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COMMUTATIVITY THEOREMS FOR s-UNITAL RINGS
SATISFYING POLYNOMIAL IDENTITIES

Dedicated to Professor N. Jacobson on his 70th birthday

HazAR ABU-KHUZAM, HISAO TOMINAGA and ADIL YAQUB

Recently, H. E. Bell [2] proved that an #n-torsion free ring with identity
which satisfies the identity (xy)"=(yx)" is necessarily commutative. More
recently, Y. Hirano, M. Hongan and the second author of this paper has
proved the same for s-unital rings [5]. On the other hand, the first author
of this paper has proved that an (#+ 1)n-torsion free ring with identity
which satisfies the identity (xy)"*'=x"*'y"*! is commutative [1]. Our
objective is to generalize Bell’s result to s-unital rings satisfying weaker
identities which are implied by the identity (xy)"=(yx)", and to generalize
the main theorem of [1] to s-unital rings. Following [5], a ring R is
called s-unital if for each x in R, x&RxNxR. Asstatedin [5], if R is
an s-unital ring, then for any finite subset F of R, there exists an element
e in R such that ex=xe=x for all x in F. Such an element ¢ Wlll be
called a pseudo-identity of F.

Throughout, R will represent a ring with center C, and N will
denote the set of all nilpotent elements of R. Asusual, [x, y] will denote
the commutator xy—yx. Our present objective is to prove the following
theorems.

Theorem 1. Let n be a fixed positive integer. Let R be an s-unital
ring in which every commutator is n-torsion free. If R satisfies the
polynomial identities (2", y"1=0 and [x, (xy)"—(yx)"]=0, then R is com-
mutative,

Theorem 2. Let n be a fixed positive integer. Let R be an s-unital
ring in which every commutator is (n-+1)n-torsion free. If R satisfies the

polynomial identity (xy)""'—x"*'y"*'=0, then R is commutative.

In preparation for the proof of our theofems, we establish the following
lemmas. ‘
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Lemma 1. Let m, n be fixed positive integers.

1) If [a, [a, b1]=0 then [a" b]l=na""'[a,b], where a, bER.

(2) Let e be a pseudo-identity of {a,b}CR. If a"b=0=(a+e)"b
then b=0.

() If R satisfies the polynomial identity [x",y"]1=0 or (xy)""'—
£y 1=0, then the commutator ideal D(R) of R is contained in N,

(4) If R is an s-unital ring satisfying the polynomial identity [x", y*]
=0, then there exists a positive integer k such that k[x", y]=0.

Proof. (1) is well known. (3) is obvious by [4, Theorem] and
[3, Theorem 1], and (4) is proved in [5, Lemma 10].

(2) We have

0=a™Ya+e)"b=a™'h, and

O0=(—1"(@a+e)" 'a"b=(—1)"(a+e)" ' {—e+(a+e)}"b=(a+e)"'b.
Continuing this process, we obtain eventually 5=0.

Lemma 2. Let n be a fixed positive integer. Let R be an s-unital
ring in which every commutator is n-torsion free.

(1) If R satisfies the polynomial identity nx™[x,y]=0 with a non-
negative integer m, then R is commutative.

(2) If R satisfies the polynomial identity [x", y]1=0, then R is com-
mutative,

Proof. (1) Let a, b be arbitrary elements of R, and e¢ a pseudo-
identity of {a, b}. Since na™[a, b]=0 and n(e-+e)"[a, b]=0, by Lemma
1 (2) we have nlaq, b]=0, and therefore [, b]=0.

(2) Since D(R)SN by Lemma 1 (3), from the proof of [5, Lemma 9]
it follows that NCC. Hence, by Lemma 1 (1), nx""'[x, y]=[z", y]1=0.
Now, the commutativity of R is obvious by (1).

We are now ready to complete the proof of Theorem 1.

Proof of Theorem 1. First, we shall show that [#,d"]=0 for every
d=R and every uN. Let f be a pseudo-identity of {d,#}. Since # is
nilpotent, there exists a minimal positive integer m such that [«',d"] =0
for all integers i>m. If m>=>2, then ‘ :

0=[(f+u™), d"]=[f +nu™"'+ - +u™ " d*]=nlu""", d*], and
hence [#™!, d*]=0, which contradicts the mlmmahty of m. Thus," m—l
and [#,d"]=0. :

According to Lemma 1 (4), there exists a positive integer % such that
k[x",y]1=0. Since D(R)CN by Lemma 1 (3), it follows from what was
just shown above that [x”, [x", y]1=0. Hence, by Lemma 1 (1), [x™, y]
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=kx"*P[x", y]=0. Now, let @, b be arbitrary elements of R, and let
e be a pseudo-identity of {@, b}. Then, combining the above with the
second polynomial identity, we have

0= [a’ (ankb)n__ (ank—lba)n] — [a, anzkbn__ aﬂzk—lbna] =an2k—l [a, [a, bn]].

Similarly, we have 0= (g -+ ¢)"*1[q, [a, "]]. We obtain therefore
(g, [a, 8]] =0 (Lemma 1 (2)) and #na" '[a, ] =0 (Lemma 1 (1)).
Again by Lemma 1 (2), n[e, "] =0, and hence [4,5"]=0. Now, R is
commutative by Lemma 2 (2).

From the proof of [5, Theorem 3], one will easily see that if R is
an s-unital ring in which every commutator is n-torsion free then the
polynomial identity (xy)"—(yx)*=0 implies [x", y*]=0. Hence, Theorem 1
implies the following :

Corollary 1. Let R be an s-unital ring in which every commutator
is ntorsion free. If R satisfies the identity (xy)"=(yx)" then R is com-
mutative.

Proof of Theorem 2. First, we shall show that [«,d"*']=0 for
every dE R and every u&N. Let f be a pseudo-identity of {d,«}. If
#, is the quasi-inverse of #, then fu,=u,f=u, and the map s: R—> R
defined by x — x — uyx — xu -+ u,xu is a ring automorphism of R. By hy-
pothesis,

0= (f =) {(f =)™ @ (f =)} (f — i) —d™* (f — )"
= (f =)o@ f — ) =™ f — )"
—(f =@ f—u) =~
—_ (f ___u)ndrﬂrl __dn+l(f__u)ﬂ= [(f_u)n’ drH-l] .

Choose the minimal positive integer m such that [#%, d"*']=0 for all
i>m. Suppose m>1. Then, by the above, [(f—u™")", d"*'] =0.
Combining this with [«,d"*']=0 (i=m), we get n[u™"',d"*']=0, and
hence [#™',d"*']=0. But this contradicts the minimality of m. Thus,
k=1, and hence [, d"*']=0.

Let R* be the subring generated by all (#z+1)-th powers of elements
of R. Then, it follows from what was just shown above that the set
N* of nilpotent elements of R* is contained in the center C* of R*.
Moreover, by Lemma 1 (3), D(R*)Z=N*CC*. Let a* b* be arbitrary
elements of R*. Then both [¢* 6***'] and [e*", ***'] are in C*.
Hence, by Lemma 1 (1),
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na*n+l [a*, b*n+]] =a*2[a*n’ b*n-i-l] =a* [a*u, b*n+l]a*

#n+1b*n+l *b*n+1a*n+1

=a a*—a
=(a*b*)"a* —a*(b*a*)"' =0,
According to Lemma 1 (2), it follows then that =n[e*, #*"*']1=0, and
therefore [a*, #*"*']=0. Now, by Lemma 2 (2), [e¢*, #*]=0, and hence
forall x, y in R, [2"*,»"*']=0. Combining this with the polynomial
identity (xy)**'—x"*'y"*'=0, we obtain (xy)"*'=(yx)**’. Hence, R is
commutative by Corollary 1.
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