ON THE BROWDER-LIVESAY INVARIANT OF FREE INVOLUTIONS ON HOMOLOGY 3-SPHERES

Dedicated to Professor A. Komatu on his 70th birthday

Tomoyoshi YOSHIDA

Introduction. Let M be a 3-dimensional homology sphere. Let T be a free involution on M. Let $\alpha(M,T)$ be the Browder-Livesay invariant, and let $\mu(M)$ be the μ -invariant of M. Then $\alpha(M,T) \in 8\mathbb{Z}$ and $\mu(M) \in 8\mathbb{Z}$ (mod 16). In §1, we shall prove that $\mu(M) = \alpha(M,T)$ (mod 16) (Theorem 1). This equation has been proved for Seifert homology spheres by W. D. Neumann and R. Raymond [11]. By this equation, in order to compute the μ invariant of those homology spheres which have free involution, it suffices to compute their Browder-Livesay invariant. For this purpose, in §2, we shall define 'signature invariants' $\sigma_{(m,n)}(V,T)$ for orientation preserving free involutions on 3-dimensional homology circles and coprime integer pairs (m,n) with m odd. In §3, by making use of these invariants, we shall give a formula of the Browder-Livesay invariant of some free involutions on homology spheres (Theorem 3 and its Corollary). This formula is a generalization of the formula given by W. D. Neumann [10] for Seifert homology spheres.

All the homology and cohomology groups in this paper have integer coefficients unless otherwise mentioned.

- 1. Browder-Livesay invariant and μ -invariant. For convenience, we shall work in the smooth category. All the manifolds will be compact and oriented. The boundary of X, ∂X , inherits its orientation from X. -X will denote X with the opposite orientation. The unit n-disc will be denoted by D^n , the (n-1)-sphere, ∂D^n , by S^{n-1} , and the unit interval by I.
- If X, Y are disjoint n-manifolds with X_0 , Y_0 (n-1) submanifolds of ∂X , ∂Y respectively, and if $h: X_0 \to Y_0$ is an orientation reversing diffeomorphism, then $X \cup_n Y$ will denote the quotient space $X \cup Y/(x \sim hx)$ for all $x \in X_0$). By the existence and uniqueness of collars, $X \cup_n Y$ has a natural structure as an n-manifold. If n comes from some natural identifications of X_0 and Y_0 with Z, say, we may write $X \cup_n Y$ for $X \cup_n Y$.

A homology sphere (resp. Z_2 homology sphere) is a closed 3-manifold M such that $H_*(M) \cong H_*(S^3)$ (resp. $H_*(M, Z_2) \cong H_*(S^3, Z_2)$). For a Z_2 homology sphere M, Eells and Kuiper [2] have defined an invariant $\mu(M) \in 2\mathbb{Z}$ (mod 16) as follows: M bounds a 4-manifold Y such that $H_1(Y)$

has no 2-torsion and the quadratic form of Y is even. Then, we set

$$\mu(M) = -\sigma(Y) \pmod{16}$$
,

where $\sigma(Y)$ is the signature of Y. This is well-defined, by Rohlin's theorem [12]. If M is a homology sphere, then the intersection form of Y is unimodular, and hence $\sigma(Y) \equiv 0 \pmod{8}$, and the possible value of $\mu(M)$ is 8 or 0.

Let T be a free involution on a Z_2 homology sphere M. Then T preserves the orientation of M by Lefschetz fixed point theorem. The Browder-Livesay invariant $\alpha(M,T)$ is defined as follows ([1]): There is a decomposition of M such that $M=A\cup TA$, $A\cap TA=B$, where A is a 3-dimensional submanifold of M with $\partial A=B$, and B is an invariant closed surface in M (B is called a characteristic surface of (M,T)). A inherits its orientation from M. Put $K=\mathrm{Ker}$ $(H_1(B)\to H_1(A))$. Let $\langle \ , \ \rangle$ be the bilinear form on K defined by $\langle x,y\rangle=x\cdot T_*y$ for $x,y\in K$, where T_* is the homomorphism $H_1(B)\to H_1(B)$ induced by T, and dot denotes the intersection number. Then $\langle \ , \ \rangle$ is a non-degenerate symmetric bilinear form on K of even type. Set

$$\alpha(M, T) = \sigma(\langle , \rangle),$$

where σ is the signature of \langle , \rangle . If M is a homology sphere, the bilinear from \langle , \rangle is unimodular, and hence $\alpha(M, T) \equiv 0 \pmod{8}$.

The rest of this section will be devoted to the proof of the following

Theorem 1. Let T be a free involution on a homology sphere M. Then $\mu(M) = \alpha(M, T) \pmod{16}$.

Proof. Let M/T be the orbit space of M and let $p: M \to M/T$ be the covering projection. Let \overline{C} be a simple closed curve in M/T which represents the generator of $H_1(M/T, \mathbb{Z}_2) = \mathbb{Z}_2$. Then $C = p^{-1}(\overline{C})$ is an invariant simple closed curve in M. Let U be an invariant closed tubular neighborhood of C in M. Then by Alexander duality theorem, it follows that $\overline{M-U}$ is a homology circle, $H_*(\overline{M-U}) = H_*(S^1)$, where $\overline{M-U}$ is the closure of M-U in M. Now, both ∂U and $p(\partial U)$ are $S^1 \times S^1$. Let \overline{D} be a simple closed curve in $p(\partial U)$ which is homologous to zero in $p(\overline{M-U})$. Then $p^{-1}(\overline{D})$ consists of two simple closed curves, say, D and its transformed image TD. Now there is an orientation preserving equivariant embedding $f: S^1 \times D^2 \to M$ such that $f(S^1 \times D^2) = U$, $f(S^1 \times 0) = C$ and $f(S^1 \times 1) = D$ ($C \cap \overline{M-U} = \partial U$), where $S^1 \times D^2$ has the involution T defined by T(x,y) = (-x,-y) for $(x,y) \subseteq S^1 \times D^2$, and D^2 is regarded as the unit

disc in the complex plane. Let $D^2 \times D^2$ be the 4-disc with the involution T defined by T(x, y) = (-x, y) $((x, y) \in D^2 \times D^2)$. Let $g: \partial D^2 \times D^2 \to M$ be the equivariant embedding defined by g(x, y) = f(x, xy) for $(x, y) \in \partial D^2 \times D^2$. Form the manifold $M \times I \cup_{g} D^{2} \times D^{2}$, where g is considered as an embedding of $\partial D^2 \times D^2$ to $M \times I$. Let M_0 be the manifold $M - U \bigcup_{g \mid \partial D^2 \times \partial D^2} D^2$ $\times \partial D^2$, where | denotes the restriction of the map. Then $\partial (M \times I \cup {}_{\scriptscriptstyle{0}} D^2)$ By Mayer-Vietoris theorem, it follows that M_0 is a $\times D^2 = M \cup -M_0$ homology sphere. Now M_0 has an involution T with fixed point set $C_0 = 0 \times \partial D^2$. Let $M_1 = M_0 / T$ be the orbit space, and let $p_0 : M_0 \to M_1$ be the projection. Then it can be seen that any closed curve in M_1 intersecting transversely and non-vacuously with $C_1 = p_{\nu}(C_0)$ lifts to a closed curve in M_0 . Hence $p_{0*}:\pi_1(M_0)\to\pi_1(M_1)$ is onto. This implies that M_1 is a homology sphere. M_0 is considered as the 2-fold branched covering space of M_1 branched over the curve C_1 . Let W be a 4-dimensional spin manifold which bounds M_1 , $\partial W = M_1$, and is simply connected. Now $K_1 =$ (M_i, C_i) is a knot in the homology sphere M_i . There is a Seifert surface of K_1 , say S_1 , in M_1 with $\partial S = C_1([4])$. Since S has a trivial normal bundle in M_1 , there is an embedding of $S \times [-1, 1]$ into M_1 such that $S \times 0 = S$. Now take two copies of W, say W_1 and W_2 , and form the manifold $X = W_1 \cup_{S \times [-1,1]} W_2$ from the disjoint union $W_1 \cup W_2$ by identifying the point $(x, t) \in S \times [-1, 1] \subset \partial W_1$ with the point $(x, -t) \in S \times [-1, 1]$ $\subset \partial W_2$. Then X has a natural involution T which is orientation preserving and interchanges W_1 with W_2 and W_2 with W_1 . The fixed point set of T is $S = S \times 0$ and $\partial X \cap S = \partial S$. The orbit space X/T is W. ∂X is the 2-fold branched covering space of M_1 branched over the curve $\partial S = C_1$ and ∂X is equivariantly diffeomorphic to M_1 . Let Y be the manifold $(M \times I \cup_{y} D^{2} \times D^{2}) \cup_{M_{0}} X$ obtained from the disjoint union $(M \times I \cup_{y} D^{2} \times D^{2})$ $\cup X$ by identifying the common boundary M_1 . Then $\partial Y = M$ and Y has an orientation preserving involution T which restricts to the original involution on M. Now we compute $\alpha(M, T)$ and $\mu(M)$ by making use of Y.

First we consider the homology of $X = W_1 \cup_{S \times I} W_2$. By Mayer-Vietoris theorem, there is the following exact sequence:

$$0 \to H_2(W_1) \oplus H_2(W_2) \to H_2(X) \xrightarrow{\partial_*} H_1(S \times I) \to 0.$$

Let $\{\alpha_j\}_{j=1,\dots,S}$ be a base of $H_2(W)$ and let $\{\alpha_j^{(i)}\}$ be the corresponding base of $H_2(W_i)$ (i=1,2), where $s=\operatorname{rank} H_2(W)$. Then $T_*\alpha_j^{(1)}=\alpha_j^{(2)}$ in $H_2(X)$, where T_* is the homomorphism induced by the involution T on X $(j=1,\dots,s)$. Let $\{E_k\}_{k=1,\dots,t}$ be curves in S which represent a base of $H_1(S)$, where $t=\operatorname{rank} H_1(S)$. Since each E_k is homologous to zero in

 $M_1=\partial W$, there exists a 2-chain G_k in a collar neighborhood $\partial W \times I$ such that $\partial G_k=E_k$. Let $G_k^{(1)}$ be the copies of G_k in W_i (i=1,2). Then $TG_k^{(1)}=G_k^{(2)}$ and $TG_k^{(2)}=G_k^{(1)}$. Now the chain $G_k^{(1)}-G_k^{(2)}$ is a cycle and represents a homology class β_k in $H_2(X)$ such that $\partial_*\beta_k=[E_k]\in H_1(S)$, where $[E_k]$ is the homology class represented by the curve E_k ($k=1,\cdots,t$). Clearly $T_*\beta_k=-\beta_k$ in $H_2(X)$. By the above Mayer-Vietors tequence, $\{\alpha_j^{(1)},\alpha_j^{(2)},\beta_k\}$ ($j=1,\cdots,s$ and $k=1,\cdots,t$) forms a base of $H_2(X)$. Next we consider $H_2(M\times I\cup_g D^2\times D^2)$. Let ξ be the homology class represented by the chain $C\times I\cup_{G\times 1}(0\times D^2)$, $\xi\in H_2(M\times I\cup_g D^2\times D^2)$, $\partial_* = H_2(M\times I\cup_g D^2\times D^2)$. Then $\xi\cdot \xi=1$ by the construction and ξ generates $H_2(M\times I\cup_g D^2\times D^2)$, and $T_*\xi=\xi$.

Now the set $\{\xi, \alpha_j^{(1)}, \alpha_j^{(2)}, \beta_k\}$ $(j=1, \dots, s \text{ and } k=1, \dots, t)$ is a base of $H_2(Y)$ such that

(1) $T_*\xi = \xi$, $T_*\alpha_j^{(1)} = \alpha_j^{(2)}$ and $T_*\beta_k = -\beta_k$,

(2) $\xi \cdot \xi = 1$ and $\xi \cdot \alpha_j^{(1)} = \xi \cdot \alpha_j^{(2)} = \beta_k \cdot \alpha_j^{(1)} = \beta_k \cdot \alpha_j^{(2)} = \alpha_j^{(1)} \cdot \alpha_j^{(2)} = 0$,

where dot denotes the intersection number ((2) is clear from the construction of ξ and β_k). Let $A^{(i)}$ be the intersection matrix $(\alpha_k^{(i)} \cdot \alpha_m^{(i)})$ (i=1, 2 and $k, m=1, \dots, s)$ and let B be the intersection matrix $(\beta_k \cdot \beta_m)$ $(k, m=1, \dots, t)$.

Assertion (1). $\alpha(M, T) = -\sin B$.

Proof. The fixed point set of the involution T on Y is the closed 2-surface $F = 0 \times D^2 \cup c_n S$. By Hirzebruch [5],

$$\alpha(M, T) = \operatorname{sign}(Y, T) - [F] \cdot [F],$$

where sign (Y, T) denotes the signature of the bilinear form \langle , \rangle on $H_1(Y)$ defind by $\langle x, y \rangle = x \cdot T_* y$ for $x, y \in H_2(Y)$, and [F] is the homology class represented by F. With respect to the above base of $H_2(Y)$, the bilinear form \langle , \rangle is represented by the matrix

$$\langle 1 \rangle + \begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix} + \langle -B \rangle$$
,

where $A=A^{(1)}=A^{(2)}$. Hence sign (Y, T)=1- sign B. Now $[F] \cdot [F]=1$, and the Assertion (1) follows.

Assertion (2). $\mu(M) = -\operatorname{sign} B \pmod{16}$.

Proof. With respect to the above base, the intersection form on $H_2(Y)$ is represented by that matrix

$$\langle 1 \rangle + A + A + B$$

where $A = A^{(1)} = A^{(2)}$. Hence $\sigma(Y) = 1 + 2 \operatorname{sign} A + \operatorname{sign} B$. Since $\partial W = M_1$ is a homology sphere and W is a spin manifold, A is a unimodular symmetric matrix with even diagonal entries. Therefore sign $A \equiv 0 \pmod{8}$, and we obtain $\sigma(Y) = 1 + \text{sign } B \pmod{16}$. Now the class ξ is represented (as a relative cycle) by a disc $C \times I \cup_{c \times 1} (0 \times D^2)$ with boundary $C \subseteq M$, and ξ is characteristic for the quadratic form of Y, that is, $\xi \cdot z = z \cdot z$ (mod 2) for every $z \in H_2(Y)$. Let K be the knot (M, C) in the homology Then Gordon [4] has shown that $\mu(M) = \xi \cdot \xi - \sigma(Y) - c(K)$ sphere M. (mod 16), where c(K) is the Arf invariant of the knot K=(M,C). Hence $\mu(M) = -\text{sign } B - c(K) \pmod{16}$. Now it suffices to prove that c(K) = 0(mod 16). Let $J_K(t)$ be the Alexander polynomial of K. Then c(K) = $(J_K(-1))^2-1 \pmod{16}$ ([7]). Now the knot K=(M,C) and the knot $K_0 = (M_1, C_0)$ have the same knot complement, so that $\Delta_K(t) = \Delta_{K_0}(t)$. Since M_1 is the 2 fold branched covering space of M_1 branched over the curve C_1 , $A_{K_0}(t^2) = A_{K_1}(t)A_{K_1}(t^{-1})$, where $K_1 = (M_1, C_1)$ is the knot in the homology sphere $M_1([3])$. Hence $J_{\kappa}(-1)=J_{\kappa_1}(-1)=J_{\kappa_1}(\sqrt{-1})J_{\kappa_1}(-\sqrt{-1})$. Since the Alexander polynomial of any knot is a reciprocal polynomial, it can be seen that $\Delta_{K_1}(\sqrt{-1})\Delta_{K_1}(-\sqrt{-1})$ is a square of an odd integer, say, $(2d+1)^2$ (note that $\Delta_{K_1}(-1) \equiv 1 \pmod{2}$). Therefore $c(K) = (\Delta_K(-1))^2 - 1 = 8d(d+1)$ $(2d^2+2d+1)\equiv 0\pmod{16}$. This proves Assertion (2), and therefore Theorem 1.

Remark 1. Let $K_1 = (M_1, C_1)$ be the knot in the above proof. Then it is well known that sign B in the above proof is equal to the so-called signature of the knot K_1 , $\sigma(K_1)$. Hence we have proved that $\alpha(M, T) = -\sigma(K_1)$.

Remark 2. The equation in Theorem 1 has been proved for Seifert homology spheres by W. D. Neumann and F. Raymond [11]. Many examples of free involutions on homology spheres which cannot be embedded in S^1 action have been constructed by C. McA. Gordon [4]. The same argument in the above proof gives only $\mu(M) = \alpha(M, T) \pmod{4}$ for Z_2 homology spheres with free involution. In general, the equality $\mu(M) = \alpha(M, T) \pmod{16}$ does not hold for Z_2 homology spheres with free involution. As an example, let L(3, 1) be the standard Lens space and let M be the connected sum $L(3, 1) \not\equiv L(3, 1)$. Then M has a natural free involution with S^2 as the characteristic surface. Hence $\alpha(M, T) = 0$. On the other hand, $\mu(M) = 2\mu(L(3, 1)) = 4 \pmod{16}$.

2. Signatures of orientaion preserving involutions on homology

96

circles. Let V be a homology circle, that is, a compact 3-dimensional manifold with boundary $S^1 \times S^1$ such that $H_*(V) = H_*(S^1)$. Let T be an orientation preserving free involution on V. Let V/T be the orbit space and let $p: V \rightarrow V/T$ be the covering projection.

Lemma 2.1. V/T is a homology circle.

Proof. Let S^{∞} be the infinite dimensional sphere with the antipodal free involution T. Then $S^{\infty}/T=P^{\infty}$ is the infinite dimensional real projective space and $S^{\infty}\to P^{\infty}$ is the universal Z_2 bundle. Let $S^{\infty}\times_T V$ be the orbit space of $S^{\infty}\times V$ by the diagonal action of Z_2 . Since the involution on V is free and S^{∞} is contractible, $S^{\infty}\times_T V$ is homotopy equivalent to V/T. The projection to the first factor $S^{\infty}\times_T V\to P^{\infty}$ is a fibre bundle with fibre V. Considering the cohomology Serre spectral sequence of this fibre bundle, it follows that $p^*: H^*(V/T) \to H^*(V)$ is injective and $p^*(H^1(V/T)) = 2Z \subset Z = H^1(V)$. This proves Lemma 2.1.

Definition 2.1. A pair of characteristic curves in ∂V is defined as a pair of oriented simple closed curves (C, D) in V such that (i) TC = C and $D \cap TD = \emptyset$, and (ii) $C \cap D$ consists of a single point and $C \cdot D = 1$, where dot denotes the intersection number.

Lemma 2.2. For i=1,2, let V_i be a homology circle with free orientation preserving involution T_i . Let (C_i,D_i) be a pair of characteristic curves in ∂V_i . Then there is an orientation reversing equivariant diffeomorphism $h: \partial V_1 \rightarrow \partial V_2$ such that h maps C_1 onto C_2 orientation preservingly and D_1 onto D_2 orientation reversingly.

Proof. Let $p_i: V_i \to V_i/T_i$ be the covering projection (i=1,2). Then $(p_i(C_i), p_i(D_i))$ is a pair of simple closed curves in $\partial(V_i/T_i)$ whose homology classes generate $H_1(\partial(V_i/T_i))$. Since $\partial(V_i/T_i)$ is $S^i \times S^i$, there is a diffeomorphism $\overline{h}: \partial(V_i/T_i) \to \partial(V_i/T_i)$ such that \overline{h} maps $p_1(C_i)$ onto $p_2(D_i)$ orientation preservingly and $p_1(D_i)$ onto $p_2(D_i)$ orientation reversingly. Now it suffices to take as h the map which covers \overline{h} .

Definition 2.2. A pair of characteristic curves in ∂V , (C, D), is called of type(m, n) if $[C] = m \ell$ and $[D] = n \ell$ in $H_1(V)$, where ℓ is a base of $H_1(V) = \mathbb{Z}$ and [C] and [D] are represented classes. We always choose ℓ so that m > 0.

The integer pairs (m, n) in the above definition are coprime pairs if $n \neq 0$.

Lemma 2.3. Let (C, D) be a pair of characteristic curves in ∂V of type (m, n). Then m is an odd integer.

Proof. Let $p: V \to V/T$ be the covering projection. Then p(C) is a simple closed curve in $\partial(V/T)$. Let $\bar{\lambda}$ be the base of $H_1(V/T)$ such that $p_*(\lambda) = 2\bar{\lambda}$, where p_* is the induced homomorphism. Then $[p(C)] = m\bar{\lambda}$ in $H_1(V/T)$. The map p is a covering map associated to the composite homomorphism $\rho: \pi_1(V/T) \to H_1(V/T) = Z \to Z/2Z$, where the last map is the mod 2 reduction. Since $C \to p(C)$ is a non-trivial covering, $\rho(p(C)) \equiv m \not\equiv 0 \pmod{2}$. Hence m is odd.

First we consider a pair of characteristic curves in ∂V of type (1,0), (C,D). The curve D is null-homologous to zero in V.

Lemma 2.4. Let (C, D) be a pair of characteristic curves in ∂V of type (1, 0). Then there is a connected surface B in V such that $B \cap TB = \emptyset$, $\partial B = B \cap \partial V = D$ and $H_1(B) \rightarrow H_1(V)$ is a zero-homomorphism, where the last map is induced by the inclusion.

Proof. In the commutative diagram

$$1 \longrightarrow \pi_{1}(V) \xrightarrow{p_{*}} \pi_{1}(V/T) \longrightarrow \mathbb{Z}_{2} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow H_{1}(V) \xrightarrow{p_{*}} H_{1}(V/T) \longrightarrow \mathbb{Z}_{2} \longrightarrow 1$$

the upper line is a non-trivial extension of $\pi_1(V)$ by \mathbb{Z}_2 , and the vertical maps are the abelianizations of the groups, and the lower line is equivalent to the sequence $\mathbb{Z} \xrightarrow{2} \mathbb{Z} \to \mathbb{Z}_2$. Since S^1 is $K(\mathbb{Z}, 1)$, there is the following pull back diagram of the covering spaces corresponding to the above diagram

$$V \xrightarrow{p} V/T$$

$$\downarrow \qquad \qquad \downarrow f$$

$$S^{1} \xrightarrow{2} S^{1} \qquad ,$$

where $S^1 \stackrel{2}{\longrightarrow} S^1$ is the usual 2-fold covering and f is a map representing a generator of $H^1(V/T)$. We may assume that f is t-regular at $1 \in S^1$. $f^{-1}(1)$ is a surface in V/T such that $f^{-1}(1) \cap \partial(V/T) = \partial(f^{-1}(1))$ is a simple closed curve in $\partial(V/T)$. Since both p(D) and $\partial(f^{-1}(1))$ are nulhomologous in V/T and $\partial(V/T) = S^1 \times S^1$, p(D) and $f^{-1}(1)$ are homo-

topic, and hence isotopic in $\partial(V/T)$. Therefore we may assume that $\partial f^{-1}(1) = p(D)$. Let B be the surface which is the connected component of $p^{-1}(f^{-1}(1))$ containing D as its boundary. Then B satisfies the conditions requested.

Let B be such a surface as in Lemma 2. 4. Then $B \cup TB$ decomposes V as $V = A \cup TA$, $A \cap TA = B \cup TB$, where A is a 3-dimensional submanifold of V. By Mayer-Vietoris theorem, we see that $H_1(B \cup TB) = H_1(A) \oplus H_1(TA)$. Let K be the kernel of the homomorphism $H_1(B \cup TB) \to H_1(A)$ induced by the inclusion. Then $H_1(B \cup TB) = K + T_*K$, where $T_*: H_1(B \cup TB) \to H_1(B \cup TB)$ is induced by T. Let $\langle \cdot, \cdot \rangle$ be the bilinear form on K defined by $\langle x, y \rangle = x \cdot T_*y$ for $x, y \in K$. Then $\langle \cdot, \cdot \rangle$ is a symmetric bilinear form of even type on K. Let $\sigma_{(C.D.B)}(V, T)$ be the signature of this symmetric bilinear form.

Now, let T_0 be the involution on $S^1 \times D^2$ defined by $T_0(x, y) = (-x, y)$ for $(x, y) \in S^1 \times D^2$. By Lemma 2.2, there is an orientation reversing equivariant diffeomorphism $h: \partial V \to \partial (S^1 \times D^2)$ such that h maps D onto the curve $E = \{(x, x) \mid x \in S^1\} \subset \partial (S^1 \times D^2)$. Then $M_h = V \cup_h S^1 \times D^2$ is a homology sphere with free involution T.

Lemma 2.5. Let M_h be as above. Then $\sigma_{(C,D,B)}(V,T) = \alpha(M_h,T)$, where α is the Browder Livesay invariant.

Proof. There is an invariant annulas $S^1 \times I$ in $S^1 \times D^2$ such that $S^1 \times 0 = E$ and $S^1 \times 1 = T_0 E$. Put $\overline{B} = B \cup_E S^1 \times I \cup_{T_0 E} TB$. Then \overline{B} is a characteristic surface of M_h , and M_h decomposes as $M_h = \overline{A} \cup T\overline{A}$, $\overline{A} \cap T\overline{A} = \overline{B}$, where \overline{A} is a submanifold of M_h such that $\overline{A} \cap V = A$ (A is as above). Clearly $H_1(\overline{B}) = H_1(B \cup TB)$ and $\operatorname{Ker}(H_1(\overline{B}) \to H_1(\overline{A})) = \operatorname{Ker}(H_1(B \cup TB) \to H_1(A)) = K$. By the definition of $\alpha(M_h, T)$ and $\sigma_{(C,D,B)}(V, T)$, Lemma 2. 5 follows.

By the above lemma, $\sigma_{(C,D,B)}(V,T)$ does not depend on the choice of B. Now let (C',D') be another pair of characteristic curves in ∂V of type (1,0). Let $\overline{h}:\partial(V/T)\to\partial(S^1\times D^2/T_0)$ be the map induced by the above equivariant map h. Since p(D) and p(D') are homotopic, and hence isotopic in $\partial V/T$, there is a diffeomorphism $\overline{h'}:\partial V/T\to\partial(S^1\times D^2/T_0)$ such that $\overline{h'}$ is isotopic to \overline{h} and $\overline{h'}$ maps p(D') onto $p_0(E)$, where p and p_0 are the covering projections of V and $S^1\times D^2$ respectively. Let h' be the map which covers $\overline{h'}$. Then h' is equivariantly isotopic to h and h'(D)=E. Now form the manifold M_h , as above. Then $\alpha(M_h,T)=\alpha(M_{h'},T)$. This shows that $\sigma_{(C,D,B)}(V,T)$ does not depend on the

particular choice of (C, D) of type (1, 0). Hence the following definition is possible.

Definition 2.3. Let V be a homology circle with orientation preserving involution T. Define $\sigma(V, T) = \sigma_{(C,D,B)}(V, T)$, where (C, D, B) is as above.

Next we consider a pair of characteristic curves in ∂V of type (m, n), (C, D), where m is odd>0 and $n \neq 0$. Since $D \cup TD$ is a characteristic submanifold of ∂V , the relative transversality theorem shows that there is an invariant surface B in V such that B = TB and $\partial B = D \cup TD$, and B decomposes V as $V = A \cup TA$, $A \cap TA = B$, where A is a 3-dimensional submanifold in V. Let K be the kernel of the homomorphism $H_1(B) \rightarrow H_1(A)$ induced by the inclusion. Let $\langle \ , \ \rangle$ be the bilinear form on K defined by $\langle x, y \rangle = x \cdot T_* y$ for $x, y \in K$. Let $\sigma_{(C,D,B)}(V)$ be the signature of this symmetric bilinear form. First we consider the case with $(V, T) = (S^1 \times D^2, T_0)$, where T_0 is as before.

Lemma 2. 6. Let (C, D) be a pair of characteristic curves in $\partial(S^1 \times D^2)$ of type (m, n), where $n \neq 0$. Let B be a characteristic surface of $S^1 \times D^2$ such that $\partial B = D \cup TD$. Then $\sigma_{(C,D,B)}(S^1 \times D^2, T_0) = \alpha(L(n, m), T)$, where α is the Browder-Livesay invariant, L(n, m) is the standard Lens space and T is the involution on L(n, m) with orbit space L(2n, m).

Proof. Let $f: \partial(S' \times D^2) \to \partial(S^1 \times D^2)$ be an equivariant diffeomorphism such that f maps $S^1 \times 1$ onto C orientation preservingly and $-(1 \times S)$ onto D orientation reversingly. Since (C, D) is of type (m, n), the manifold $S^1 \times D^2 \cup_f S^1 \times D^2$ is equivariantly diffeomorphic to L(n, m) with the above involution T. Now $\overline{B} = (1 \times D^2) \cup_{(1 \times S^1)} B \cup_{(-1 \times S^1)} (-1 \times D^2)$ is a characteristic surface of L(n, m), and there is a 3-dimensional submanifold \overline{A} of L(n, m) such that $L(n, m) = \overline{A} \cup T\overline{A}$, $\overline{A} \cap T\overline{A} = \overline{B}$ and $\overline{A} = (\overline{A} \cap (S^1 \times D^2)) \cup_f (\overline{A} \cap (S^1 \times D^2)) = I \times D^2 \cup_f A$, where A is as above. Clearly $Ker(H_1(\overline{B}) \to H_1(\overline{A})) = Ker(H_1(B) \to H_1(A))$. By the definition of $\sigma_{(C,D,B)}(S^1 \times D^2)$, we obtain the lemma.

Lemma 2.7. Let V be a homology circle with orientation preserving free involution T. Let (C, D) be a pair of characteristic curves in ∂V of type (m, n), where m is odd>0 and $n \neq 0$. Let B be a characteristic surface in V such that $\partial B = D \cup TD$. Then

$$\sigma_{(C,D,B)}(V,T) = \sigma(V,T) + \alpha(L(n,m),T),$$

where L(n, m) is the standard Lens space and T is the free involution on L(n, m) with orbit space L(2n, m).

Proof. Let $(S^1 \times D^2, T_0)$ be as before. Let $h: \partial (S^1 \times D^3) \to \partial V$ be an orientation reversing equivariant diffeomorphism such that h maps $S^1 \times 1$ onto C orientation preservingly and $-(1 \times S')$ onto D orientation reversingly. Let M be the manifold $(S^1 \times D^2) \cup_I V$. M has a free involution T, and by the same argument in the proof of Lemma 2.6 we obtain $\alpha(M, T) = \sigma_{(C, D, B)}(V, T).$ Now let (C', D') be a pair of characteristic curves in ∂V of type (1,0). Let B' be a surface in V such that $B' \cap TB' = \emptyset$, $\partial B' = B' \cap \partial V = D'$ and $H_1(B') \to H_1(V)$ is a zero-homomorphism, where the last map is induced by inclusion (see Lemma 2.4). $C_0 = h^{-1}(C')$ and $D_0 = h^{-1}(D')$. Then it can be seen that (C_0, D_0) is a pair of characteristic curves in $\partial(S^1 \times D^2)$ of type (-r, n), where r is an odd integer such that $mr \equiv -1 \pmod{n}$. Let B_0 be a characteristic surface in $S^1 \times D^2$ such that $\partial B_0 = D_0 \cup T_0 D_0$. Then $\overline{B} = B_0 \cup B' \cup TB'$ is a characteristic surface in M. There is a 3-dimensional submanifold A with boundary $\partial A = B$ in M such that $M = A \cup TA$ and $A \cap TA = B$. $A_0 = A \cap (S^1 \times D^2)$ and $A' = A \cap V$. Then $A_0 \cup TA_0 = S^1 \times D^2$, $A_0 \cap TA_0 = B_0$, $A' \cup TA' = V$ and $A' \cap TA' = B' \cup TB'$. Now it follows that $\operatorname{Ker} (H_1(B) \to H_1(A)) = \operatorname{Ker} (H_1(B_0) \to H_1(A_0)) + \operatorname{Ker} (H_1(B' \cup TB') \to H_1(A')).$ Hence we see that $\alpha(M, T) = \sigma_{(C_0, D_0, B_0)}(S^1 \times D^2, T_0) + \sigma_{(C', D', B')}(V, T)$. By definition, $\sigma_{(G',D',B')}(V,T) = \sigma(V,T)$. By Lemma 2. 6, $\sigma_{(C_0,D_0,B_0)}(S^1 \times D^2,T_0)$ $=\alpha(L(n,-r),T)$, where T is the free involution on L(n,-r) with orbit space L(2n, -r). Since $mr \equiv -1 \pmod{n}$, L(n, -r) is equivariantly and orientation preservingly diffeomorphic to L(n,m). Hence $\alpha(L(n,-r),T)$ Therefore we obtain $\alpha(M, T) = \sigma(V, T) + \alpha(L(n, m), T)$. $=\alpha(L(n, m), T).$ This implies that $\sigma_{(C,D,B)}(V,T) = \sigma(V,T) + \alpha(L(n,m),T)$.

Definition 2.3. For a homology circle V with orientation preserving free involution T, we define $\sigma_{(m,n)}(V,T) = \sigma_{(C,D,B)}(V,T)$, where (C,D) is a pair of characteristic curves in ∂V of type (m,n) and B is a characteristic surface in V such that $\partial B = D \cup TD$.

Following [11], we use the following notation: c(p, q) is defined for coprime integer pairs (p, q) with p odd by the recursions

$$c(p, \pm 1) = 0$$

 $c(p, -q) = c(-p, q) = -c(p, q)$
 $c(p, p+q) = c(p, q) + sign(q(p+q))$
 $c(p+2q, q) = c(p, q)$.

In [11], it is claimed that $c(p, q) = \alpha(L(q, p), T)$, where T is the free involution on L(q, p) with orbit space L(2q, p).

Now, by Lemmas 2.7 and 2.5, we readily obtain the following

Theorem 2. For a homology circle V with orientation preserving free involution T and for a coprime integer pair (m, n) with m odd,

$$\sigma_{(m,n)}(V,T) = \sigma(V,T) + c(m,n).$$

Moreover, $\sigma(V, T) \equiv 0 \pmod{8}$.

Proposition 1. Let V_1 and V_2 be homology circles with free orientation preserving involutions T_1 and T_2 , respectively. Let $h: \partial V_1 \to \partial V_2$ be an orientation reversing equivariant diffeomorphism such that $M = V_1 \cup_h V_2$ is a homology sphere. Then

$$\alpha(M, T) = \sigma(V_1, T_1) + \sigma(V_2, T_2).$$

Proof. Let (C, D) be a pair of characteristic curves in ∂V_1 of type (1,0). Then as M is a homology sphere, (h(C),h(D)) is a pair of characteristic curves in ∂V_2 of type $(m,\pm 1)$ for some odd integer m. By the same argument in the proof of Lemma 2.7, we see that $\alpha(M,T)=\sigma(V_1,T_1)+\sigma_{(m,\pm 1)}(V_2,T_2)$. Now $\sigma_{(m,\pm 1)}(V_2,T_2)=\sigma(V_2,T_2)+c(m,\pm 1)=\sigma(V_2,T_2)$.

Some examples. (1) Let T be the antipodal involution on S^3 . Let K be a knot in S^3 such that TK = K. Let N be an invariant closed tubular neighborhood of K in S^3 . Let V(K) be the closure of the complement of N, $V(K) = \overline{S^3 - N}$. Then V(K) is a homology circle with free involution T.

Proposition 2. $\sigma(V(K), T) = 0$.

Proof. Since $S^3 = V(K) \cup N$, $\alpha(S^3, T) = \sigma(V(K), T) + \sigma(N, T)$ by Proposition 1. Now $\alpha(S^3, T) = \sigma(N, T) = 0$.

(2) Let K be a knot in S^3 such that $J(-1) = \pm 1$, where J(t) is the Alexander polynomial of K. Let M be the 2-fold branched covering space of S^3 branched over K. Then M is a homology sphere with involution. Let N be an invariant closed tubular neighborhood of K in M. Let V_{Λ} be the cosure of the complement of N, $V_{K} = \overline{M-N}$. Then V_{K} is a homology circle with free involution T.

Proposition 3. $\sigma(V_h, T) = -\sigma(K)$, where $\sigma(K)$ is the signature of the knot K.

Proof. Let $(S^! \times D^2, T_0)$ be as before. Let $h: \partial(S^1 \times D^2) \to \partial V_K$ be an orientation reversing equivariant diffeomorphism such that $(h(S^1 \times 1), h(1 \times S^1))$ is a pair of characteristic curves in ∂V of type $(m, \pm 1)$ for some odd integer m. Then $H = S^1 \times D^2 \cup_h V$ is a homology sphere with free involution T. By Proposition 1, $\alpha(H, T) = \sigma(V, T)$. Now the process of constructing H from the knot K in S^3 is just the converse of the process of constructing the knot $K_1 = (M_1, C_1)$ in the proof of Theorem 1. By Remark 1, $\alpha(H, T) = -\sigma(K)$. Hence $\sigma(V_K, T) = -\sigma(K)$.

3. Browder-Livesay invariants of some homology spheres. In this section, first we consider the homology circles with free involution constructed as follows:

Let V_i $(i=1, \dots, k)$ be a homology circle with orientation preserving free involution T_i . Let (C_i, D_i) be a pair of characteristic curves in ∂V_i of type (m_i, n_i) $(i=1, \dots, k)$. Let T_0 be the free involution on $S^1 \times D^2$ defined by $T_0(x, y) = (\vdash x, y)$ for $(x, y) \in S^1 \times D^2$. Let $\{p_i\}_{i=1,\dots,k}$ be k distinct points of ∂D^2 and let E_i be an arc in ∂D^2 containing p_i in its interior such that $E_i \cap E_j = \emptyset$ for each $i \neq j$ $(i, j=1, \dots, k)$. Let $V((m_i, n_i), \dots, (m_k, n_k))$ be the 3-manifold obtained from the disjoint union $(S^1 \times D^2) \cup (\bigcup_{i=1}^k V_i)$ by identifying each $S^1 \times E_i$ with an invariant annular neighborhood of C_i in ∂V_i by an equivariant diffeomorphism f_i which maps $S^1 \times p_i$ onto C_i in an orientation preserving manner and reverses orientation on a transverse arc.

Lemma 3.1. If m_i and m_j are coprime for each $i \neq j$ $(i, j = 1, \dots, k)$, then $V((m_1, n_1), \dots, (m_k, n_k))$ is a homology circle.

Proof. There are integers r_1, \dots, r_k such that $\sum m_1 \dots m_{i-1} r_i m_{i-1} \dots m_k = 1$. Let λ_i be a generator of $H_1(V_i)$ such that $[C_i] = m_i \lambda_i$ $(i = 1, \dots, k)$. By Mayer Vietoris theorem, we see that $r_1 \lambda_1 + \dots + r_k \lambda_k$ generates $H_1(V((m_1, n_1), \dots, (m_k, n_k)) = \mathbb{Z}$.

Since each f_i is equivariant, $V((m_1, n_i), \dots, (m_k, n_k))$ has a free involution T.

Theorem 3. Let $V = V((m_1, n_1), \dots, (m_k, n_k))$ be the above manifold, where m_i and m_j are coprime for each $i \neq j$ $(i, j = 1, \dots, k)$. Then

$$\sigma(V, T) = \sum_{i=1}^{k} (\sigma(V_i, T_i) + c(m_i, n_i) + \operatorname{sign} n_i) - c\left(m_1 \cdots m_k, m_1 \cdots m_k \sum_{i=1}^{k} \frac{n_i}{m_i}\right) - \operatorname{sign}\left(\sum_{i=1}^{k} \frac{n_i}{m_i}\right),$$

where σ and c are as in §2, and c(m, 0) = sign 0 = 0.

Corollary. Let h be an orientation reversing equivariant diffeomorphism from $\partial(S^1 \times D^2)$ to ∂V such that $(S^1 \times D^2) \cup_{k} V$ is a homology sphere with free involution T, where V is as in Theorem 3. Then $\alpha((S^1 \times D^2) \cup_{k} V, T)$ is given by the right hand term of the equation in Theorem 3.

Proof. This is straightforward from Proposition 1 in $\S 2$ and Theorem 3.

Remark. When $(V_i, T_i) = (S^1 \times D^2, T_i)$ for $i = 1, \dots, k$ in the above construction, it can be seen that $V = V((m_1, n_1), \dots, (m_k, n_k))$ has an S^1 action which extends the involution. Moreover in the case that m_i and m_j are coprime for each $i \neq j$ $(i, j = 1, \dots, k)$ and $m_1 \cdots m_k \left(\sum_{i=1}^k \frac{n_i}{m_i}\right) = \pm 1$, by a suitable choice of k in the above Corollary, the resulting manifold $S^1 \times D^2 \cup_k V = M$ may be endowed with S^1 action which extends the involution, that is, this manifold is a Seifert manifold and $(m_1, n_1), \dots, (m_k, n_k)$ are its Seifert invariants. In this case the above formula of $\alpha(V, T)$ gives the formula of W. D. Neumann [10],

$$\alpha(M, T) = \sum_{i=1}^{k} (c(m_i, n_i) + \operatorname{sign} n_i) - \operatorname{sign} \left(\sum_{i=1}^{k} \frac{n_i}{m_i} \right).$$

Hence the above formula is a generalization of Neumann's formula for the Browder-Livesay invariants of Seifert homology spheres.

Proof of Theorem 3. We prove Theorem 3 by the induction on k. When k=1, Theorem 3 is trivial since V is equivariantly diffeomorphic to V_1 and sign $n_1 = \text{sign } n_1/m_1$ $(m_1 > 0)$. Next we consider the case with k=2. The formula which we must prove is

$$\sigma(V, T) = \sigma(V_1, T_1) + \sigma(V_2, T_2) + c(m_1, n_1) + c(m_2, n_2) - c(m_1 m_2, m_1 n_2 + m_2 n_1) + \text{sign } n_1 + \text{sign } n_2 - \text{sign } (n_1/m_1 + n_2/m_2).$$

Let B_i be a characteristic surface of V_i such that $\partial B_i = D_i \cup TD_i$ (i = 1, 2). If $n_i = 0$, then we take $B \cup TB$ as B_i where B is a surface in V_i satisfying the conditions of Lemma 2. 4. We may assume that $f_i^{-1}(D_i) = 1 \times E_i \subset \partial (S^i \times D^2)$ and $f_i^{-1}(TD_i) = -1 \times E_i$. Then $\overline{B} = B_i \cup B_2 \cup 1 \times D^2 \cup -1 \times D^2$

Figure 1

(where $B_i \subset V_i$ (i=1, 2) and $\{\pm 1\} \times D^2 \subset S^1 \times D^2$) is a characteristic surface of V (Figure 1). Put $\overline{D_1 \cup D_2 \cup 1} \times \partial D^2 - 1 \times (E_1 \cup E_2)$ = D. Let r_1 and r_2 be integers such that $r_1 m_2 + r_2 m_1 = 1$. Then $\lambda = r_1 \lambda_1 + r_2 \lambda_2$ generates $H_1(V) = \mathbb{Z}$, and $\lambda_1 = m_2 \lambda$ and $\lambda_2 = m_1 \lambda$. Now $[D_1] = n_1 \lambda_1 = n_1 m_2 \lambda$ and $[D_2] = n_2 \lambda_2 = n_2 m_1 \lambda$ in $H_1(V)$. Therefore $[D] = (n_1 m_2 + n_1 m_1) \lambda$ in $H_1(V)$. Let C be the curve $S^1 \times p \subset \partial (S^1 \times D^2)$, where $p \in D^2 - \bigcup_{i=1}^k E_k$. Then

 $C \subset \partial V$. Clearly $C \cap D$ consists of a single point, and $[C] = m_1 \lambda_1 = m_1 \lambda_2 = m_1 m_2 \lambda$ in $H_1(V)$. Hence (C, D) is a pair of characteristic curves in ∂V of type $(m_1 m_2, m_1 n_2 + m_2 n_1)$. Therefore $\sigma_{(C,D,B)}(V, T) = \sigma_{(m_1 m_2, m_1 n_2 + m_2 n_1)}(V, T)$.

Assertion (1). $\sigma_{(C_1,D_1,B_1)}(V,T) = \sigma_{(C_1,D_1,B_1)}(V_1,T_1) + \sigma_{(C_2,D_2,B_2)}(V_2,T_2) + \varepsilon$, where $\varepsilon = \pm 1$ if $n_1 n_2 \neq 0$, and $\varepsilon = 0$ if $n_1 n_2 = 0$.

If $n_i \neq 0$, then the curve D_i is not homologous to zero in V_i and there is a connected component in B_i with boundary $D_i \cup TD_i$, and if $n_i = 0$, then $B_i = B \cup TB$ where B is a surface such that $\partial B = D_i$ and $\partial TB = TD_i$ (i=1, 2). Hence by Mayer-Vietoris theorem, it follows that rank $H_1(B)$ = rank $H_1(B_1)$ + rank $H_1(B_2)$ + 2 if $n_1n_2 \neq 0$, and $H_1(B) \cong H_1(B_1)$ $+H_1(B_2)$ if $n_1n_2=0$. Let \overline{A} be a 3-dimensional submanifold of V such that $V = \bar{A} \cup T\bar{A}$, $\bar{A} \cap T\bar{A} = \bar{B}$. Put $A_1 = \bar{A} \cap V_1$ and $A_2 = \bar{A} \cap V_2$. $A_i \cup TA_i = V_i$ and $A_i \cap TA_i = B_i$ (i = 1, 2). Put $K = \text{Ker } (H_1(\overline{B}) \to H_1(\overline{A}))$ and put $K_i = \text{Ker } (H_i(B_i) \to H_i(A_i))$ (i=1,2), where all the homomorphisms are induced by the inclusions. Then we see that rank $K = \text{rank } K_1 + \text{rank}$ K_2+1 if $n_1n_2\neq 0$, and $K=K_1+K_2$ if $n_1n_2=0$. Now $K\otimes Q$ is an innerproduct space by the bilinear form defined by $\langle x, y \rangle = x \cdot T_* y$ for $x, y \in$ $K \otimes Q$, where Q is the rational number field, and $K_1 \otimes Q + K_2 \otimes Q$ is a sub-inner-product space in $K \otimes Q$. If $n_1 n_2 \neq 0$, then by the orthogonal decomposition theorem ([9]), $K \otimes Q$ is isomorphic to an orthogonal sum $K_1 \otimes Q + K_2 \otimes Q + I$, where I is a 1-dimensional inner-product space over This proves Assertion (1).

By Assertion (1) and Theorem 2, we obtain

$$\sigma(V, T) = \sigma(V_1, T_1) + \sigma(V_2, T_2) + c(m_1, n_1) + c(m_2, n_2) - c(m_1 m_2, m_1 n_2 + m_2 n_1) + \varepsilon,$$

where $\varepsilon = \pm 1$ if $n_1 n_2 \neq 0$, and $\varepsilon = 0$ if $n_1 n_2 = 0$. Now we assume that $n_1 n_2 \neq 0$. We must determine ε . Unfortunately we cannot determine ε geometrically. We use an algebraic condition as follows: By Theorem 2, $\sigma(V, T) \equiv \sigma(V_1, T_1) \equiv \sigma(V_2, T_2) \equiv 0 \pmod{8}$. Hence $c(m_1, n_1) + c(m_2, n_2) - c(m_1 m_2, m_1 n_2 + m_2 n_1) + \varepsilon \equiv 0 \pmod{8}$. Now Hirzebruch ([6]) has shown the following formula

$$c(p, q) \equiv 1 - 2\left(\frac{p}{q}\right) + q \pmod{8}$$
 for q odd < 0 ,

where $\left(\frac{p}{q}\right)$ is the quadratic residue symbol. This formula implies the following

Assertion (2). If n is odd, $c(m, n) \equiv n + \text{sign } n \pmod{4}$, and if n is even, $c(m, n) \equiv m + n + (1 + \text{sign } n) \pmod{4}$.

Proof. Since $-2\left(\frac{p}{q}\right) \equiv 2 \pmod{4}$ and c(p, -q) = -c(p, q), Hirzebruch's formula gives the first equation for n odd. For n even, use the relation c(m, n) = c(m, m+n) - sign(n(m+n)) (note that m is odd).

By Assertion (2), a brief calculation shows that

$$-c(m_1m_2, m_1n_2+m_2n_1)+c(m_1, n_1)+c(m_2, n_2)+\varepsilon$$

$$\equiv (\text{sign } n_1+\text{sign } n_2-\text{sign } (m_1n_2+m_2n_1))+2+\varepsilon \pmod{4}.$$

Since this must be 0 (mod 4) and both ε and sign $n_1 + \text{sign } n_2 - \text{sign } (m_1 n_2 + m_2 n_1)$ are ± 1 ($m_1 m_2 > 0$), we obtain $\varepsilon = \text{sign } n_1 + \text{sign } n_2 - \text{sign } (m_1 n_2 + m_2 n_1)$. This completes the proof of Theorem 3 in the case with k=2. Now by the inductive calculation, we obtain the theorem.

REFERENCES

- [1] W. Browder and G.R. Livesay: Fixed point free involutions on homotopy spheres, Bull. Amer. Math. Soc. 73 (1967), 242—245.
- [2] J. EELLS and N. H. KUIPER: An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. 60 (1963), 93—110.
- [3] R. H. Fox: Free differential calculus III. Subgroups, Ann. Math. 64 (1956), 407-419.
- [4] C. McA. Gordon: Knots, homology spheres, and contractible 4-manifolds, Topology 14 (1975), 151-172.
- [5] F. Hirzebruch: Involutionen auf Mannigfaltigkeiten, Proc. Conf. on Transformation Groups 148—166, New Orleans, 1967.

- [6] F. Hirzebruch, W.D. Neumann and S.S. Koh: Differentiable Manifolds and Quadratic Forms, Lecture Notes in Pure and Appl. Math. 4, Marcel Dekker, New York, 1971.
- [7] J. LEVINE: Polynomial invariants of knots of codimension 2, Ann. Math. 84 (1966), 537—554.
- [8] S. LOPEZ DE MEDRANO: Involutions on Manifolds, Springer-Verlag, Berlin, 1971.
- [9] J. MILNOR and D. HUSEMOLLER: Symmetric Bilinear Forms, Springer-Verlag, Berlin, 1973.
- [10] W. D. NEUMANN: S¹ actions and the α-invariant of their involutions, Bonner Math. Schriften 44 (1970).
- [11] W. D. NEUMANN and F. RAYMOND: Seifert manifolds, Plumbing μ-invariant and orientation reversing maps, Lecture Notes in Math. 664, 163—196, Springer-Verlag, Berlin, 1977.
- [12] V. A. ROHLIN: New results in the theory of four dimensional manifolds, Dokl. Akad. Nauk SSSR 84 (1952), 221—224 (in Russian).

DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY

(Received October 15, 1979)