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COMMUTATIVITY THEOREMS FOR CERTAIN RINGS

To Professor Gord Azumaya on his sixtieth birthday

YASUYUKI HIRANO, MoTOSHI HONGAN
and HisAO TOMINAGA

Throughout the present paper, R will represent an associative ring
with center C, and N the set of all nilpotent elements of R. Following
F13], R is called a left s-unital (resp. s-unital) ring if for each xR there
holds x = Rx (resp. x&RxNxR). If Ris a left s-unital (resp. s-unital) ring
then for any finite subset F of R there exists an element ¢ in R such that
ex=x (resp. ex=xe=x) for all x=F (see [13, Theorem 1] and [12,
Lemma 1]). Such an element ¢ will be called a left pseudo-identity (resp.
pseudo-identity) of F. By [6, Proposition 2], the following conditions are
equivalent :

a) For every x =R there exists an element x’ in the subring generated
by x and a positive integer m such that x"=x"""x’,
b) For every x= R there exist positive integers m, % such that ™=
T
x

c) For every x € R there exists a positive integer m such that x™=x*",

If R satisfies one of the above equivalent conditions, following [6], we
term R a periodic ring. Finally, R is said to be normal if every idempotent
of Risin C.

The purpose of this paper is to prove the following commutativity
theorems.

Theorem 1. Let R be a left s-unital periodic ring, and n a fixed
positive integer. Suppose that i) N is n-torsion free, ii) [x, [x,u]]=0 for
all x€ R and wuE N, iii) x—yE N implies that x"=y" or both x and y commute
with all elements of N. Then R is a subdirect sum of local commutative
rings.

Theorem 2. Let R be an s-unital periodic ving, and n a fixed positive
integer. Suppose that i) N is n-torsion free, ii) [x, [z, u]]=0 for all x=R
and =N, iii) x—yEN implies that x"—y"=C. If (n,q"—1)=1 for all
prime factors q of n and for all positive integers « (especially, if n is a
power of a prime), then R is a subdivect sum of local commutative rings.
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Theorem 3. Let R be an s-unttal ring, and n a fixed positive integer.
If N is n-torsion free, then the following are equivalent :

1) Ris commutative.

2) R satisfies the polynomial identities [x",y"]1 =0 ‘and [x* [x*, y*]1]
=0, where k is a positive integer with (n, k)=1.

3) R satisfies the polynomial identities [x", y*] =0 and [x*, (xy)*— (yx)*]
=0, where k is a positive integer with (n, k)=1.

4) R satisfies the polynomial identities (xy)'—x'y"=0 and (xy) '—
x"’ Hyn+1______ 0

5) R satisfies the polynomial identity (xy)"— (yx)"=0.

Theorem 1 is a slight generalization of [2, Theorem 3], and Theorem
2 is related to [1, Theorem]. The proof of these theorems will be given
in § 1. Theorem 3 contains [4, Theorem 1] and all the results in [3], and
§ 2 is devoted to the proof of Theorem 3.

1. In advance of proving Theorems 1 and 2, we establish the follow-
ing lemmas.

Lemma 1. (1) Let n be a positive integer. If [a, [a, b]1=0, then
[@&", b]=na""'[a, b].

(2) Suppose that ii) a®>=0 implies a=C. Then R is normal.

(3) Ifii) is satisfied, then R is normal.

(4) Let n be a positive integer. Suppose that x—yEN implies that
"~y ECor xy=yx. Then ux"=x"u for all xS R and uE N, and necessarily
R ts normal.

Proof. (1) and (2) are well known,

(3) Let e be an arbitrary idempotent of R. Given xR, we readily
see that (ex — exe)* = 0. Hence, by ii), it follows that ex — exe =
[e, [ex—exe]]=0, i.e. ex=exe. Similarly, we obtain xe=exe.

(4) It suffices to show that if #x 5= xu then ux"=x"u. Since (u+x)—
xEN and (u- x)x %~ x(u+x), we have c=(u+x)"—x*€C. Hence, (u-+x)x"
=@w+x){(u+x)—c} ={(u+x)"—c}(u+x)=x"(u+x), which simplifies to
ux"=x"u.

Lemma 2. Let R be a left s-unital periodic ring, and n a fixed positive
integer. If hypotheses i) and iii) are satisfied, then nilpotent elements of R
commaute with each other.

Proof. Suppose that uv 5= vu for some u, v&N. Let ¢ be a left
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pseudo-identity of {#, »}. Since R is periodic, there exists a positive
integer m such that ¢"=¢"™. Then, by Lemma 1 (4), f=¢" is a central
idempotent with fu=# and fv =». Obviously, (u+f)v % v(u+f), and

n) w+nu=0.

hence by hypothesis iii), (#+f)'=f". Therefore, #%"-+----+ ( 5

For some £ > 2, u*=0and #*~' % 0. Then

nu = {u"+ -+ ( 722 )u2+nu} u =0,
which is a contradiction, This contradiction shows that nilpotent elements
of R commute with each other.

Lemma 3. Let R be an s-unital periodic ring, and n a fixed positive
integer. If hypotheses i), ii) and iii) are satisfied, then nilpotent elements
of R commute with each other.

Proof. Letu, vEN, and ¢ a pseudo-identity of {#,»}. By Lemma 1
(1) and (4), we can easily see that n[«, v]v"'=0 and n[x, v](e+v)" " '=
nlu, e+ v](e+v)"'=0. Then

nlu, v]o' *=n{lu, v]+@w—)[u, v]o+ -+ [u, v]o" '} o2
=nln, v](e+v)" " ?=0.

Repeating the same procedure, we obtain eventually #[x, v]=0. From the
proof of [11, Lemma], we can easily see that both #» and vx are nilpotent.
Since [uv, vul =Tuw, [v, u]l=ulv, v, u]]+[u, [v, «]1lv=0 by ii), [«, v] is
seen to be nilpotent. Hence, by i), uv=vu.

As was claimed in [9] (cf. also Lemma 1 (3)), a careful examination
of the proof of [11, Theorem] shows that the following is still valid.

Lemma 4. Suppose that i)’ nilpotent elements of R commute with each
other. If R is a periodic ring satisfying ii), then R is a subdirect sum of
local commutative rings and nil commutative rings.

Finally, careful scrutiny of the proof of [1, Theorem] generalizes the
part (b) of the theorem as follows :

Lemma 5. Let R be a periodic ring, and »n a fixed positive integer.
If hypotheses 1) and iii)’ are satisfied, and if (n, ¢—1)=1 for all prime
factors q of n and for all positive integers «, then R is a subdirect sum of
local commutative vings and nil commutative rings.

Proof of Theorems 1 and 2, Theorem 1 is an easy combination of
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Lemmas 2 and 4. In fact, if R is a left s-unital periodic ring then
hypotheses i) and iii) imply i)’ (Lemma 2), and hence R is a subdirect sum
of local commutative rings (Lemma 4). Theorem 2 is a combination of
Lemmas 3 and 5.

Remark. Let R be a normal periodic ring satisfying i)’. Then, from
the proof of [11, Lemma], N is seen to be a commutative nil ideal, whence
it follows that [#, x]12=0 for all xR and v N. In particular, if Ris a
periodic ring satisfying i)’ and ii)’, then the hypothesis ii) is satisfied.
Combining this with Lemma 2, we see that in Lemma 4 and Theorem 1 the
hypothesis ii) may be replaced by ii)’.

2. In preparation for the proof of Theorem 3, first we borrow several
results of the previous paper [10], which are summarized in Lemmas 6
and 7 below (see [10, Lemma 1 and Theorem]).

Lemma 6., Let m be a positive integer, and a, b=R.

(1) If e is a pseudo-identity of {a, b}, then a"[a, bl =0 and (a+ e)"
lat+e bl =0 imply [a,b]=0.

(2) Let R be an s-unital ring. If x"[x,b]=0 for all x=R, then b
isin C.

Lemma 7. Let R be an s-unital ring. Then the following are
equivalent :

1) Ris commutative.

2) For each pair of elements x, y of R, there exist relatively prime,
positive integers n and k such that (xy)"—(yx)*=0 and (xy)*— (yx)*=0.

3) There exist positive integers n, k with (n, k)=1 such that R satis-
fies the polynomial identities [x", y'1=0 and [x*, y*]1=0.

Next, we state the following lemma which is evident by [5, Theorem 3],
[7. Theorem 1] and [8, Theorem].

Lemma 8. Let m, n be positive integers. If R satisfies one of the
polynomial identities (xy)'— (yx)*=0, (xy)""'—x""'y""'=0 and [, y™]1=0,
then the commutator ideal D(R) of R is contained in N (and N is an ideal of
R).

Corollary 1. Let R be an s-unital ring, and let n, k be positive in-
tegers such that (n, k)=1. If k=1 and R satisfies the polynomial identities
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(xy)"—(yx)" =0 and (x+y)'—x*—y*=0, then R is commutative.

Proof. Let x, y be arbitrary elements of R. Since [x, ¥] is nilpotent
by Lemma 8, there exists a positive integer « such that [x, y]*"=0. Then,
we can easily see that (xy)*'—(yx)'=0. Hence, R is commutative by
Lemma 7.

Corollary 2. Let R be an s-unital ring, and let a, b= R. Suppose
that N is n-torsion free and R satisfies the polynomial identity [x, y*]=0.
If (a, (e, b]1=1(b, [a b]]1=0, then [a, b]=0.

Proof. By Lemma 8, N is an ideal containing D(R). Let ¢ be a
pseudo-identity of {#, ). By Lemma 1 (1) and the hypothesis that N is
n-torsion free, we conclude ¢* 'Tg b"]=0. Similarly, (g+e)" '[a+e, b"]
=0. Then [4,b"]=0 by Lemma 6 (1). Again by Lemma 1 (1) and the
hypothesis that N is n-torsion free, we obtain 4" '[e, ] =0. Now, repeat-
ing the above argument for 5+4¢ instead of 5, we can see that (b + ¢)"!
[@, b+¢e]=0. Hence, [, ] =0 by Lemma 6 (1).

The next lemma will be followed by an efficient corollary.

Lemma 9. Let R be an s-unital ring, and b=R. Suppose that D(R)
is ntl and N is n-torsion free. If [x",6]1=0 for all x& R, then [u, ] =0
for all uEN.

Proof. Let e be a pseudo-identity of {#,b). Since # is nilpotent,
there exists a minimal positive integer s such that [, 5] =0 for all integers
k=m. If m=2, then

0=[(e+u™ "), b]l=[e"+nu™"'+ -+ u™ " b]=n[u""", b],

and hence [«"~', ] =0, which contradicts the minimality of m. Thus,
m=1, and [«, b]=0.

Corollary 3. Let R be an s-unital ring. Suppose that N is n-torsion
free. .

(1) If R satisfies the polynomial identity [2", y] =0, then R is
commutative,

(2) If R satisfies the polynomial identity [x", "] =0, then [u, y']=0
Sor all yER and uEN.

(3) If R satisfies the polynomial identity [x", y*]=0, then [u, v]=0
Sor all u, v& N,
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Proof. (1) By Lemmas 8 and 9, D(R)CNCC. Hence, by Lemma
1 (1), it follows #nx*"'[x, y]=[x", ¥]=0. Since N is n-torsion free, we have
x""'[%, y]1=0, and hence by Lemma 6 (2), [, y]=0.

(2) and (3) are immediate from Lemmas 8 and 9.

Finally, we shall prove the following

Lemma 10. Let R be an s-unital rving. If R satisfies the polynomial
identity [x", y"]1=0, then k[x", y1=0 for some positive integer k.

Proof. Let x, y be arbitrary elements of R, and ¢ a pseudo-identity
of {x,y}. Then [x", (y+¢)"] =0 together with [x", y"]=0 implies

(2", ny] -+ [27, ( 2 )yZJ +e (a7 myn'] =0
Replacing y by iy in this identity, we obtain
i[x", ny] + ", ( g )yz] A A", ny =0 (i=1,2, -, n—1).

Hence, nd [x", y]=d[x", ny] =0, where d( = 0) is the determinant of the
matrix of integer coefficients in the above equations.

We are now in a position to complete the proof of Theorem 3.

Proof of Theorem 3. Obviously, 1) implies 2) — 5).

2) implies 1). By Corollary 2, R satisfies the polynomial identity
[#*, y*]=0. Hence, it follows that R is commutative, by Lemma 7.

3) implies 1). By Corollary 3 (3), N is commutative. Moreover,
D(R)C N by Lemma 8, and hence N is a commutative ideal. Now, itis a
routine to verify that N°CC. Let x=R, u=N, and ¢ a pseudo-identity of
{x,u}. Inview of N?CC, we can easily see that

(xu+e) ) =(xu+2)* = 2+ 2u+xux*"'+---+ 2 'ux (mod C)
{(u+e)x"} = (ux+x)* = x*+us*+ xux* '+ -+ x*"'ux (mod C),

and therefore [x*, #]= {x(u+e)}*—{(m+e)x}* (mod C). Since [*, {x(u+e)}*
— {(u+e)x}¥]=0, it follows that [x*, [x*, u]] = 0=[x"+ ¢, [x*+ ¢, u]].
By Corollary 3 (2), [#*", u]=0 and [(x*+e)", #u]=0. Hence, by Lemma 1
(1) and Lemma 6 (1), we conclude that [x*, #] =0 for all x& R and #EN.
Especially, recalling that D(R) T N, we see that for any #/, ' in the
subring R' generated by all k-th powers of elements of R the commutator
[«', 1 is in the center of R’. Then, by Corollary 2, R'is commutative,
namely R satisfies the polynomial identity [«*, y*]1=0. Thus, R is
commutative by Lemma 7.
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4) implies 1). By Lemma 8, N is an ideal containing D(R). Let x,
y be arbitrary elements of R, and ¢ a pseudo-identity of {x, y}. Then

x[xn, y] y'r=xn-'r’;yn+l__xyxnyz-:xn-:-ly1z+]_xy(xy)n,=0’

and similarly x[x", y+e](y-+e)’=0. Hence,
x[x", 3]y =xx", y+el(y+e)y ' =0.
Repeating this argument, we obtain eventually x[x", y]=0. If =0 then

0= {e—x+x*—--+(—2)"""}et+x) [(e+x)", y]=[(e+x)", y]
=nlx, y]+ [x1, 5]

where x1=(g)xz+--~+x”. As an immediate consequence, we see that

x%?=0 implies [x, ¥]=0. Now, by induction method, we assume that every
nilpotent element of index at most m—1 is central. Then, according to
%~'=0, we readily obtain 0=n[x, 3], and therefore [x, y]=0. Thus, we
have proved that NS C. Hence, [x,y]€C for all x, y&R. Combining
this with x[«" y]=0, by Lemma 1 (1) we obtain 0=x[x", y] =nx"[x, y].
We have therefore seen that R satisfies the polynomial identity x"[x, y] =0.
So, R is commutative by Lemma 6 (2).

5) implies 1). Let ¢=R, u=N, and ¢ a pseudo-identity of {e, u}.
If u, is the quasi-inverse of #, then eu,=ue=u, and the map ¢: R — R
defined by x = x— uox — xu -+ uoxu is a ring automorphism of R. By
hypothesis,

@' = {(e—u)e—up)al "= {(e—ur)ale—u)}"
=o(a)' =o(@)=(e—uy)a(e—u),
whence it follows [«#, ¢“]=0. Now, let R* be the subring generated by all
n-th powers of elements of R. Then, by the above, the set N* of nilpotent
elements of R* is contained in the center C* of R*, Moreover, by Lemma
8, D(R*) is nil and thus R*/N* is commutative. Let x* y*=R*. Then
x*y¥r—(x*y*)"e N* .. C*, and hence by hypothesis
x*n I:x*’ y*ﬂ] — [x*’ x*rfy*”] — [x*, (x*y*)ﬂ] =x*(x*y*)n_(x*yx)v’xx
:x*(x*y*)ﬂ_x*(y*x*)n____o.

Since R* is obviously s-unital, Lemma 6 (2) implies that [x*, y**]=0 for
all z*, y*=R*. Then, [x* y*]=0 by Corollary 3 (1). Thus, [x, y"]=0
for all x, y=R. Choose a positive integer & such that £[x", y] =0 (Lemma
10). As was shown at the opening, [x",#]=0 for all u=N. Since
[x*, y]J= N (Lemma 8), we obtain therefore [x"*, y]==Fkx"*P[x" y]=0,
by Lemma 1 (1). Hence, x"‘z"y" =(x"*y) = (x" 'yx)" = x"z"“y"‘x, namely
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2" [z, "] =0. Thus, by Lemma 6 (2), it follows [#,»"]1=0, and there-
fore R=C again by Corollary 3 (1).

rz]
(3]
[4]
L5]
T6]
[7]
(8]
Lol
[10]
[11]
[12]

[13]
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Added in proof. In case R is a ring with identity, H. E. Bell [Math.

Japonica 24 (1979), 473-478] has proved that if R is u-torsion free and
satisfies the polynomial identity (xy)"—(yx)*=0 then R is commutative.



