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INVARIANT MEASURES AND ERGODIC THEOREMS
FOR POSITIVE OPERATORS ON C(X)
WITH X QUASI-STONIAN

RYOTARO SATO

1. Introduction. Let X be a quasi-Stonian compact Hausdorff space.
Relations between invariant measures and ergodic theorems are inves-
tigated for a positive o-additive linear operator T on C(X) satisfying

n=] .
sup | (1/n) 22 T"1j <Toe. Such relations were investigated by Ando [2]

for a g-additive Markov operator T on C(X). In this paper Ando’s results
will be generalized. :

2. Definitions and theorems. For a topological space X, let C(X)
denote the Banach space of real-valued bounded continuous functions on X
with the supremum norm. In this paper, unless the contrary is explicitly
explained, X is assumed to be a compact Hausdorff space which is quasi-
Stonian, i.e. to each bounded sequence (f,) in C(X) there corresponds an
f=C(X), with f < f, for all # >> 1, such that if g=C(X) and g < f, for
alln>1 then g <f. This function f is called the infimum of (f,) and
denoted by

The function g & C(X) defined by g=— :_.\] (—f£.) is called the supremum of
(f.) and denoted by

Clearly, g is minimal with respect to the conditions g=C(X) and f, < g
for all # > 1. Asin Ando [2], we let

(O)-limnsup f 2,51 ;.-{_-7 r'fk
and

O)lim inf £, =V A f..

i=1k=n
If (O)-lim‘ sup f,,=(0)-lim' inf £, holds, then we denote by (O)-lim £, these
equal functions.
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As usnal, the dual space C*(X) is identified with the space M(X) of
all bounded regular Borel measures on X by the relation

Swy=|ran (fecx), nem)).

pEM(X) is called ¢-additive if f,=C(X), f.=f..,.=0 for each »>>1 and
R f.=0 imply lim {f,, |#|>=0, where || denotes the total variation
n=| "

of .
Let T be a positive linear operator on C(X). T is called a contraction
operator if ||T||<<1, a Markov operator if | T||=1= T1, and s-additive if

/\ Tf.=0 whenever f, < C(X), f.=f.,.=>0 for each n>>1, and /\ fi=

=1

In this paper the following theorems are proved. In case 7 is a
o-additive Markov operator on C(X), these theorems are due to Ando [2].

Theorem 1. Let X be a quasi-Stonian compact Hausdorff space and T
@ positive a-additive linear operator on C(X) satisfying

sup II—T T << oo,

i=0

Then the following statements are equivalent :
(@) Al invariant measures (with respect to T*) are o-additive.

(b) For each f=C(X) 1 T f converges in norm, and further
dim (Np)<<oo where Nr= {fEC(X). Tf=f}.

Theorem 2. Let X and T be as in Theorem 1. Suppose the space
M. (X) of all o-additiwe measures is weak*-dense in M(X). Then the follow-
ing statements are equivalent :

(a) For each p=M(X) %\_‘ T*' 1n converges in norm,

(b) For each f=C(X) (0)-lim 7§ Tf exists.

Theorem 3. Let X and T be as in Theorem 1. Suppose there exists
a strictly positive c-additive measure. Then the following statements are
equivalent :

(@) There exists a strictly positive o-additive invariant measure (with
repect to T*).

b) If 0<relC(X) and 50, then (O)lim sup—_ TfﬁéO
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Remark 1. Let X be any compact Hausdorff space and T any positive

linear operator on C(X) satisfying sup I‘ 11 ‘> Ti' << ec. Then, for each

i= [)
f=Cc(X), ‘-_' T'f converges in norm if and only if N, separates N,*,
where N,* = {;J,CM(X) : T*p=p}. This follows from [9], as lim |, 7"||/%

=0, which is due essentially to Derriennic and Lin [3] and will be shown
in the next section.

Remark 2. Let X and 7 be as in Theorem 1. If, for each feECX),

711?‘ Tf converges in norm, then, for each peM(X), 1 V‘ T*u con-

verges in norm, too. This follows from [1] and a mean ergodic theorem
(see, for example, Theorem VIII 5.1 in [4]).

3. A lemma. The purpose of this section is to prove the following
lemma, which is fundamental throughout the remainder.
Lemma. ZLet X be a compact Hausdor[f space and T a positive linear
operator on C(X) satisfying sup II%;—: TH|=M<Coo,
Then
1i7rzn T /n=0.

If, in addition, X is quasi-Stonian and T is c-additive, then there exists a
Sfunction s€ C(X) such that

(i) Ts=s=0.

(ii) if fE C(X) satisfies (|f| <1 and Tf = f then |f| <s,

(iii) if p € M(X) satisﬁes supp # C {x: s(x) = 0} then

hm IIT* wll=

Proof. Given an #2>1 and an ¢>0, choose 0<<p= M(X) so that
lell=1 and || T*"p||> | T*"|—e (=IT"|—¢). Then, for any 0<{k<n,

R+ IT <e+(k+ 1)".=Z_.k NT* )| < e+ M| T*" *pull.
Therefore, as in Derriennic and Lin [3], we get
n=—1 n—1
T/ S et )t < e+ 2 7ors
< e+M? | THpll < e+ M T
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Hence hm | T"|/#n=0, as lizn :Z;E: (k+1)'=o0,
To prove the second part of the lemma, let, as in [3] and [7],
t = (O)lim sup 1 zg' T'1,
Since T is g-additive,
Tt = (0)-lim sup =33 T'1 > 1,
Thus if we set
s=(OHlim 7" (= (O)im £ 53 7'),

then
Ts=s>t=>0.

(ii) is immediate from the definition of s.
For the proof of (iii), it is enough to prove it for 0 << pEM,(X) with
supp #C {x:s(x)=0}. Then, since u is s-additive, we get

}r—t

a—| [~
lim sup%}] | T* || = lim sup S p Z T dp
=0 n

1%
S(O) lim sup % i} T1 du

/11mg(

T

”n =0
=Std,m SES dp=

and hence (iii) is proved. The proof is complete.

4. Proof of Theorem 1. The following argument is a modification of
the proof of Theorem 2 in Ando [2].
Let s € C(X) be as in the above lemma, and put

Y={x:5(x)>0} and Z={x:s(x) = 0},

Further, write

di—1
= _}Z-z T (n=>1).

=0

i=

(a) => (b) : Suppose (a) holds. If 7,f does not converge in norm for
some f=C(X), then by a mean ergodic theorem due to Sine [11] (see also
Lloyd [6] and the author [9], [10]) there exists a nonzero invariant measure
i (with respect to T*) such that
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if f€ C(X) and Tf =f, then {f, u) = 0.

Let 4™ and p~ denote the positive and negative parts of u, respectively.
Then p = THp = T*p* — T*p~ implies that

T*n* = p* and TH*p™ > u-.

Since p is g-additive, the above lemma shows that either YN supp p* 5= O
or YMsupp 1~ % @ holds. Without loss of generality we may assume that

YNsupp 1™ %+ 0.
Define

¢'=lm Tip~ and ¢ =lim Tip .
Then ¢* and ¢~ are invariant measures (with respect to T*) satisfying
(s, ¢">=lm<s, Trp'>={s, p*>>0
and

(s, 7> =<5, p ™.

Since ¢~ > ', it follows that ¢ =p* on Y. Similarly, ¢ =p" on Y.
Since p* and x~ are disjoint in the sense of Ando [2], by Lemma 1 in [2]
there exists a function 0 << f& C(X), with f <s, such that

fieD=Lf w>>0and {f, o) ={f, p>=0.
Then the function g= (O)-lim"sup T.f satisfies:
Tg=g=0,
<g, #')>=1limsup (T.f, u™)
= limnsup fy Tin*) =S, p*> >0,
and '
<g o7 Sg (T.f, 7> =0.
Therefore if we set
h = (0O)lim Tg,
then Th=h, <h, p*> ><{g, ©*> >0, and
<h, p < <A, ¢>=lim<T.g, ¢75>=0.

Consequently, <k, py=<h, p'>—<h, > 0. But thisis a contradiction,
since Th=h implies <k, p>=0. This contradiction shows that for each
fe C(X) T.f converges in norm,
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Define a positive linear operator Pon C(X) as
Pf =lim T,.f (f e C(X)).

Since dim (N,)= 0 whenever s=0, we shall consider only the case s ¥ 0,
below. Then P 0, and clearly

P*=P=PT=TP.
Put _# ={feC(X): P|f|=0} and
K=rj]{x:f(x)= 0}, where fE_F.

Then K 5 (3, and furthermore
F ={feC(X): f=0on K).

(In fact, if /=0 on K, then by the compactness of X for any ¢ >0 there
exist finitely many functions fi, -:-, f., in _# and a constant 4 > 0 such that

|f@)|= ¢ implies 33| fi(x)| =,

Then the function g=2"]| f:| isin 7, and it is easily seen that P|f| <
i=] )

ellPll, which proves that f& /#.) Since supp P*3,C K and supp T*d,CK
for every x= K, where 4, denotes the unit point mass concentrated at x, P
and 7 induce, respectively, positive linear operators P~ and 7 on C(K)
by the relations

P W=7 dPaly)  (FTEC(K), x€K)

and

Tf (0= f () dT*6.(y) (f =CK) 1€K).

;’-—,

It is easily seen that
dim (NT) = dim (Nfr-) = dim (NP—) .

Since (7 7), converges strongly to P~ and since P~ is stricly positive
on C(K), it follows from a standard argument that if f~ and g are in

Ny-(= Np-) thenmax (f", g7) isalsoin N,-.
For any x € X, P*4, is an invariant measure (with respect to 7*)

and hence g-additive. It follows that if f, = N, f. > f... =0 for each

n>1 and f= Af. then lim f,(x) =lim Pf,(x) = Pf(x) for each
n=|] n [

x € X. Hence, by Dini’'s theorem, f. converges in norm to Pf, and
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therefore Pf = f. (This argument is due to Ando. )
Now let us fix an ¢, with 0 <{e <C1, so that the set

F=F()=KN {x: s(x) > ¢}
is not empty, and put
N(F)={fe C(F): f=g on F for some g € N;}
and
M (F)={fe C(F): f=g/s on F for some g & Ny}.

Since M,(F) is a Banach lattice containing the constant functions, we
see without difficulty that if f, g € M,(F) then fg  M,(F). More-
over, if f,¢ My(F) and f,>f,.,=0 for each n=>1, then f, converges
in norm to a function in M;(F). (To see this, since s=¢ on F, it is
enough to note that there exists a sequence (g,) in N, such that
g. =28, =0 on X and f,=g./s on F for each n>1.) We now
apply the Gelfand-Naimark theorem to infer that there exists a positive
multiplicative linear isometry from M;(F) onto some C(Z), where Z is
a compact Hausdorff space. It follows that if f,&= C(Z) and f,=>f...=>0
for each # =1, then f, converges in norm, But this is possible only if
Z is a finite set, and hence we conclude that

dim Nyp(F) = dim M;(F) = dim C(Z) =d < oo,

To prove that dim (Ny~) = d, fix any basis {f,, ---, fu} of Ny(F).
Then any f & Np- has the form

f'=i‘éai_ﬂ on F

Thus there exists a function g~ = N~ satifying g-=0 on F. It is
then enough to show that such a g~ must satify g- =0 on K. Assume
the contrary: g~ % 0. Here, without loss of generality, we may assume
that

lg=ll=1 and g~=0 on F= F(e).
Therefore for some x € K — F(c) we get
1=]g®|>s).
But this is impossible, because

1=]g~)| <P lg ) <P 1(x) =s(x) <e<1.
(b)=>(a): Suppose (b) holds, We again let Pf = lim 7T,f for all
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fe C(X). Suppose p is an invariant measure with respect to 7°*. To

prove that p is s-additive, it may be assumed without loss of generality
that ©>0. Let f,= C(X), f,=f..1=0 foreach n>1, and A f.=0.
n=|

Then, since
Pfu—>—Pfr:1>l20 and <.fm /1’>= <Pf"! I"'>

for each > 1 and since dim (Ny) < oo, Pf, converges in norm to a
function g in Ny and
Wim<{f., p)=<g w.
On the other hand, since 7.4, converges in norm for each x € X
and since all the 7, are os-additive, we see, as in [2], pp. 182 — 183, that
lim Pf.(x) =0

on a dense subset of X. Therefore g=0 on X, and {g, »>=0. This
shows that p is g-additive, and the proof is completed.

5. Proof of Theorem 2. (a) = (b) : Suppose (a) holds. Let f&C(X)
and 0 < p € M, (X). We first show that lim 7, f(x) exists for almost

all x € X with respect to ©. To do this, it may be assumed without

loss of generality that 7*u is absolutely continuous with respect to u.

(In fact, if necessary, consider the measure 2= 3 (2"|' T*"u)"' T*n
=0

(€ M,(X)) instead of ;.. Then, clearly, p and T*1 are absolutely
continuous with respect to 2.) Then T* can be regarded as a positive
linear operator on L,(z), and for each & = L,(x), T}E converges in
norm. Hence, by Theorem 1 in the author [8], lim 7.f(x) exists almost
everywhere with respect to ux. Since p is g-additive, it then follows
that

[(0)-lim sup T.f1(x) = [(O)-lim inf T, f](x)
almost everywhere with respect to ©.  Therefore we get
(0)-lim sup T,.f = (O)-liminf T, f onsupp g,

and hence on X, because theset E= Ufsupp p: 0<<p e M(X)} is
a dense subset of X, which is an easy consequence of the hypothesis
that M,(X) is weak*-dense in M(X).

(b)=>(a): Suppose (b) holds. For p = M, (X) and f& C(X) we
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have by the g-additivity of , that, for almost all x & X with respect
to p,

lim sup 7. f (x) = [(O)lim sup T.f] (x)
and
1im11 inf T,f(x) = [(O)-limninf T.f1().
Hence by (b), for almost all x = X with respect to 1,
lim T, f(x) = [(O)}-lim T, f](x).
We now apply Lebesgue’s convergence theorem to infer that
im {f, Tiu) =lm<T.f, ) = {(Olim T.f, p).

It follows that 77 converges in the weak*-topology, and thus by [1]
T¥p converges weakly. Hence the norm convergence of T*p follows
from a mean ergodic theorem (cf. Theorem VIIL 5.1 in [4]).

6. Proof of Theorem 3. To prove Theorem 3 we need the following
proposition, which is a sharpened form of Theorem 3 in Ando [2].

Proposition. Let X be a quasi-Stonian compact Hausdorff space
and T a positive s-additive linear contraction operator on C(X). Suppose
there exists a strictly positwe o-additive measure p in M(X). Then the
space X decomposes into two open sets P and N such that

(i) P=supp ¢ forsome 0<¢ € M,(X) with T*p = ¢,

(ii) N is the closure of the set {x: f(x) > 0} for some 0<f&C(X)
with lim | T, fll = 0.

Sketch of proof. Put a =sup {p (supp ¢): 0 < ¢ € M,(X) N N*}.
As easily seen, there exists 0 <<¢=M,(X)NN,* such that a=p (supp ¢).
Define

P=suppy and N=X-—P.

Then, since N is open, the family . % = {f= C(X):0<f<{1 on X and
f=0 on P} satisfies

sup {f(x): f€ F } = 14(x) foreach x = X,

where 1y denotes the indicator function of N. Choose f,€.# (n=1,2, ---)
so that f, <f,., foreach #>1 and
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im{fo, ) =sup {{f, wp:fE F}.
Put

g=V/.
Then we get {g, ¢)> = lim {f,, ¢)» =0, and thus g= % . On the

other hand, since p is strictly positive, g =1 on N. Hence P and N
are both open and closed in X.

Let
E={(feC(X):f>0 and lim| T.fI| = 0}.

Immediately, f& & implies {x: f (x) >0} C N; and there exists an
f € & such that

px: f(x) >0}) =sup {p({x: glx) >0}): gE &}.

We denote by A the closure of the set {x: f(x) >0} and show that
A= N. Assume the contrary. Then A is a proper subset of N, and
so there exists 0 << g = C(X) such that

O *{x:gx)>0Cc N— A.

Let i be any weak*-limit point of the sequence (Tjw). Since i
is invariant with respect to T*, if J, denotes the maximal s-additive
measure with 2,<<2, then T*ip<</j, and T*(A— o) =41 — 4, as
T(=>0) is g-additive. Hence T*(1—ig) =21— 1, and T*2=1, as || T||<1.
Since supp 4, is both open and closed in X, it follows thatsupp i, C P,
and thus

{g, %y =0.

On the other hand, since 1 and i — 4, are disjoint in the sense of Ando
[2], by Lemma 1 in [2] there exists an A< C(X), with 0<h<g,
such that

{h, £) =0 and <h, 2— iy) = 0.
Then we obtain <k, 2> =<k, 2 — 200 + {h, Jop =0, and
0 < liminf {T"h, p) <liminf {(Twh, py = 0.

Now, as in the proof of Theorem 2, we may and will assume that
T*w is absolutely continuous with respect to x#. Then 7* can be
regarded as a positive linear contraction operator on L,(x), and then



INVARIANT MEASURES AND ERGODIC THEOREMS 87

modifying arguments in Foguel [5], pp. 40—43, there exists an e c(X),
with 0 <X < hand A <£0, such that
&
VS TR <1
k=1 i=1

for some subséquence (n;) of (n), and hence also such that
lim | T,/ || = 0.

But this is a contradiction, because f+ A € & and p({x: f(x) + & (x)
>0})>u ({x: f(x) >0}). This completes the proof.

Proof of Theorem 3. (a)=—=(b): Suppose there exists a strictly
positive g¢-additive invariant measure p with respect to T7*. Then,
since T* can be regarded as a positive linear operator on L,(x) with
T*1 =1, we see by a mean ergodic theorem (cf. Theorem VIIL 5. 1 in[4])
that for any €= L,(u) T & converges in norm. Therefore, by Theorem 1
in [8], for any f<= C(X) li:n T, f(x) exists almost everywhere with

respect to . Thus, as in the proof of Theorem 2, we see that (O)-lim
T.f exists. It is immediate that if 0 <f& C(X) and f5=0 then
{(O)lim T.f, uy = <{f, wy 0. Hence (b) follows.

(b)=> (a) : Suppose (b) holds. Let ¥, Z and s be as in Lemma.

Denote by ¥ the Stone-Cech compactification of Y. We define a positive
linear operator S on C(Y) by the relation

SfFx) =sx) " T(fs)x) (fEC(Y), xEY),
where fs = C(X) is defined by (fs){x) =f(x)s(x) if x= Y and =0
if x€ X— Y. Since C(Y) is identified with C(Y), S can be regarded
as an operator on C(Y). Let us denote by S the operator on C(I/’\')
corresponding to S.

(1) v is quasi-Stonian.

To see this, suppose ( }?,.) is a bounded sequence of continuous
functionson Y. Since Y= {x:s(x)>0} and X is O-dimensional, there
exists a disjoint countable family {Y:} of subsets of Y such that

(i) Y = ‘:Lil Yk >

(ii) each Y, is a subset of {x: s(x)>1/k} and both open and closed
in X.

It follows that each Y, is quasi-Stonian. Hence there exists an
feC(Y), with f<f, on Y foreach #>1, suchthat g€ C(Y) and
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g S?,, on Y foreach #>1 imply g <<f on Y. Obviously, the contin-
uous extension f of f to Y is the infimum of (f,).

an S is @ o-additive Markov operator on C (f').

It is clear that S is a Markov operator on C(I?). To see that S is
s-additive, let %, € C( f’) (n=1,2, ) be such that &, >I/1\,,+, >0 for
each »>1 and /\ %, = 0. Define (h, ) (®) =h, (x)s(x) if x€ Y and =0

if xeX—Y. Then nse C(X), h,s>hy.s >0 for each n>1 and
/\ h.,s =0 on X.

Since T is ¢-additive, R T(h.s) =0 on X, and hence
n=1

K k. & (1/s) T'(h.s) = 0 on each Y.
Therefore /\ Sh,= on ¥,
(III) There exists a strictly positive o-additive invariant’ measure in
M(Y) (with respect to S*).

In fact, (b) implies that, by the definition of §, (O)-lim sup §nf7é0

for each 0 << f e C(f’) with f = 0. Thus the proposition implies that,
in order to prove (III), it is enough to observe that there exists a strictly
positive g-additive measure in M( I’}). For this purpose, let 1 be a
strictly positive g-additive measure in M(X) and » its restriction to Y.
Then v can be regarded as a member of M( AY), and it is a routine matter
to see that, as a member of M (f'), y is a strictly positive and s-additive.

(IV) There exists a strictly positive o-additive invariant measure in
M(X) (with respect to T*).

Let  be as in (III), and let 1 be a weak*-limit point of the
sequence (7% ). Denote by 1, the maximal s-additive measure with
ig < 2. We then have

T*2,< 2,

since T*1=4i. This, together with the fact that 7s=s and Y= {x : s(x)>0},
shows that

T*)o=1 on Y,

We now show that Y C supp A4, If this is not the case, take any
% €Y — supp 2, and any nonnegative function f& C(X) such that f=0
on Z Usuppi, and f(x) >0. Since p© and 2 — i, are disjoint in the
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sense of Ando [2], as in the proof of the proposition, there exists a
function ge& C(X), with 0 <<g<f, such that

(g #>>0 and {g, 2> =0.
On the other hand, (III) implies that (O)-lim sup T.(sg) =

(O)lim inf T,(sg) on each Y, and hence on X, as Y = C’ Y, and
n k=1

T.(sgg) =0 on Z=X—Y for all n>1. Furthermore, we have
(O)-lim 7, (sg) ¥ 0. Since the s-additivity of x implies then that lim

n

T.(sg)(x) = [(O)lim T, (sg)] (x) for almost all x € X with respect to s,

it follows from Lebesgue’s convergence theorem that
Csg, 4> = Lim<T.(sg), 1y = {(O)lim T. (sg), wy #0.

But this is impossible, because |<{sg, i>|<|s|. |{g, i>| = 0. There-
fore we conclude that Y C supp 2,.
Define #=1im T}, Then 0</e M,(X) and T*#=40. Further-

more, we see that # = i, on Y, and hence that Y C supp #. To see
that X =supp #, let 0 <fe= C(X) be such that {f, #>=0. Then
T =0 onsupp # for all >0, and thus

(O)-limsup 7.f =0 on Y Csuppt.

It follows that (O)-lim sup 7,f=0 on X, since (O)-lim sup 7.1<s and

s=0o0on Z=X—Y. Hence (b) implies that f =0 on X, and this
proves that X = supp ¢. The proof is completed.
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