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Introduction. Let M be a 3-dimensional homology sphere. Let T
be a free involution on M. Let a(M, T) be the Browder-Livesay invariant,
and let /2 (M) be the p-invariant of M. Then a(M, T)=8Z and n(M)=8Z
(mod 16). In §1, we shall prove that p(M)=a(M, T) (mod 16) (Theorem
1). This equation has been proved for Seifert homology spheres by W.D.
Neumann and R. Raymond [11]. By this equation, in order to compute
the g invariant of those homology spheres which have free involution, it
suffices to compute their Browder-Livesay invariant. For this purpose, in
§2, we shall define ‘signature invariants’ e¢...,(V, T) for orientation
preserving free involutions on 3-dimensional homology circles and coprime
integer pairs (m, n) with m odd. In §3, by making use of these invariants,
we shall give a formula of the Browder-Livesay invariant of some free
involutions on homology spheres (Theorem 3 and its Corollary). This
formula is a generalization of the formula given by W.D. Neumann [10]
for Seifert homology spheres.

All the homology and cohomology groups in this paper have integer
coefficients unless otherwise mentioned.

1. Browder-Livesay invariant and p-invariant. For convenience,
we shall work in the smooth category. All the manifolds will be compact
and oriented. The boundary of X, 0X, inherits its orientation from X.
— X will denote X with the opposite orientation. The unit n-disc will be
denoted by D", the (#—1)-sphere, 0D" by S*', and the unit interval
by L

If X, Y are disjoint #-manifolds with X, Y, (# —1) submanifolds of
0X,8Y respectively, and if k:X,— Y, is an orientation reversing diffeo-
morphism, then X U,Y will denote the quotient space X U Y/(x ~ hx for
all x€X,). By the existence and uniqueness of collars, X U,Y has a
natural structure as an z-manifold. If 2 comes from some natural ident-
ifications of X, and Y, with Z, say, we may write XU .Y for XU.,Y.

A homology sphere (resp. Z, homology sphere) is a closed 3-manifold
M such that H,(M)=H,(S®) (resp. H.(M, Z,)=H,(S’, Z,)). For a Z,
homology sphere M, Eells and Kuiper [2] have defined an invariant (M)
€27 (mod 16) as follows: M bounds a 4-manifold Y such that H,(Y)
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has no 2-torsion and the quadratic form of Y is even. Then, we set
w(M)=—0a(Y) (mod 16),

where «(Y) is the signature of Y. This is well-defined, by Rohlin’s
theorem [12]. If M is a homology sphere, then the intersection form of
Y is unimodular, and hence «(¥)=0 (mod 8), and the possible value of
#(M) is 8 or 0.

Let T be a free involution on a Z. homology sphere M. Then T
preserves the orientation of M by Lefschetz fixed point theorem. The
Browder-Livesay invariant « (M, T') is defined as follows ([1]): There is
a decomposition of M such that M=AUTA, AN TA=B, where A4 isa
3-dimensional submanifold of M with 04= B, and B is an invariant closed
surface in M (B is called a characteristic surface of (M, 7)). A inherits
its orientation from M. Put K=Ker (H,(B)— H\(4)). Let { , > be
the bilinear form on K defined by {x,y>=2x-T,y for x, y=K, where 7,
is the homomorphism H,(B) — H;(B) induced by 7, and dot denotes the
intersection number. Then { , ) is a non-degenerate symmetric bilinear
form on K of even type. Set

aM, T)=a( , D)

where + is the signatﬁre of { , > If M is a homology sphere, the
bilinear from { , ) is unimodular, and hence «(M, T)=0 (mod 8).
The rest of this section will be devoted to the proof of the following

Theorem 1. Let T be a free involution on a homology sphere M.
Then p(M)=a(M, T) (mod 16).

Proof. Let M/T be the orbit space of M andlet p:M— M/T be
the covering projection. Let C be a simple closed curve in M/ T which
represents the generator of H,(M/T,Z.)=Z. Then C=5"'(C) is an
invariant simple closed curve in M. Let U be an invariant closed tubular
neighborhood of C in M. Then by Alexander duality theorem, it follows
that M—U is a homology circle, H.(M—U)=H,.(S), where M—U is
the closure of M—U in M. Now, both 80U and p(®U) are S'XS'. Let
D be a simple closed curve in p(3U) which is homologous to zero in
p(M—1U). Then p (D) consists of two simple closed curves, say, D and
its transformed image 7D. Now there is an orientation preserving equiva-
riant embedding f:S'XD?* - M such that f(S'XD)=U, f(5§'x0)=C and
f(§'X)=D(CBM—U=0U), where S'XD? has the involution 7T defined
by T(x,y)=(—=x, —y) for (x,y)=S'XD? and D? is regarded as the unit
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disc in the complex plane. Let D*XD® be the 4-disc with the involution
T defined by T(x, y)={(—x,3) ((x,y)ED*X D%, Let g:0D*XD*—> M be
the equivariant embedding defined by g{x, y)=f(x, xy) for (x, y)=9dD*x D*,
Form the manifold M<IU,D*XD*, where g is considered as an embed-
ding of 0D*XD* to MXI Let M, be the manifold M—UU ;31200 D?
X0D?, where | denotes the restriction of the map. Then 9(M xIU ,D?
xDY)=MJ—M, By Mayer-Vietoris theorem, it follows that M, is a
homology sphere. Now M, has an involution 7 with fixed point set
C,=0x0D* Let M,=M,/T be the orbit space, and let p,: M, > M, be
the projection. Then it can be seen that any closed curve in M, inter-
secting transversely and non-vacuously with C,=p,(C,) lifts to a closed
curve in M, Hence pus : =(M) — m(M,) is onto. This implies that M,
is a homology sphere. M, is considered as the 2-fold branched covering
space of M, branched over the curve C,. Let W be a 4-dimensional spin
manifold which bounds M, 0W=M,, and is simply connected. Now X ,=
(M., C)) is a knot in the homology sphere M,. There is a Seifert surface
of K, say S, in M, with 0S=C, ([4]). Since S has a trivial normal
bundle in M, there is an embedding of S X[—1, 1] into M, such that
Sx0=S Now take two copies of W, say W, and W. and form the
manifold X = W, U gx-—1.n W, from the disjoint union W,U W, by identifying
the point (x, )=Sx[—1,1]C W, with the point (x, —H)=Sx[—1, 1]
COW.. Then X has a natural involution 7 which is orientation preserv-
ing and interchanges W, with W, and W, with W,. The fixed point set
of T is S=8x0 and 8XNS=03S. The orbit space X/ T is W. 08X is
the 2-fold branched covering space of M, branched over the curve 9S= C,
and 0X is equivariantly diffeomorphic to M. Let Y be the manifold
(M xIU,D**xD*)UyX obtained from the disjoint union (M xIU ,D*x D%
U X by identifying the common boundary M, Then 9¥=M and Y has
an orientation preserving involution 7 which restricts to the original
involution on M. Now we compute «(M, T) and (M) by making use
of Y.

First we consider the homology of X= W, U,.;W,. By Mayer-Vietoris
theorem, there is the following exact sequence :

0 - H{(W) @ HAW:) — H{(X) 2> H(Sx 1) = 0.

Let {a}-1..s be a base of Hy(W) and let {«f"} be the corresponding
base of Hy(W) (i=1,2), where s=rank Hy(W). Then T.a{"=a{” in
H.(X), where T, is the homomorphism induced by the involution 7T on
X (j=1,---,s). Let {Ei ;-1 becurves in S which represent a base of
H(S), where ¢t=rank H,(S). Since each E, is homologous to zero in
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M,=0W, there exists a 2-chain G, in a collar neighborhood 8Wx I such
that 0G,= E,. Let G{” be the copies of G, in W; (i=1, 2). Then
TGP=GP and TGP=GP. Now the chain G{’—G® is a cycle and
represents a homology class 3. in Hy(X) such that 9,3.=[E.]€H\(S),
where [E,] is the homology class represented by the curve E; (k=1, :--, ).
Clearly T.3i=-—p: in H,(X). By the above Mayer-Vietors tequence,
{a§P, &, B} (7=1, -+, s and k=1, ---, {) forms a base of H,(X). Next we
consider Hy(Mx IU,D*xD?). Let £ be the homology class represented by
the chain CXIU¢(0X D%, EEH,(Mx I ,D*x D? 8)=H,(MxIU,D*x D".
Then £-£=1 by the construction and £ generates H,(M X IU ,D*x D%,
and T, E=E.

Now the set {§, «", &, 3} (7=1,---,s and k=1, -+, #) is a base of
H,Y) such that
(1) T.&=§, T*ay):asz) and T.8.=—g,
(2) &-£=1 and &-af’=&-aP’ =2 -a¥ =g aP=ai-a¥=0,
where dot denotes the intersection number ((2) is clear from the construc-
tion of £ and 3,). Let A‘” be the intersection matrix (a{”-aP) (i=1, 2
and k, m=1, -, s) and let B be the intersection matrix (8:+83.) (k, m=1,

e, t).
Assertion (1). «(M, T)'= —sign B.

Proof. The fixed point set of the involution 7" on Y is the closed
2-surface F=0xD’U,S. By Hirzebruch [5],

a(M, T)=sign (Y, T)—[F]-[F],

where sign (Y, T) denotes the signature of the bilinear form < , ) on
H,(Y) defind by <x,y>=x-Tyy for x,y=H,(Y), and [F] is the homology
class represented by F. With respect to the above base of H,(Y), the
bilinear form { , ) is represented by the matrix

<+ § 8]+ B,

where A=A"=A4", Hence sign (Y, T)=1—sign B, Now [F]:-[F]=1,
and the Assertion (1) follows,

Assertion (2). p(M) = —sign B (mod 16).

Proof. With respect to the above base, the intersection form on
H,(Y) is represented by that matrix

{1>+ A+ A+ B,
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where A=A"=A®, Hence +(Y)=1- 2sign A+sign B. Since 0W=M,
is a homology sphere and W is a spin manifold, A is a unimodular sym-
metric matrix with even diagonal entries. Therefore sign A =0 (mod 8),
and we obtain ¢(Y)=1 - sign B (mod 16). Now the class £ is represented
(as a relative cycle) by a disc CXIU«x, (0 xD? with boundary CC M,
and & is characteristic for the quadratic form of Y, that is, £-z=2z-z
(mod 2) for every z&H.(Y). Let K be the knot (M, C) in the homology
sphere M. Then Gordon [4] has shown that p(M)=£-(—o(Y)—c(K)
(mod 16), where c(X) is the Arf invariant of the knot K= (M, C). Hence
#(M)=—sign B—c(K) (mod 16). Now it suffices to prove that c(K) =0
(mod 16). Let J(f) be the Alexander polynomial of K. Then c(X)=
(Jx(—1))’—1 (mod 16) ([71). Now the knot K=(M, C) and the knot
K,=(M, C)) have the same knot complement, so that J.(f)=tx(t). Since
M, is the 2 fold branched covering space of M, branched over the curve
Ci, di()=dx,(®)dx, ("), where K,=(M, C) is the knot in the homology
sphere M, ([3]). Hence Jx(—1)=dx(—1)=di, (V' —1)dx(—1'—1). Since
the Alexander polynomial of any knot is a reciprocal polynomial, it can be
seen that JKI(V ?i)JK](—— 1/ —1) is a square of an odd integer, say, (2d+1)*
(note that o (—1)=1 (mod 2)). Therefore c(K)=(dx(—1))*—1=8d(d+1)
(2d*+2d+1)=0 (mod 16). This proves Assertion (2), and therefore
Theorem 1.

Remark 1; Let K,=(M, C,) be the knot in the above proof. Then
it is well known that sign B in the above proof is equal to the so-called
signature of the knot K,, #(X,). Hence we have proved that o« (M, T)=
—a(K).

Remark 2. The equation in Theorem 1 has been proved for Seifert
homology spheres by W. D. Neumann and F. Raymond [11]. Many examples
of free involutions on homology spheres which cannot be embedded in S'
action have been constructed by C. McA. Gordon [4]. The same argument
in the above proof gives only (M) = (M, T) (mod 4) for Z, homology
spheres with free involution. In general, the equality x(M)=a(M, T)
(mod 16) does not hold for Z, homology spheres with free involution. As
an example, let L(3, 1) be the standard Lens space and let M be the con-
nected sum L(3,1) ¥ L(3,1). Then M has a natural free involution with
S? as the characteristic surface. Hence «(M, T)=0. On the other hand,
w(M)=2u(L(3, 1))=4 (mod 16). '

2. Signatures of orientaion preserving involutions on homology
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circles. Let V be a homology circle, that is, a compact 3-dimensional
manifold with boundary S'XxS' such that H.(V)=H,(S). Let 7 be an
orientation preserving free involution on V. Let V/T be the orbit space
and let p: V—=V/T be the covering projection.

Lemma 2.1. V/T is a homology circle.

Proof. Let S be the infinite dimensional sphere with the antipodal
free involution 7. Then S*/7T= P~ is the infinite dimensional real pro-
jective space and S™— P~ is the universal Z, bundle. Let S”Xx,V be
the orbit space of S=X V by the diagonal action of Z,. Since the involu-
tion on V is free and S™ is contractible, S* X,V is homotopy equivalent
to V/T. The projection to the first factor S*x ,V—P= is a fibre bundle
with fibre V. Considering the cohomology Serre spectral sequence of
this fibre bundle, it follows that p* :H*(V/T)— H*(V) is injective and
P*HW(V/TY)=2ZCZ=H'(V). This proves Lemma 2. 1.

Definition 2.1, A pair of characteristic curves in 0V is defined as a
pair of oriented simple closed curves (C, D) in V such that (i) 7C=C
and DNTD=¢, and (ii) CND consists of a single point and C-D=1,
where dot denotes the intersection number.

Lemma 2.2. For i=1,2, let V. be a homology circle with free
orientation preserving involution T.. Let (C, D) be a pair of characteristic
curves in 0V, Then there is an orientation reversing equivariant diffeomor-
phism h:0V,—> 0V, such that h maps C, onto C, orientation Dreservingly
and D, onto D, orientation reversingly.

Proof. Let p;: V:— V,/T; be the covering projection (=1, 2). Then
(p{C), p«(D)) is a pair of simple closed curves in 3(V;/ T;) whose homology
classes generate H,(8(V./T)). Since 8(V./T) is S'xS', there is a
diffeomorphism %:8(V,/T)—08(V,/T)) such that % maps £.(C) onto
p:«(D,) orientation preservingly and p.(D,) onto p,(D.) orientation rever-
singly. Now it suffices to take as % the map which covers #.

Definition 2.2. A pair of characteristic curves in 0V, (C D), is
called of type (m,n) if [C]=m1 and [D]==ni in H,(V), where /) is a
base of H(V)=Z and [C] and [D] are represented classes. We always
choose 1 so that m>0.

The integer pairs (m, #) in the above definition are coprime pairs if
n0. :
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Lemma 2.3. Let (C,D) be a pair of characteristic curves in OV of
type (m,n). Then m is an odd integer.

Proof. Let p:V—V/T be the covering projection. Then p(C) is
a simple closed curve in 9(V/7T). Let 2 be the base of H,(V/T) such
that p,(2)=21, where p, is the induced homomorphism. Then [p(C)] =m1
in H(V/T). The map p is a covering map associated to the composite
homomorphism p:=(V/T)—>H(V/T)=Z— Z/2Z, where the last map is
the mod 2 reduction. Since C—p(C) is a non-trivial covering, p(p(C))
=m7#0 (mod 2). Hence m is odd.

First we consider a pair of characteristic curves in 0V of type (1, 0),
(C, D). The curve D is null-homologous to zero in V.

Lemma 2.4. Let (C, D) be a pair of characteristic curves in 0V of
type (1,0). Then there is a connected surface B in V such that BN TB

=@, 0B=BN0V=D and H(B)—> H(V) is a zero-homomorphism, where
the last map is induced by the inclusion.

Proof. In the commutative diagram

D
11— o(V) — o(V/T) — Z,—> 1

Lo, |

1—> H(V) —*>H1(V/T) —Z,—>1

’

the upper line is a non-trivial extension of =, (V) by Z, and the vertical
maps are the abelianizations of the groups, and the lower line is equivalent

to the sequence Z 5Z- Z, Since S'is K(Z, 1), there is the following

pull back diagram of the covering spaces corresponding to the above
diagram

)/
V— V/T

L, b

Sl_—’ Sl ,
where S'—— S' is the usual 2-fold covering and f is a map representing
a generator of H'(V/T). We may assume that f is t-regular at 18",
f7'(1) is a surface in V/T such that f'(1)NO(V/T)=0(f"(1)) is a
simple closed curve in 9(V/T). Since both p(D) and 9(f~'(1)) are nul-
homologous in V/T and 9(V/T)=S'xS', p(D) and f~'(1) are homo-
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topic, and hence isotopic in 9(V/T). Therefore we may assume that
3f7'(1)=p(D). Let B be the surface which is the connected component
of p7(f7'(1)) containing D as its boundary. Then B satisfies the condi-
tions requested.

Let B be such a surface as in Lemma 2. 4, Then BU 7B decomposes
V as V=AUTA, ANTA=BUTB, where A is a 3-dimensional sub-
manifold of V. By Mayer-Vietoris theorem, we see that H,(BU TB)=
H(A)PH,(TA). Let K be the kernel of the homomorphism H.(BU TB)
—H,(A) induced by the inclusion. Then H(BU TB)=K-+ T.K, where
T.:H(BUTB)—> H(BUTB) is induced by 7. Let { , > be the
bilinear form on K defined by <{x, y>=x'T.y for x,y€K. Then{ , )
is a symmetric bilinear form of even type on K. Let a«w.o.(V, T) be the
signature of this symmetric bilinear form.

Now, let 7, be the involution on S'XxD* defined by T\(x, y)=(—x, y)
for (x, y)=S'xD’. By Lemma 2.2, there is an orientation reversing
equivariant diffeomorphism % :0V — 0(S'x D?) such that 2 maps D onto
the curve E={(x, x) | x=S'}Cd(8'xD*). Then M,=VU,S'XD*is a
homology sphere with free involution 7.

Lemma 2.5. Let M, be as above. Then o.00(V, T)=a(M, T),
where o« is the Browder Livesay invariant.

Proof. There is an invariant annulas S'X7 in S'Xx D such that
S'x0=EFE and $'x1=T,E. Put B=BU:S'XIU:TB. Then B isa
characteristic surface of M,, and M, decomposes as M,= AU TA,
AN TA=B, where A is a submanifold of M, such that AN V=4 (4 is
as above). Clearly H,(B)=H,(BUTB) and Ker(H,(B) — H,(A4)) = Ker
(H(BU TB)— H,(A))=K. By the definition of «(M,, T) and o, »(V, T),
Lemma 2. 5 follows,

By the above lemma, o0 5(V, T) does not depend on the choice of
B. Now let (C’, D’) be another pair of characteristic curves in 8V of
type (1,0). Let #2:0(V/T)— 8(S'xD* T, be the map induced by the
above equivariant map 4. Since p(D) and p(D’) are homotopic, and
hence isotopic in 8V/ T, there is a diffeomorphism %' : 3 V/ T—3(S' X DY/ T.)
such that %' is isotopic to % and %' maps p(D’) onto p,(E), where p
and p, are the covering projections of V and S'XxD? respectively. Let
h' be the map which covers #4'. Then k' is equivariantly isotopic to 4
and #/(D)=E. Now form the manifold M,, as above. Then «(M,, 7)
=a(M,,, T). This shows that o 5s(V, T) does not depend on the
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particular choice of (C, D) of type (1,0). Hence the following definition
is possible.

Definition 2.3. Let V be a homology circle with orientation preser-
ving involution 7. Define o(V, T)=0.n.5(V, T), where (C, D, B) is as
above.

Next we consider a pair of characteristic curves in 0V of type (m, n),
(C, D), where m is odd>>0 and ns=0. Since DU TD is a characteristic
submanifold of 9V, the relative transversality theorem shows that there is
an invariant surface B in V such that B=TB and 0B=DU TD, and B
decomposes V as V=AU TA, ANTA=B, where A is a 3-dimensional
submanifold in V. Let K be the kernel of the homomorphism H,(B) —
H.(A) induced by the inclusion. Let { , > be the bilinear form on K
defined by {x, y>=x-T,y for x,y=K. Let aw.r.5(V) be the signature
of this symmetric bilinear form. First we consider the case with (V, 7°)
=(S8'xD* T,), where T is as before.

Lemma 2.6. Let (C, D) be a pair of characteristic curves in 0(S' X D%
of type (m,n), where n=0. Let B be a characteristic surface of S'XD*
such that 0B=DU TD. Then ow.p5(S' XD T,)=«a(Ln m), T), where
o 1s the Browder-Livesay invariant, L(n, m) is the standard Lens space and
T is the involution on L{(n, m) with orbit space L(2n, m).

Proof. Let f:0(S'xXD? — 0(S'XD") be an equivariant diffeomor-
phism such that f maps S'X1 onto C orientation preservingly and
—(1XS) onto D orientation reversingly. Since (C, D) is of type (m, n),
the manifold S'XD*U,S'XD* is equivariantly diffeomorphic to L, m)
with the above involution 7. Now B=(1XD)UquxshBU.ixsi(—1XD?
is a characteristic surface of L(» m), and there is a 3-dimensional
submanifold A of L(n, m) such that L(n, m)=AU TA, ANTA=B and
A=(AN(S'X DU AAN(S'X DY) = IxX D* U,A4, where A is as above.
Clearly Ker (H,(B) — H/(A))=Ker (H,(B) — H,(4)). By the definition of
awe.o.m (S X D), we obtain the lemma.

Lemma 2.7. Let V be a homology circle with orientation preserving
free involution T. Let (C, D) be a pair of characteristic curves in 0V of
type (m,n), where m is 0dd>>0 and n+0. Let B be a characteristic
surface in 'V such that OB=D\JTD. Then

ce.n.n(V, T)=a(V, T)+a(L(n, m), 7),
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where L(n, m) is the standard Lens space and T is the free involution on
L(n, m) with orbit space L(2n, m).

Proof. Let (S'XD% T,) be as before. Let h:9(S'XD? —> 3V be an
orientation reversing equivariant diffeomorphism such that % maps S'X1
onto C orientation preservingly and —(1X S") onto D orientation
reversingly. Let M be the manifold (S'XD)U,V. M has a free involu-
tion 7, and by the same argument in the proof of Lemma 2. 6 we obtain
a(M, T)=0w.0.5(V, T). Now let (C’,D'") be a pair of characteristic
curves in 8V of type (1,0). Let B’ be a surface in V such that
B'NTB'=@, 0B'=B'N0V=D’ and H,(B’) — H\(V) is a zero-homomor-
phism, where the last map is induced by inclusion (see Lemma 2. 4). Put
Co=h"(C) and Dy=h"'(D’). Then it can be seen that (C, D,) is a pair
of characteristic curves in 9(S'XD? of type (—7,#), where » is an odd
integer such that m»= —1 (mod n). Let B, be a characteristic surface
in S'XD? such that 9B,=D,U 7,D,, Then B=B,U B’U TB' is a charac-
teristic surface in M. There is a 3-dimensional submanifold A with
boundary 84= B in M such that M= AUTA and ANTA=B Put
A=AN(S'XD) and A'=ANV. Then AU TA=S XD’ ANTA=B,
AUTA'=V and ANTA =B'UTB'. Now it follows that
Ker (H,(B) > H\(A))=XKer (H{B) — H,(Ay))+Ker (H(B'U TB’) = H,(4)).
Hence we see that a(M, T)=0(,p,5p(S'XD’, T))+6w,p5n(V, T). By
definition, ¢.p.5»(V, T)=a(V, T). By Lemma 2.6, o, n,5,(S' XD’ T0)
=a(L(n, —r), T), where T is the free involution on L{n, —7) with orbit
space L(2n, —7). Since mr=-—1 (mod #n), L(n, —r) is equivariantly
and orientation preservingly diffeomorphic to L(n,m). Hence a(L(n,—7),T)
=a(L(n, m), T). Therefore we obtain a(M, T)=o(V, T)+a(L(n, m), T).
This implies that o« p5(V, T)=¢(V, T)+a(L(n,m), T).

Definition 2.3. For a homology circle V' with orientation preserving
free involution 7, we define o (V, T)=0w.p.5(V, T), where (C, D) is
a pair of characteristic curves in 9V of type (m,#) and B is a charac-
teristic surface in V such that 8B=DU TD.

Following [11], we use the following notation: c(p, ¢) is defined for
coprime integer pairs (p, ¢) with p odd by the recursions

c(p, £1)=0

c(p, —g)=c(—p,q)=—c(p, 9
c(p, p+qg)=c(p, g)+ sign (g(p+q))
c(p+2q, 9)=c(p, 9).
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In [11], it is claimed that c(p, @ =a(L(g, p), T), where T is the free
involution on L(g, p) with orbit space L(2q, p).
Now, by Lemmas 2. 7 and 2. 5, we readily obtain the following

Theorem 2. For a homology circle V with orientation preserving free
involution T and for a coprime integer pair (m, n) with m odd,

G n(V, T)=¢a(V, T)+ c(m, n).
Movreover, &{(V, T)=0 (mod 8).

Proposition 1. Let V, and V, be homology circles with free orienia-
tion preserving involutions T, and T, respectively. Let h:0V,— 0V, be
an ortentation reversing equivariant diffeomorphism such that M= V,U,V:
is @ homology sphere. Then

a(M, T)=a(V), T))+ a(V,, T)).

Proof. Let (C, D) be a pair of characteristic curves in 0V, of type
(1,0). Then as M is a homology sphere, (#(C), k(D)) is a pair of
characteristic curves in 0V, of type (m, +1) for some odd integer m. By
the same argument in the proof of Lemma 2.7, we see that a(M, T)=
o(Vy, T+ o0 (Vy, To). Now oean(Ve, T)=0a(Vy, T.)+c(m, £1)=
G (Vz, T2)~

Some examples. (1) Let T be the antipodal involution on S°. Let
K be a knot in S*® such that TK=K. Let N be an invariant closed
tubular neighborhood of K in S°. Let V(K) be the closure of the

complement of N, V(K)=S*—N. Then V(K) is a homology circle with
free involution 7.

Proposition 2. +(V(K), T)=0.

Proof. Since S*=V(EK)UN, a(S}, T)=e¢(V(K), T)+s(N, T) by
Proposition 1. Now « (S}, T)=a«(N, T)=0.

(2) Let K be a knot in S® such that J(—1)==1, where J() is
the Alexander polynomial of K. Let M be the 2-fold branched covering
space of S* branched over K. Then M is a homology sphere with involu-
tion. Let N be an invariant closed tubular neighborhood of K in M.
Let V. be the cosure of the complement of N, Vi=M—N., Then Vy is
a homology circle with free involution 7.
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Proposition 8. «(Vi, T)=—¢(K), where #(K) is the signature of
the knot K.

Proof. Let (S'XD" T,) be as before. Let h:0(S'XD% — 0V be
an orientation reversing equivariant diffeomorphism such that (& (§'x1),
h(1xSY) is a pair of characteristic curves in 0V of type (m, =1) for
some odd integer m. Then H=S'XD'U,V is a homology sphere with
free involution 7. By Proposition 1, «a(H, T)=4(V, T). Now the
process of construcing H from the knot K in S* is just the converse of
the process of constructing the knot K,=(M,, C,) in the proof of Theorem
1. By Remark 1, a(H, T)=—o(K). Hence o(Vy, T)=—a(K).

3. Browder-Livesay invariants of some homology spheres. In this
section, first we consider the homology circles with free involution con-
structed as follows :

Let V. (=1, ---, k); be a homology circle with orientation preserving
free involution 7. Let (C, D)) be a pair of characteristic curves in 9V.
of type (m: n;) (i=1,---, k). Let T, be the free involution on S' X D*
defined by T.(x, y)=(—x, y) for (x, ) =S'x D Let {p}icy..;. be k&
distinct points of 9D° and let E; be an arc in 0D° containing p; in its
interior such that E,NE;=@ for each i5j (i,7=1, ---, k). Let V((m,
m), s (m., ni)) be the 3-manifold obtained from the disjoint union (S'x D%

U{U V) by identifying each S'Xx E, with an invariant annular neighbor-
i=1

hood of C; in 9V; by an equivariant diffeomorphism f; which maps S Xp:

onto C: in an orientation preserving manner and reverses orientation on a

transverse arc.

Lemma 3.1. If m. and m; are coprime for each i %j (i,j=1, ---, k),
then V((my, ny), -, (mi, n)) is @ homology circle.

Proof. There are integers 7y, ---, 7, such that 2 ime -~ w7, -~
m,=1. Let 2, be a generator of H,(V;) such that [Cl=m.i (=1, -, k).
By Mayer Vietoris theorem, we see that 72,4 ---+ 7.1, generates H,(V((m,,
ny), o, (g, 1) =2Z.

Since each f; is equivariant, V{(m,, n.), ---, (m,, n)) has a free involu-
tion T.

Theorem 3. Let V=V(m,n), ---, im, n)) be the above manifold,
where m; and m; arve coprime for each ij (1,j=1,---, k). Then
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) k
a(V, T)= Z;! (a(V:, T+ c(m;, n;)+ sign n;)

k 7 . X #:
——c(m.«--m,r, Wy 2 mi )-31gn<2 ——) ,

‘ =1 m;

i=]

where ¢ and ¢ are as in 82, and c(m, 0)=sign 0 =0.

Corollary. Let h be an orientation veversing equivariant diffeomor-
phism from 0(S' XD to OV such that (S'XD*)U.V is a homology sphere
with free tnvolution T, where V is as in Theorem 3. Then «((S'XD?
U.V, T) is given by the right hand term of the equation in Theorem 3.

Proof. This is straightforward from Proposition 1 in §2 and
Theorem 3.

Remark. When (V, T)=(S8'xXD* T) for i=1,---, k in the above
construction, it can be seen that V=V ((m,n), ---, (42, n,)) has an S
action which extends the involution. Moreover in the case that m. and

b
m; are coprime for each {#j (i, j=1, -, k) and mi---mk(zi)zil,
i=1 M;

by a suitable choice of A4 in the above Corollary, the resulting manifold
S'x D),V =M may be endowed with S' action which extends the involy-
tion, that is, this manifold is a Seifert manifold and (m,, ), ---, (my, #n,)
are its Seifert invariants, In this case the above formula of a(V, T) gives
the formula of W. D. Neumann [10],

& ’ 3

a(M, T)= Y (c(m:, n;)+ sign n;)— sign (Z%) )

i=1 i=1 i
Hence the above formula is a generalization of Neumann’s formula for the
Browder-Livesay invariants of Seifert homology spheres.

Proof of Theorem 3. We prove Theorem 3 by the induction on 4.
When 2=1, Theorem 3 is trivial since V is equivariantly diffeomorphic
to V., and sign #,= sign »,/m, (m;>0). Next we consider the case with
k=2. The formula which we must prove is

o(V, T)=a(Vy, T))+ (V3 Ty) ~+c(my, 1) -+ (i, 1y) — cOmim, muny-+mom,)
+sign »,+sign n,—sign (u,/m,-+n./ my).
Let B; be a characteristic surface of V: such that 9B,=D,U TD; (i=1, 2).
If #;,=0, then we take BU TB as B; where B is a surface in V, satisfy-

ing the conditions of Lemma 2. 4. We may assume that f7 (D)=1XE.C
HS'xD? and f7'(TD)=-—1XE;, Then B=BUBULlXD'U—1xD’
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D, D. (where B,CV:(i=1, 2) and
{1} xD*C §'X D? is a charac-
teristic surface of V (Figure 1).
Put D,UD,U1 X0D*—1 X (ELU Ez)
=D. Let r, and », be integers
such that rm, + r.m = 1.
i B, B, Then )=v,1,+r.2, generates
O : H(V)=2, and i = m, and
S le=mA Now [D]=mi=
. -~ S| momy and [D;] =mly=nym
\ | S in H,(V). Therefore [D] =
— (mmy+nm)a in H(V). Let C
7D, ‘ ZD be the curve S'X p Co(S'x DY,
Figure 1 where P e D*— U E.. Then

CcOV. Clearly CND consists of a single point, and [C] A =ml,
=mmyi in H(V). Hence (C, D) is a pair of characteristic curves in 0V
of type (mmy, mny+msm,). Therefore o.o.m(V, T)=0cmmp.mmtmpu(V; T).

1XD*
1XE, — — 1% E;

Assertion (1). ow.o.m(V, T)=0,.0.55(Vi, T)t 0, n,5,(Vs, T)+e,
where e =1 if nn, =0, and e=0 if nn,=0.

Proof. 1If n,5~0, then the curve D, is not homologous to zero in
V: and there is a connected component in B; with boundary D,;U TD,, and
if m;=0, then B,=BU TB where B is a surface such that 9B=D, and
0TB=TD;(i=1,2). Hence by Mayer-Vietoris theorem, it follows that
rank H,(B)=rank H,(B)+rank H (B)+2 if nn,50, and H\(B)=H\(B)
+H\(By) if nm,=0. Let A be a 3-dimensional submanifold of V such
that V=AUTA, ANTA=B Put A=ANV, and A,=ANV, Then
AUTA=V, and A,NTA=B;(i=1,2). Put K=EKer (H(B)— H,(A))
and put K;,=Ker (H\(B) — H;(A)) (=1, 2), where all the homomorphisms
are induced by the inclusions, Then we see that rank K =rank K, --rank
K.+1 if mm, 50, and K=K +K, if nm=0. Now K®RQ is an inner-
product space by the bilinear form defined by <{x,y>=x-T,y for z, yE
K®Q, where @ is the rational number field, and K,QQ+K,XRQ is a
sub-inner-product space in K@Q®Q. If nn;~0, then by the orthogonal
decomposition theorem ([9]), K®Q is isomorphic to an orthogonal sum
KRXRQ+K,QXQ+1, where I isa 1-dimensional inner-product space over
Q. This proves Assertion (1).

By Assertion (1) and Theorem 2, we obtain
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o(V, T)=0(V,, T)+ a(Ve, T+ c(my, n)+ c(mmy, ny)
— c(myumy, mpy+man)+ ¢,

where e==+1 if #n,5=0, and ¢=0 if #»m;=0. Now we assume that
m#n,5=0. We must determine «. Unfortunately we cannot determine &
geometrically, We use an algebraic condition as follows : By Theorem 2,
o(V, T)=0(V,, T)=0(V,, T))=0 (mod 8). Hence c(m,, n,)+ c(m,, 7,)—
c (mymy, mmy+mn)+ e =0 (mod 8). Now Hirzebruch ([6]) has shown the
following formula

c(p, q)El-—2(%)+q (mod 8) for g odd <0,

where (%) is the quadratic residue symbol. This formula implies the

following

Assertion (2). If n is odd, c(m,n)=n-+ sign n (mod 4), and if =
is even, c(m, n)=m-+ n-+(1-+sign »n) (mod 4).

Proof. Since —2 (%) =2 (mod 4) and c(p, —qg)=—c(p, q), Hirze-
bruch’s formula gives the first equation for » odd. For #z even, use the

relation c(m, #n)=c (m, m-+n)—sign (n(m-+n)) (note that mis odd).

By Assertion (2), a brief calculation shows that

— ¢ (myms, mupy+mamy) +c (my, 1) +c(m,, n)+e
= (sign n, -+ sign #, — sign (m,-+mm,))+ 2 + ¢ (mod 4).

Since this must be 0 (mod 4) and both ¢ and sign »,+ sign »,— sign (mn,
+mm,) are +1 (mm,>>0), we obtain e =sign #n, + sign #, — sign (mn,+
muny). This completes the proof of Theorem 3 in the case with k=2,
Now by the inductive calculation, we obtain the theorem.
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