$U(\omega)_{bc,a_1\cdots a_p} = k(g_{bc}\omega_{a_1\cdots a_p} - \sum_{i=1}^p g_{ba_i}\omega_{a_1\cdots a_{i-1}}(i)),$$

with a constant k. The space of all the p-forms special with k is denoted by S_k^p . For example, any p-form in the space of constant sectional curveture k is special with k. The vector field which is dual to $\omega \in S_k^1$ with respect to g belongs to the k-nullity distribution of M^n .

 $\omega \in S_k^p$ satisfies

$$(3.2) H(\omega) = p(n-p) k\omega.$$

In fact, if we transvect (2.5) and (3.1) with g^{bc} and take the skew symmetric parts with respect to the indices a_1, \dots, a_{p-1} and a_p , we get (3.2), taking account of (1.2).

By means of (3.2) and (1.3), we have for $\omega \in S_k^p$

$$(3.3) \Delta \omega = -\nabla^b \nabla_b \omega + p(n-p) k \omega.$$

Now we put

$$C_k^p = C^p \cap S_k^p$$
, $K_k^p = K^p \cap S_k^p$, $C_k^p(d) = C^p(d) \cap S_k^p$.
Evidently, $K_k^p = C_k^p \cap \delta^{-1}(0)$ and $C_k^p(d) = C_k^p \cap d^{-1}(0)$ hold.
By (2. 6) and (3. 1), $\omega \in C_k^p$ satisfies

(3.4)
$$\nabla^{b}\nabla_{b}\omega_{a_{1}\cdots a_{p}} + (n-p)k\omega_{a_{1}\cdots a_{p}} = -(n-p)\nabla_{a_{1}}\rho_{a_{2}\cdots a_{p}} + (d\rho)_{a_{1}\cdots a_{p}}.$$

Lemma 2. $\omega \in K_k^p$ if and only if $\omega \in K^p$ and it satisfies

$$\nabla_Y d\omega = -k(p+1)e(Y)\omega$$

for any vector field Y.

Proof. Let $\omega \in K^p$. By means of (2.8) and (3.1), $\omega \in S_k^p$ is equivalent to the establishment of the equation

$$(3.6) \nabla_{Z}\nabla_{Y}\omega - \nabla_{\nabla_{Z}Y}\omega = -ki(Y)e(Z)\omega,$$

for any vector fields Y and Z. On the other hand, (2.10) and (3.6) hold if and only if (2.10) and (3.5) hold.

Lemma 3 (cf. [10]). In any orientable Riemannian manifold M^n ,

(i)
$$K_k^p = K^p \cap V_{(p+1)(n-p)k}^p \cap d^{-1}(C^{p+1}(d)) \quad (n > p \ge 1)$$

(ii)
$$(k_k^{n-p})^* = C^p(d) \cap V_{p(n-p+1)k}^p \cap \delta^{-1}(k^{p-1}) \quad (n > p > 1)$$

hold for any constant k.

Proof. Let $\omega \in C_k^p$. Making use of (2.7), (3.2) and (3.3), we get

(3.7)
$$\Delta \omega = (p+1)(n-p)k\omega + \frac{2p-n}{p(n-p+1)}d\delta\omega.$$

By virtue of $K_k^p = C_k^p \cap \delta^{-1}(0)$ and $C_k^p(d) = C_k^p \cap d^{-1}(0)$, we then have

$$(3.8) K_k^p \subset V_{(p+1)(n-p)k}^p \text{ and } C_k^p(d) \subset V_{n(n-p+1)k}^p.$$

(i) Let $\omega \in K_k^p$. Since $\omega \in V_{(p+1)(n-p)k}^p$ from (3.8), $\delta d\omega = (p+1)(n-p)k\omega$ holds. Substituting this into (3.5) and taking account of Lemma 1 (iii), we have $d\omega \in C^{p+1}(d)$. From this and (3.8), we see the left hand of (i) is included in the righthand side. Conversely, if ω belongs to the

right hand side of (i),

$$\nabla_Y d\omega = -\frac{1}{n-p} e(Y) \partial d\omega = -\frac{1}{n-p} e(Y) \Delta\omega = -k(p+1) e(Y) \omega$$

holds. Thus $\omega \in K_k^p$ by virtue of Lemma 2.

(ii) If we operate * to (i), change p to n-p, and take account of Theorem 1 (ii), we have (ii).

Lemma 4. In any orientable Riemannian manifold Mⁿ,

(i)
$$C_k^p(d) = (K_k^{n-p})^*$$
 or $K_k^p = (C_k^{n-p}(d))^*$ $(n > p > 1)$

holds for any constant k. Consequently, we have

(ii)
$$C_k^p(d) = C^p(d) \cap V_{p(n-p+1)k}^p \cap \delta^{-1}(K^{p-1}) \quad (n > p > 1).$$

Proof. Let $\omega \in C_k^p$. Interchanging the indices a_1 and a_2 in (3.4) and taking the sum, we get $\rho \in K^{p-1}$. By (2.2) this gives us $C_k^p \subset \delta^{-1}(K^{p-1})$ for $n \ge p > 1$. By virtue of this, (3.8) and Lemma 3 (ii), we see $C_k^p(d) \subset (K_k^{n-p})^*$.

Next we show the conversed inclusion $C_k^p(d) \supset (K_k^{n-p})^*$. Let $\omega \in (K_k^{n-p})^*$. Since $\omega \in C^p(d)$ from Lemma 3 (ii), it is sufficient to show $\omega \in S_k^p$. $\omega \in K_k^{n-p}$ satisfies the equations corresponding to (3.5) and (3.6). Operating * to them, we thus have

$$\nabla_{S} \delta \omega = k(n - p + 1) i(Y) \omega ,$$

(3. 10)
$$\nabla_{Z}\nabla_{Y}\omega - \nabla_{\nabla_{Z}Y}\omega = -ke(Y)i(Z)\omega,$$

for every vector fields Y and Z. If we take account of (2, 2) and substitute (3, 9) and (3, 10) into (2, 4), we get (3, 1).

From Lemma 4 (i) and Lemma 2, we have the following

Lemma 5. In any orientable Riemannian manifold M^n , $\omega \in C_k^n(d)$ if and only if $\omega \in C^n(d)$ and it satisfies (3.9) for any vector field Y.

By Lemma 4 (ii),
$$\omega \in C_k^p(d)$$
 satisfies $\delta \omega \in K^{p-1}$ and $\nabla_V d\delta \omega = \nabla_V \Delta \omega = kp(n-p+1)\nabla_V \omega = -kpe(Y)\delta \omega$

for any vector field Y. This means $C_k^p(d) \subset \delta^{-1}(K_k^{p-1})$ from Lemma 2. Similarly, by making use of Lemma 3 (i) and Lemma 5, we have $K_k^p \subset d^{-1}(C_k^{p+1}(d))$.

Lemma 6. In any orientable Riemannian manifold M^n , $C_k^p(d) \subset$

 $\delta^{-1}(K_k^{p-1})$ and $K_k^p \subset d^{-1}(C_k^{p+1}(d))$ (n > p > 1) hold for any constant k.

4. Compact orientable Riemannian manifold of postive curvature operator. In this section, we assume that M^n is of positive curvature operator, i. e., there exists a positive constant k such that $-R_{abce}\omega^{ab}\omega^{ce} \geq 2k\omega_{ab}\omega^{ab}$ holds for any 2-form ω . For example, Riemannian manifolds of constant curvature k>0 are of positive curvature operator. For the study of M^n , we refer to [1, 2, 6 and 8]. Moreover if M^n is compact and orientable, it is known in [2] that the proper value λ of Δ for p-forms ω $(n \geq p \geq 1)$ satisfies

(4.1)
$$\lambda \ge p(n-p+1)k = \lambda_{d,p} \quad \text{if} \quad d\omega = 0 \\
\text{put} \\
\lambda \ge (p+1)(n-p)k = \lambda_{\delta,p} \quad \text{if} \quad \delta\omega = 0.$$

S. Tachibana and S. Yamaguchi [10] obtained that

$$(4.2) V_{d,p}^{r} \cap d^{-1}(0) = C^{p}(d) \cap \delta^{-1}(K_{k}^{p-1}) \qquad (n > p > 1).$$

$$V_{d,p}^{r} \cup \delta^{-1}(0) = K_{k}^{r} \qquad (n > p \ge 1).$$

Theorem 2. In a compact orientable Riemannian manifold M^n of positive curvature operator, we have

$$V_{\lambda_{d,p}}^p \cap d^{-1}(0) = C_k^p(d)$$
 $(n > p > 1).$

Consequently, we have

$$V_{k_{d,p}}^{p} = C_{k}^{p}(d)$$
 $(n > 2p > 2).$

Proof. Operating * to (4.2), changed p to n-p, and taking account of Lemma 4 (i), we have the former. To show the latter, we notice $V_{\lambda_{d,p}}^{p} = (V_{\lambda_{d,p}}^{p} \cap d^{-1}(0)) \oplus (V_{\lambda_{d,p}}^{p} \cap \delta^{-1}(0))$. On the other hand, if n > 2p, $d(V_{\lambda_{d,p}}^{p} \cap \delta^{-1}(0)) \subset V_{\lambda_{d,p}}^{p+1} \cap d^{-1}(0) = \{0\}$ holds by virtue of $\lambda_{d,p} < \lambda_{d,p+1}$ and (4.1). We thus have $V_{\lambda_{d,p}}^{p} \cap \delta^{-1}(0) = \{0\}$ for n > 2p.

Corollary 2. In a compact orientable Riemannian manifold M^n of positive curvature operator, we have

$$(i) C_k^p = K_k^p \oplus C_k^p(d) (n > p \ge 1).$$

Consequently, we have

(ii)
$$C_k^{\nu} = (C_k^{n-\nu})^*$$
 $(n > p \ge 1).$

Proof. As was shown in the proof of Lemma 3, $\omega \in C_k^p$ satisfies (3.7), that is,

(4.3)
$$\omega = \frac{1}{(p+1)(n-p)k} \delta d\omega + \frac{1}{p(n-p+1)k} d\delta\omega.$$

It is not difficult to see that the closed part belongs to $V_{\lambda_{d,p}}^p \cap d^{-1}(0)$ and the co-closed part belongs to $V_{\lambda_{d,p}}^p \cap \delta^{-1}(0)$. We then have $C_k^p \subset K_k^p \oplus C_k^p(d)$ by virtue of (4. 2) and Theorem 2. The converse is obvious. (ii) follows from (i) and Lemma 4 (i).

If n = 2m, $\lambda_{d,m} = m(m+1)k = \lambda_{\delta,m}$ holds. From (4.2), Theorem 1 and Corollary 2, we get

Corollary 3. In a compact orientable Riemannian manifold $M^{2m}(m>1)$ of positive curvature operator, there holds

$$V_{m(m+1)k}^m = C_k^m = K_k^m \oplus C_k^m(d).$$

Remark. We don't know whether $\lambda_{d,p}$ and $\lambda_{\delta,p}$ are the first proper values of M^n or not. In other words, the spaces $V_{\lambda_{d,p}}^p \cap d^{-1}(0)$ and $V_{\lambda_{\delta,p}}^p \cap \delta^{-1}(0)$ may be $\{0\}$ for some M^n . But we see that if M^n is Euclidean n-sphere of curvature k then they are the first proper values, since $C^p(d) = C_k^p(d) \neq \{0\}$ and $K_k^p = K^p \neq \{0\}$.

REFERENCES

- [1] M. Berger: Sur les variétés à operateur de courbure positif, C. R. Acad. Sc. Paris 253 (1961), 2832—2834.
- [2] S. GALLOT et D. MEYER: Opérateur de courbure et laplacien des formes differentielles d'une variété riemanniennes, J. Math. Pures Appl. 54 (1975), 259—284.
- [3] S.I. GOLDBERG: Curvature and Homology, Academic Press, 1962.
- [4] T. KASHIWADA: On conformal Killingtensor, Nat. Sci Rep. Ochanomizu Univ. 19 (1968), 67—74.
- [5] H. MAILLOT: Sur les formes de Killing et leurs (dual) sur une variété riemannienne, C. R. Acad. Sc. Paris 276 (1973), 1565—1568.
- [6] D. MEYER: Sur les variété riemanniennes à opérateur de coubure positif, C. R. Acad. Sc. Paris 272 (1971), 482—485.
- [7] S. TACHIBANA: On conformal Killing tensor in a Riemannian space, Tôhoku Math. J. 21(1969), 56—64.
- [8] S. TACHIBANA: A theorem on Riemannian manifolds of positive curvature operator, Proc. Japan Acad. 50 (1974), 301—302.
- [9] S. TACHIBANA and T. KASHIWADA: On the integrability of Killing-Yano's equation, J. Math. Soc. Japan 21 (1969), 259—265.
- [10] S. TACHIBANA and S. YAMAGUCHI: On the first proper space of Δ for p-forms in compact Riemannian manifold of positive curvature operator, to appear.

[11] H. YANAMOTO: On conformal Killing tensors of degree 2 in 3-dimensional space. Res. Rep. Nagaoka Tech. Coll. 9 (1974), 191—196.

DEPARTMENT OF MATHEMATICS OKAYAMA UNIVEYSITY

(Received February 28, 1980)