INVARIANT MEASURES AND ERGODIC THEOREMS FOR POSITIVE OPERATORS ON C(X) WITH X QUASI-STONIAN

RYOTARO SATO

- 1. Introduction. Let X be a quasi-Stonian compact Hausdorff space. Relations between invariant measures and ergodic theorems are investigated for a positive σ -additive linear operator T on C(X) satisfying $\sup_{n} \| (1/n) \sum_{i=0}^{n-1} T^i \| < \infty$. Such relations were investigated by Ando [2] for a σ -additive Markov operator T on C(X). In this paper Ando's results will be generalized.
- 2. Definitions and theorems. For a topological space X, let C(X) denote the Banach space of real-valued bounded continuous functions on X with the supremum norm. In this paper, unless the contrary is explicitly explained, X is assumed to be a compact Hausdorff space which is quasi-Stonian, i. e. to each bounded sequence (f_n) in C(X) there corresponds an $f \in C(X)$, with $f \leq f_n$ for all $n \geq 1$, such that if $g \in C(X)$ and $g \leq f_n$ for all $n \geq 1$ then $g \leq f$. This function f is called the *infimum* of (f_n) and denoted by

$$f = \bigwedge_{n=1}^{\infty} f_n$$
.

The function $g \in C(X)$ defined by $g = - \bigwedge_{n=1}^{\infty} (-f_n)$ is called the *supremum* of (f_n) and denoted by

$$g = \bigvee_{n=1}^{\infty} f_n$$
.

Clearly, g is minimal with respect to the conditions $g \in C(X)$ and $f_n \leq g$ for all $n \geq 1$. As in Ando [2], we let

(O)-
$$\lim_{n} \sup f_{n} = \bigwedge_{n=1}^{\infty} \bigvee_{k=n}^{\infty} f_{k}$$

and

(O)-
$$\lim_{n} \inf f_n = \bigvee_{n=1}^{\infty} \bigwedge_{k=n}^{\infty} f_k$$
.

If (O)- $\lim_{n} \sup f_n = (O)$ - $\lim_{n} \inf f_n$ holds, then we denote by (O)- $\lim_{n} f_n$ these equal functions.

As usual, the dual space $C^*(X)$ is identified with the space M(X) of all bounded regular Borel measures on X by the relation

$$\langle f, \mu \rangle = \int f \, d\mu \qquad (f \in C(X), \ \mu \in M(X)).$$

 $\mu \in M(X)$ is called σ -additive if $f_n \subseteq C(X)$, $f_n \ge f_{n+1} \ge 0$ for each $n \ge 1$ and $\bigwedge_{n=1}^{\infty} f_n = 0$ imply $\lim_{n \to \infty} \langle f_n, |\mu| \rangle = 0$, where $|\mu|$ denotes the total variation of μ .

Let T be a positive linear operator on C(X). T is called a *contraction operator* if $||T|| \le 1$, a *Markov operator* if ||T|| = 1 = Tl, and σ -additive if $\bigwedge_{n=1}^{\infty} Tf_n = 0$ whenever $f_n \in C(X)$, $f_n \ge f_{n+1} \ge 0$ for each $n \ge 1$, and $\bigwedge_{n=1}^{\infty} f_n = 0$.

In this paper the following theorems are proved. In case T is a σ -additive Markov operator on C(X), these theorems are due to Ando [2].

Theorem 1. Let X be a quasi-Stonian compact Hausdorff space and T a positive σ -additive linear operator on C(X) satisfying

$$\sup_{n} \|\frac{1}{n}\sum_{i=0}^{n-1} T^{i}\| < \infty.$$

Then the following statements are equivalent:

- (a) All invariant measures (with respect to T^*) are σ -additive.
- (b) For each $f \in C(X)$ $\frac{1}{n} \sum_{i=0}^{n-1} T^i f$ converges in norm, and further dim $(N_T) < \infty$ where $N_T = \{ f \in C(X) : Tf = f \}$.

Theorem 2. Let X and T be as in Theorem 1. Suppose the space $M_{\sigma}(X)$ of all σ -additive measures is weak*-dense in M(X). Then the following statements are equivalent:

- (a) For each $\mu \in M_{\sigma}(X)$ $\frac{1}{n} \sum_{i=0}^{n-1} T^{*i} \mu$ converges in norm.
- (b) For each $f \subseteq C(X)$ (O)- $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} T^{i} f$ exists.

Theorem 3. Let X and T be as in Theorem 1. Suppose there exists a strictly positive σ -additive measure. Then the following statements are equivalent:

- (a) There exists a strictly positive σ -additive invariant measure (with repect to T^*).
 - (b) If $0 \le f \in C(X)$ and $f \ne 0$, then (O)- $\lim_{n \to \infty} \sup_{i = 0} \frac{1}{n} \sum_{i=0}^{n-1} T^{i} f \ne 0$.

Remark 1. Let X be any compact Hausdorff space and T any positive linear operator on C(X) satisfying $\sup_{n} |\frac{1}{n} \sum_{i=0}^{n-1} T^{i}|^{i} < \infty$. Then, for each $f \in C(X)$, $\frac{1}{n} \sum_{i=0}^{n-1} T^{i} f$ converges in norm if and only if N_{T} separates N_{T}^{*} , where $N_{T}^{*} = \{\mu \in M(X) : T^{*}\mu = \mu\}$. This follows from [9], as $\lim_{n} ||T^{n}||/n = 0$, which is due essentially to Derriennic and Lin [3] and will be shown in the next section.

Remark 2. Let X and T be as in Theorem 1. If, for each $f \in C(X)$, $\frac{1}{n} \sum_{i=0}^{n-1} T^i f$ converges in norm, then, for each $\mu \in M(X)$, $\frac{1}{n} \sum_{i=0}^{n-1} T^{*i} \mu$ converges in norm, too. This follows from [1] and a mean ergodic theorem (see, for example, Theorem VIII. 5.1 in [4]).

3. A lemma. The purpose of this section is to prove the following lemma, which is fundamental throughout the remainder.

Lemma. Let X be a compact Hausdorff space and T a positive linear operator on C(X) satisfying $\sup_{n} ||\frac{1}{n}\sum_{i=0}^{n-1} T^{i}|| = M < \infty$.

Then

$$\lim_{n} ||T^n||/n = 0.$$

If, in addition, X is quasi-Stonian and T is σ -additive, then there exists a function $s \in C(X)$ such that

- (i) $Ts = s \ge 0$.
- (ii) if $f \in C(X)$ satisfies $||f|| \le 1$ and Tf = f then $|f| \le s$,
- (iii) if $\mu \in M_{\sigma}(X)$ satisfies supp $\mu \subset \{x : s(x) = 0\}$ then

$$\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} ||T^{*i}\mu|| = 0.$$

Proof. Given an $n \ge 1$ and an $\varepsilon > 0$, choose $0 \le \mu \in M(X)$ so that $\|\mu\| = 1$ and $\|T^{*n}\mu\| > \|T^{*n}\| - \varepsilon$ (= $\|T^n\| - \varepsilon$). Then, for any $0 \le k \le n$,

$$(k+1)^{-1}||T^n|| < \varepsilon + (k+1)^{-1} \sum_{i=n-k}^n ||T^{*i}\mu|| \le \varepsilon + M||T^{*n-k}\mu||.$$

Therefore, as in Derriennic and Lin [3], we get

$$(||T^{n}||/n) \sum_{k=0}^{n-1} (k+1)^{-1} \le \varepsilon + \frac{M}{n} \sum_{k=0}^{n-1} ||T^{*n-k}\mu||$$

$$\le \varepsilon + M^{2} ||T^{*}\mu|| \le \varepsilon + M^{2} ||T||.$$

Hence $\lim_{n} ||T^{n}|| / n = 0$, as $\lim_{n} \sum_{k=0}^{n-1} (k+1)^{-1} = \infty$.

To prove the second part of the lemma, let, as in [3] and [7],

$$t = (0)$$
- $\lim_{n} \sup \frac{1}{n} \sum_{i=0}^{n-1} T^{i} 1.$

Since T is σ -additive,

$$Tt \ge (0)$$
- $\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} T^{i} 1 \ge t$.

Thus if we set

$$s = (O)-\lim_{n} T^{n}t \ (= (O)-\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} T^{i}t),$$

then

$$Ts=s>t>0$$
.

(ii) is immediate from the definition of s.

For the proof of (iii), it is enough to prove it for $0 \le \mu \in M_{\sigma}(X)$ with supp $\mu \subset \{x : s(x) = 0\}$. Then, since μ is σ -additive, we get

$$\lim \sup \frac{1}{n} \sum_{i=0}^{n-1} ||T^{*i}\mu|| = \lim \sup_{n} \int \frac{1}{n} \sum_{i=0}^{n-1} T^{i} 1 \, d\mu$$

$$\leq \lim_{n} \int (\bigvee_{k=n}^{\infty} \frac{1}{k} \sum_{i=0}^{k-1} T^{i} 1) \, d\mu$$

$$= \int (0) - \lim \sup_{n} \frac{1}{n} \sum_{i=0}^{n-1} T^{i} 1 \, d\mu$$

$$= \int t \, d\mu \leq \int s \, d\mu = 0,$$

and hence (iii) is proved. The proof is complete.

4. Proof of Theorem 1. The following argument is a modification of the proof of Theorem 2 in Ando [2].

Let $s \in C(X)$ be as in the above lemma, and put

$$Y = \{x : s(x) > 0\}$$
 and $Z = \{x : s(x) = 0\}$.

Further, write

$$T_n = \frac{1}{n} \sum_{i=0}^{n-1} T^i$$
 $(n \ge 1).$

(a) \Longrightarrow (b): Suppose (a) holds. If $T_n f$ does not converge in norm for some $f \in C(X)$, then by a mean ergodic theorem due to Sine [11] (see also Lloyd [6] and the author [9], [10]) there exists a nonzero invariant measure μ (with respect to T^*) such that

if
$$f \in C(X)$$
 and $Tf = f$, then $\langle f, \mu \rangle = 0$.

Let μ^+ and μ^- denote the positive and negative parts of μ , respectively. Then $\mu = T^*\mu = T^*\mu^+ - T^*\mu^-$ implies that

$$T^*\mu^+ \ge \mu^+$$
 and $T^*\mu^- \ge \mu^-$.

Since μ is σ -additive, the above lemma shows that either $Y \cap \text{supp } \mu^+ \neq \emptyset$ or $Y \cap \text{supp } \mu^- \neq \emptyset$ holds. Without loss of generality we may assume that

$$Y \cap \text{supp } \mu^+ \neq \emptyset$$
.

Define

$$\varphi^+ = \lim_n T_n^* \mu^-$$
 and $\varphi^- = \lim_n T_n^* \mu^-$.

Then φ^+ and φ^- are invariant measures (with respect to T^*) satisfying

$$\langle s, \varphi^+ \rangle = \lim_{n \to \infty} \langle s, T_n^* \mu^+ \rangle = \langle s, \mu^+ \rangle > 0$$

and

$$\langle s, \varphi^- \rangle = \langle s, \mu^- \rangle$$
.

Since $\varphi^+ \ge \mu^+$, it follows that $\varphi^+ = \mu^+$ on Y. Similarly, $\varphi^- = \mu^-$ on Y. Since μ^+ and μ^- are disjoint in the sense of Ando [2], by Lemma 1 in [2] there exists a function $0 \le f \in C(X)$, with $f \le s$, such that

$$\langle f, \varphi^+ \rangle = \langle f, \mu^+ \rangle > 0$$
 and $\langle f, \varphi^- \rangle = \langle f, \mu^- \rangle = 0$.

Then the function g = (0)-lim sup $T_n f$ satisfies:

$$Tg \ge g \ge 0,$$

$$\langle g, \mu^{+} \rangle \ge \lim_{n} \sup_{n} \langle T_{n}f, \mu^{+} \rangle$$

$$= \lim_{n} \sup_{n} \langle f, T_{n}^{*}\mu^{+} \rangle \ge \langle f, \mu^{+} \rangle > 0,$$

and

$$\langle g, \varphi^{-} \rangle \leq \sum_{n=1}^{\infty} \langle T_n f, \varphi^{-} \rangle = 0.$$

Therefore if we set

$$h = (O)-\lim_{n \to \infty} T_n g$$

then Th = h, $\langle h, \mu^+ \rangle \ge \langle g, \mu^+ \rangle > 0$, and

$$\langle h, \mu^{-} \rangle \leq \langle h, \varphi^{-} \rangle = \lim \langle T_{n}g, \varphi^{-} \rangle = 0.$$

Consequently, $\langle h, \mu \rangle = \langle h, \mu^+ \rangle - \langle h, \mu^- \rangle \neq 0$. But this is a contradiction, since Th = h implies $\langle h, \mu \rangle = 0$. This contradiction shows that for each $f \in C(X)$ $T_n f$ converges in norm.

Define a positive linear operator P on C(X) as

$$Pf = \lim T_n f$$
 $(f \in C(X)).$

Since dim $(N_T)=0$ whenever s=0, we shall consider only the case $s\neq 0$, below. Then $P\neq 0$, and clearly

$$P^2 = P = PT = TP$$

Put $\mathcal{J} = \{ f \in C(X) : P | f | = 0 \}$ and

$$K = \bigcap_{f} \{x : f(x) = 0\}, \text{ where } f \in \mathcal{J}.$$

Then $K \neq \emptyset$, and furthermore

$$\mathcal{J} = \{ f \in C(X) : f = 0 \text{ on } K \}.$$

(In fact, if f=0 on K, then by the compactness of X for any $\varepsilon > 0$ there exist finitely many functions f_1, \dots, f_n in \mathcal{J} and a constant $\delta > 0$ such that

$$|f(x)| \ge \varepsilon$$
 implies $\sum_{i=1}^{n} |f_i(x)| \ge \delta$.

Then the function $g = \sum_{i=1}^{n} |f_i|$ is in \mathscr{J} , and it is easily seen that $P|f| \leq \varepsilon ||P||$, which proves that $f \in \mathscr{J}$.) Since supp $P^* \delta_x \subset K$ and supp $T^* \delta_x \subset K$ for every $x \in K$, where δ_x denotes the unit point mass concentrated at x, P and T induce, respectively, positive linear operators P^* and T^* on C(K) by the relations

$$P^{\tilde{}}f^{\tilde{}}(x) = \int_{\mathcal{L}} f^{\tilde{}}(y) \ dP^* \delta_x(y) \qquad (f^{\tilde{}} \in C(K), x \in K)$$

and

$$T^{-}f^{-}(x) = \int_{K} f^{-}(y) dT^{*} \delta_{x}(y) \qquad (f^{-} \in C(K), x \in K).$$

It is easily seen that

$$\dim (N_T) = \dim (N_{T^-}) = \dim (N_{P^-}).$$

Since $(T^-)_n$ converges strongly to P^- and since P^- is stricly positive on C(K), it follows from a standard argument that if f^- and g^- are in $N_{T^-}(=N_{P^-})$ then max (f^-, g^-) is also in N_{T^-} .

For any $x \in X$, $P^*\delta_x$ is an invariant measure (with respect to T^*) and hence σ -additive. It follows that if $f_n \in N_T$, $f_n \ge f_{n+1} \ge 0$ for each $n \ge 1$ and $f = \bigwedge_{n=1}^{\infty} f_n$ then $\lim_{n} f_n(x) = \lim_{n} Pf_n(x) = Pf(x)$ for each $x \in X$. Hence, by Dini's theorem, f_n converges in norm to Pf, and

therefore Pf = f. (This argument is due to Ando.) Now let us fix an ε , with $0 < \varepsilon < 1$, so that the set

$$F = F(\varepsilon) = K \cap \{x : s(x) > \varepsilon\}$$

is not empty, and put

$$N_T(F) = \{ f \in C(F) : f = g \text{ on } F \text{ for some } g \in N_T \}$$

and

$$M_r(F) = \{ f \in C(F) : f = g/s \text{ on } F \text{ for some } g \in N_r \}.$$

Since $M_T(F)$ is a Banach lattice containing the constant functions, we see without difficulty that if $f, g \in M_T(F)$ then $fg \in M_T(F)$. Moreover, if $f_n \in M_T(F)$ and $f_n \ge f_{n+1} \ge 0$ for each $n \ge 1$, then f_n converges in norm to a function in $M_T(F)$. (To see this, since $s \ge \varepsilon$ on F, it is enough to note that there exists a sequence (g_n) in N_T such that $g_n \ge g_{n+1} \ge 0$ on X and $f_n = g_n/s$ on F for each $n \ge 1$.) We now apply the Gelfand-Naimark theorem to infer that there exists a positive multiplicative linear isometry from $M_T(F)$ onto some C(Z), where Z is a compact Hausdorff space. It follows that if $f_n \in C(Z)$ and $f_n \ge f_{n+1} \ge 0$ for each $n \ge 1$, then f_n converges in norm. But this is possible only if Z is a finite set, and hence we conclude that

$$\dim N_{\tau}(F) = \dim M_{\tau}(F) = \dim C(Z) = d < \infty.$$

To prove that dim $(N_{T^*})=d$, fix any basis $\{f_1,\cdots,f_d\}$ of $N_T(F)$. Then any $f^*\in N_{T^*}$ has the form

$$f^{\sim} = \sum_{i=1}^{d} a_i f_i$$
 on F .

Thus there exists a function $g^- \in N_{T^-}$ satisfying $g^- = 0$ on F. It is then enough to show that such a g^- must satisfy $g^- = 0$ on K. Assume the contrary: $g^- \neq 0$. Here, without loss of generality, we may assume that

$$||g^-|| = 1$$
 and $g^- = 0$ on $F = F(\varepsilon)$.

Therefore for some $x \in K - F(\varepsilon)$ we get

$$1 = |g^{-}(x)| > s(x).$$

But this is impossible, because

$$1 = |g^{-}(x)| \le P^{-}|g^{-}|(x) \le P^{-}1(x) = s(x) < \varepsilon < 1.$$

(b) \Longrightarrow (a): Suppose (b) holds. We again let $Pf = \lim_{n \to \infty} T_n f$ for all

 $f \in C(X)$. Suppose μ is an invariant measure with respect to T^* . To prove that μ is σ -additive, it may be assumed without loss of generality that $\mu \geq 0$. Let $f_n \in C(X)$, $f_n \geq f_{n-1} \geq 0$ for each $n \geq 1$, and $\bigwedge_{n=1}^{\infty} f_n = 0$. Then, since

$$Pf_n \ge Pf_{n+1} \ge 0$$
 and $\langle f_n, \mu \rangle = \langle Pf_n, \mu \rangle$

for each $n \ge 1$ and since dim $(N_r) < \infty$, Pf_n converges in norm to a function g in N_T and

$$\lim \langle f_{\scriptscriptstyle n}, \ \mu \rangle = \langle g, \ \mu \rangle.$$

On the other hand, since $T_n^* \delta_x$ converges in norm for each $x \in X$ and since all the T_n are σ -additive, we see, as in [2], pp. 182 – 183, that

$$\lim_{n} Pf_n(x) = 0$$

on a dense subset of X. Therefore g=0 on X, and $\langle g, \mu \rangle = 0$. This shows that μ is σ -additive, and the proof is completed.

5. Proof of Theorem 2. (a) \Longrightarrow (b): Suppose (a) holds. Let $f \in C(X)$ and $0 \le \mu \in M_{\sigma}(X)$. We first show that $\lim_{n \to \infty} T_n f(x)$ exists for almost all $x \in X$ with respect to μ . To do this, it may be assumed without loss of generality that $T^*\mu$ is absolutely continuous with respect to μ . (In fact, if necessary, consider the measure $\lambda = \sum_{n=0}^{\infty} (2^n || T^{*n}\mu||)^{-1} T^{*n}\mu$ ($\in M_{\sigma}(X)$) instead of μ . Then, clearly, μ and $T^*\lambda$ are absolutely continuous with respect to λ .) Then T^* can be regarded as a positive linear operator on $L_1(\mu)$, and for each $\xi \in L_1(\mu)$, $T_n^*\xi$ converges in norm. Hence, by Theorem 1 in the author [8], $\lim_n T_n f(x)$ exists almost everywhere with respect to μ . Since μ is σ -additive, it then follows that

$$[(O)-\limsup_{n} T_{n}f](x) = [(O)-\liminf_{n} T_{n}f](x)$$

almost everywhere with respect to μ . Therefore we get

(O)-
$$\limsup_{n} T_n f = (O)$$
- $\liminf_{n} T_n f$ on supp μ ,

and hence on X, because the set $E = \bigcup \{ \text{supp } \mu : 0 \le \mu \in M_{\sigma}(X) \}$ is a dense subset of X, which is an easy consequence of the hypothesis that $M_{\sigma}(X)$ is weak*-dense in M(X).

(b)
$$\Longrightarrow$$
 (a): Suppose (b) holds. For $\mu \in M_{\sigma}(X)$ and $f \in C(X)$ we

have by the σ -additivity of μ that, for almost all $x \in X$ with respect to μ ,

$$\lim_{n} \sup_{x} T_{n}f(x) = [(O)-\lim_{n} \sup_{x} T_{n}f](x)$$

and

$$\lim_{n\to\infty}\inf T_nf(x)=\left[(0)-\lim_{n\to\infty}\inf T_nf\right](x).$$

Hence by (b), for almost all $x \in X$ with respect to μ ,

$$\lim_{n} T_n f(x) = [(O)-\lim_{n} T_n f](x).$$

We now apply Lebesgue's convergence theorem to infer that

$$\lim_{n} \langle f, T_{n}^{*} \mu \rangle = \lim_{n} \langle T_{n} f, \mu \rangle = \langle (\text{O-lim } T_{n} f, \mu \rangle.$$

It follows that $T_n^*\mu$ converges in the weak*-topology, and thus by [1] $T_n^*\mu$ converges weakly. Hence the norm convergence of $T_n^*\mu$ follows from a mean ergodic theorem (cf. Theorem VIII. 5.1 in [4]).

6. Proof of Theorem 3. To prove Theorem 3 we need the following proposition, which is a sharpened form of Theorem 3 in Ando [2].

Proposition. Let X be a quasi-Stonian compact Hausdorff space and T a positive σ -additive linear contraction operator on C(X). Suppose there exists a strictly positive σ -additive measure μ in M(X). Then the space X decomposes into two open sets P and N such that

- (i) $P = \sup \varphi \text{ for some } 0 \leq \varphi \in M_{\sigma}(X) \text{ with } T^*\varphi = \varphi,$
- (ii) N is the closure of the set $\{x: f(x) > 0\}$ for some $0 \le f \in C(X)$ with $\lim ||T_n f|| = 0$.

Sketch of proof. Put $\alpha = \sup \{ \mu \text{ (supp } \varphi) : 0 \leq \varphi \in M_{\sigma}(X) \cap N_{\tau}^* \}$. As easily seen, there exists $0 \leq \varphi \in M_{\sigma}(X) \cap N_{\tau}^*$ such that $\alpha = \mu \text{ (supp } \varphi)$. Define

$$P = \text{supp } \varphi$$
 and $N = X - P$.

Then, since N is open, the family $\mathscr{F} = \{ f \in C(X) : 0 \le f \le 1 \text{ on } X \text{ and } f = 0 \text{ on } P \}$ satisfies

$$\sup \{f(x): f \in \mathscr{F}\} = 1_{\mathcal{X}}(x) \text{ for each } x \in X.$$

where 1_N denotes the indicator function of N. Choose $f_n \in \mathcal{F}(n=1, 2, \cdots)$ so that $f_n \leq f_{n+1}$ for each $n \geq 1$ and

$$\lim_{n} \langle f_n, \mu \rangle = \sup \{ \langle f, \mu \rangle : f \in \mathscr{F} \}.$$

Put

$$g = \bigvee_{n=1}^{\infty} f_n$$
.

Then we get $\langle g, \varphi \rangle = \lim_{n} \langle f_n, \varphi \rangle = 0$, and thus $g \in \mathscr{F}$. On the other hand, since μ is strictly positive, g = 1 on N. Hence P and N are both open and closed in X.

Let

$$\mathscr{C} = \{ f \in C(X) : f \ge 0 \text{ and } \lim_{n} || T_n f || = 0 \}.$$

Immediately, $f \in \mathcal{E}$ implies $\{x : f(x) > 0\} \subset N$; and there exists an $f \in \mathcal{E}$ such that

$$\mu(\{x: f(x) > 0\}) = \sup \{\mu(\{x: g(x) > 0\}): g \in \mathscr{E}\}.$$

We denote by A the closure of the set $\{x: f(x) > 0\}$ and show that A = N. Assume the contrary. Then A is a proper subset of N, and so there exists $0 \le g \in C(X)$ such that

$$\emptyset \neq \{x : g(x) > 0\} \subset N - A$$
.

Let λ be any weak*-limit point of the sequence $(T_n^*\mu)$. Since λ is invariant with respect to T^* , if λ_0 denotes the maximal σ -additive measure with $\lambda_0 \leq \lambda$, then $T^*\lambda_0 \leq \lambda_0$ and $T^*(\lambda - \lambda_0) \geq \lambda - \lambda_0$, as $T(\geq 0)$ is σ -additive. Hence $T^*(\lambda - \lambda_0) = \lambda - \lambda_0$ and $T^*\lambda = \lambda$, as $||T|| \leq 1$. Since supp λ_0 is both open and closed in X, it follows that supp $\lambda_0 \subset P$, and thus

$$\langle g, \lambda_0 \rangle = 0$$
.

On the other hand, since μ and $\lambda - \lambda_0$ are disjoint in the sense of Ando [2], by Lemma 1 in [2] there exists an $h \in C(X)$, with $0 \le h \le g$, such that

$$\langle h, \mu \rangle \neq 0$$
 and $\langle h, \lambda - \lambda_0 \rangle = 0$.

Then we obtain $\langle h, \lambda \rangle = \langle h, \lambda - \lambda_0 \rangle + \langle h, \lambda_0 \rangle = 0$, and

$$0 \leq \liminf_{n} \langle T^n h, \mu \rangle \leq \liminf_{n} \langle T_n h, \mu \rangle = 0.$$

Now, as in the proof of Theorem 2, we may and will assume that $T^*\mu$ is absolutely continuous with respect to μ . Then T^* can be regarded as a positive linear contraction operator on $L_1(\mu)$, and then

modifying arguments in Foguel [5], pp. 40-43, there exists an $h' \in C(X)$, with $0 \le h' \le h$ and $h' \ne 0$, such that

$$\bigvee_{k=1}^{\infty} \left(\sum_{i=1}^{k} T^{n_i} h' \right) \leq 1$$

for some subsequence (n) of (n), and hence also such that

$$\lim ||T_nh'||=0.$$

But this is a contradiction, because $f + h' \in \mathcal{E}$ and $\mu(\{x : f(x) + h'(x) > 0\}) > \mu(\{x : f(x) > 0\})$. This completes the proof.

Proof of Theorem 3. (a) \Longrightarrow (b): Suppose there exists a strictly positive σ -additive invariant measure μ with respect to T^* . Then, since T^* can be regarded as a positive linear operator on $L_1(\mu)$ with $T^*1=1$, we see by a mean ergodic theorem (cf. Theorem VIII. 5. 1 in [4]) that for any $\xi \in L_1(\mu)$ $T_n^*\xi$ converges in norm. Therefore, by Theorem 1 in [8], for any $f \in C(X)$ $\lim_n T_n f(x)$ exists almost everywhere with respect to μ . Thus, as in the proof of Theorem 2, we see that (0)- $\lim_n T_n f$ exists. It is immediate that if $0 \le f \in C(X)$ and $f \ne 0$ then $\langle (0)$ - $\lim_n T_n f$, $\mu \rangle = \langle f, \mu \rangle \ne 0$. Hence (b) follows.

(b) \Longrightarrow (a): Suppose (b) holds. Let Y, Z and s be as in Lemma. Denote by \hat{Y} the Stone-Čech compactification of Y. We define a positive linear operator S on C(Y) by the relation

$$Sf(x) = s(x)^{-1} T(fs)(x) \qquad (f \in C(Y), x \in Y),$$

where $fs \in C(X)$ is defined by (fs)(x) = f(x)s(x) if $x \in Y$ and = 0 if $x \in X - Y$. Since $C(\hat{Y})$ is identified with C(Y), S can be regarded as an operator on $C(\hat{Y})$. Let us denote by \hat{S} the operator on $C(\hat{Y})$ corresponding to S.

(I) \hat{Y} is quasi-Stonian.

To see this, suppose (\hat{f}_n) is a bounded sequence of continuous functions on \hat{Y} . Since $Y = \{x : s(x) > 0\}$ and X is 0-dimensional, there exists a disjoint countable family $\{Y_k\}$ of subsets of Y such that

- $(i) \quad Y = \bigcup_{k=1}^{\infty} Y_k \,,$
- (ii) each Y_k is a subset of $\{x: s(x) \ge 1/k\}$ and both open and closed in X.

It follows that each Y_k is quasi-Stonian. Hence there exists an $f \in C(Y)$, with $f \leq \hat{f}_n$ on Y for each $n \geq 1$, such that $g \in C(Y)$ and

 $g \leq \hat{f}_n$ on Y for each $n \geq 1$ imply $g \leq f$ on Y. Obviously, the continuous extension \hat{f} of f to \hat{Y} is the infimum of (\hat{f}_n) .

(II) \hat{S} is a σ -additive Markov operator on $C(\hat{Y})$.

It is clear that \hat{S} is a Markov operator on $C(\hat{Y})$. To see that \hat{S} is σ -additive, let $\hat{h}_n \in C(\hat{Y})$ $(n = 1, 2, \cdots)$ be such that $\hat{h}_n \geq \hat{h}_{n+1} \geq 0$ for each $n \geq 1$ and $\bigwedge_{n=1}^{\infty} \hat{h}_n = 0$. Define $(h_n s)(x) = \hat{h}_n(x) s(x)$ if $x \in Y$ and $x \in X - Y$. Then $h_n s \in C(X)$, $h_n s \geq h_{n+1} s \geq 0$ for each $n \geq 1$, and $\int_{n=1}^{\infty} h_n s = 0$ on X.

Since T is σ -additive, $\bigwedge_{n=1}^{\infty} T(h_n s) = 0$ on X, and hence

$$\bigwedge_{n=1}^{\infty} \widehat{S} \, \widehat{h}_n = \bigwedge_{n=1}^{\infty} (1/s) \, T(h_n s) = 0 \quad \text{on each} \quad Y_k.$$

Therefore $\bigwedge_{n=1}^{\infty} \hat{S} \hat{h}_n = 0$ on \hat{Y} .

(III) There exists a strictly positive σ -additive invariant measure in $M(\hat{Y})$ (with respect to \hat{S}^*).

In fact, (b) implies that, by the definition of \hat{S} , (O)-lim $\sup_{n} \hat{S}_{n} \hat{f} \neq 0$ for each $0 \leq \hat{f} \in C(\hat{Y})$ with $\hat{f} \neq 0$. Thus the proposition implies that, in order to prove (III), it is enough to observe that there exists a strictly positive σ -additive measure in $M(\hat{Y})$. For this purpose, let μ be a strictly positive σ -additive measure in M(X) and ν its restriction to Y. Then ν can be regarded as a member of $M(\hat{Y})$, and it is a routine matter to see that, as a member of $M(\hat{Y})$, ν is a strictly positive and σ -additive.

(IV) There exists a strictly positive σ -additive invariant measure in M(X) (with respect to T^*).

Let μ be as in (III), and let λ be a weak*-limit point of the sequence $(T_n^*\mu)$. Denote by λ_0 the maximal σ -additive measure with $\lambda_0 \leq \lambda$. We then have

$$T^*\lambda_0 < \lambda_0$$
.

since $T^*\lambda = \lambda$. This, together with the fact that Ts = s and $Y = \{x : s(x) > 0\}$, shows that

$$T^*\lambda_0=\lambda_0$$
 on Y .

We now show that $Y \subset \text{supp } \lambda_0$. If this is not the case, take any $x \in Y - \text{supp } \lambda_0$ and any nonnegative function $f \in C(X)$ such that f = 0 on $Z \cup \text{supp } \lambda_0$ and f(x) > 0. Since μ and $\lambda - \lambda_0$ are disjoint in the

sense of Ando [2], as in the proof of the proposition, there exists a function $g \in C(X)$, with $0 \le g \le f$, such that

$$\langle g, \mu \rangle > 0$$
 and $\langle g, \lambda \rangle = 0$.

On the other hand, (III) implies that (O)-lim sup $T_n(sg) = (O)$ -lim inf $T_n(sg)$ on each Y_k , and hence on X, as $Y = \bigcup_{k=1}^{\infty} Y_k$ and $T_n(sg) = 0$ on Z = X - Y for all $n \ge 1$. Furthermore, we have (O)-lim $T_n(sg) \ne 0$. Since the σ -additivity of μ implies then that $\lim_{n \to \infty} T_n(sg)(x) = [(O)-\lim_{n \to \infty} T_n(sg)](x)$ for almost all $x \in X$ with respect to μ , it follows from Lebesgue's convergence theorem that

$$\langle sg, \lambda \rangle = \lim_{n} \langle T_{n}(sg), \mu \rangle = \langle (O) - \lim_{n} T_{n}(sg), \mu \rangle \neq 0.$$

But this is impossible, because $|\langle sg, \lambda \rangle| \le |s|, |\langle g, \lambda \rangle| = 0$. Therefore we conclude that $Y \subseteq \text{supp } \lambda_0$.

Define $\theta = \lim_{n} T_{n}^{*} \lambda_{0}$. Then $0 \leq \theta \in M_{\sigma}(X)$ and $T^{*}\theta = \theta$. Furthermore, we see that $\theta = \lambda_{0}$ on Y, and hence that $Y \subset \text{supp } \theta$. To see that $X = \text{supp } \theta$, let $0 \leq f \in C(X)$ be such that $\langle f, \theta \rangle = 0$. Then $T^{n}f = 0$ on supp θ for all $n \geq 0$, and thus

(O)-
$$\limsup T_n f = 0$$
 on $Y \subset \operatorname{supp} \theta$.

It follows that (O)- $\lim_{n} \sup T_n f = 0$ on X, since (O)- $\lim_{n} \sup T_n 1 \le s$ and s = 0 on Z = X - Y. Hence (b) implies that f = 0 on X, and this proves that $X = \sup \theta$. The proof is completed.

REFERENCES

- [1] T. Ando: Convergent sequences of finitely additive measures, Pacific J. Math. 11 (1961), 395—404.
- [2] T. Ando: Invariante Masse positiver Kontraktionen in C(X), Studia Math. 31 (1968), 173—187.
- [3] Y. Derriennic and M. Lin: On invariant measures and ergodic theorems for positive operators, J. Functional Analysis 13 (1973), 252—267.
- [4] N. DUNFORD and J. T. SCHWARTZ: Linear Operators. I: General Theory, New York, 1958,
- [5] S.R. Foguel: The Ergodic Theory of Markov Processes, New York, 1969.
- [6] S. P. LLOYD: On the mean ergodic theorem of Sine, Proc. Amer. Math. Scc. 56 (1976), 121—126.
- [7] R. Sato: Ergodic properties of bounded L₁-operators, Proc. Amer. Mash. Soc. 39 (1973), 540-546.
- [8] R. Sato: Positive operators and the ergodic theorem, Pacific J. Math. 76 (1978), 215—219.

[9] R. SATO: On abstract mean ergodic theorems, Tohoku Math. J. 30 (1978), 575-581.

[10] R. Sato: The Hahn-Banach theorem implies Sine's mean ergodic theorem, Proc. Amer.

Math. Soc. 77 (1979), 426.

[11] R. Sine: A mean ergodic theorem, Proc. Amer. Math. Soc. 24 (1970), 438-439.

DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY

(Received May 22, 1979)