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ON SEPARABLE POLYNOMIALS OF DEGREE 2
IN SKEW POLYNOMIAL RINGS III
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Throughout this paper, B will mean a (non-commutative) ring with
" identity element 1 which has an automorphism p and a derivation D so
that pD=Dp and D(ab)=D(a)p(b) + aD(b) (@, b= B). By BiX;p, D],
we denote the ring of all polynomials X3, X'b; (b;=B) with an indetermi-
nate X whose multiplication is given by 8X=Xp(b)-+D(b) (b =B). For
a monic polynomial f < B[X;p, D}, if fBLX; s, D] = B[X; p, DIf
and the factor ring B[X; p, D]/fB[X; p, D] is separable (resp. Galois
(resp. Frobenius)) over B then f will be called to be separable (resp.
Galois (resp. Frobenius)). Moreover, by B[X; p, D], we denote the
subset of B[X; p, D] of all polynomials f= X’— Xa—b with fB[ X;
p» D1=B[X; p, DIf.

The purpose of this note is to study separable polynomials in B[X;
g D]; under the condition 2°B=2""'B for some integer » >0 (Ths. 2
and 3). Obviously, this condition is fulfilled if B satisfies the descending
chain condition on two-sided ideals.

As to notations and terminologies used here we follow the previous
one [4].

Now, let « be an element in B such that p(a) = @, D(a) = 0,
aB=Bca, and «'B=«""'B for some integer #>>0. Then the annihilator
Ann(e”) of «* in B is a two-sided ideal of B. Since a"B = a*B and
Ann(a”) = Ann(a™), it follows that B=«a"B@® Ann(«") (direct sum). Here
we write 1=e,-+e, where ¢, =a"B and ¢, € Ann{a”). Then the ¢, are
central idempotents of B which are orthogonal. Moreover ¢,B = "B
and e¢,B = Ann(«"). Since o(@"B) = a'B and D(a"B) C «"B, we have
ple)=e, and D(e,)=0. This shows that p(e;)=e, and D(e,)=0. Hence
p(e;B) = e,B and D(e;B) C e,B. Thus, if B2 a"B 2 {0} then we have
that for f & BLX; p, D],

e;f = e,B[X: ‘()Ie,'B, D 'eB] (i = 1, 2)

where ple.B and Dle.B are restrictions of o and D to e:B respectively.
In this paper, we denote e; by efa) (i =1, 2).
First, we shall prove the following
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Lemmal. Lel a be an element in B such that o(a)=a, D(a)=0,
a«B = Ba, and B = «"B = a""'B 2 {0} for some integer n=>0.

(i) For f€B[X; p, D], f is separable (resp. Frobenius) if and
only if each elc)f is separable (resp. Frobenius) in e(a)B[X; ple(a)B,
D|e;(a) B]. :

(ii) For fEBLX; p, D] of degree 2, f is Galois if and only if each
ec)f is Galois in e (x)B[X; ple;(a)B, D]e;(a)B].

Proof. Weset Bi=e{a)B, fi=ela)f, and
A;=B;[X;p|B, D|B]/f:B:[X; p|B, D|B]
where i=1,2. Then we have a B-ring isomorphism
B[X; p, D1/fB[X; p, D] =~ A, D A4,

From this, the assertion (i) will be easily seen. To see (ii), we assume
that each f; is Galois in B.[X; p|B;, D|B;];, that is, each A4; is a
(3;-Galois extension of B. By [3, Lemma 1.2], the &, are of order 2.
We set here &; = {1, ({=1,2). Then, there exist elements 7, s; €
B: (i=1,2; j=1, -, m) such that X;r,s; = ¢:(2) and 2,7,0:(s;) =0
(i=1,2). Now let ¢ be the map of A, A, into itself defined by
a, +a, = ay(ay) + oi(az) (@ € A;). Obviously, ¢ is an automorphism of
order 2, and the fixed subring of ¢ in A, @ A, coincides with B,+ B,=B,
Moreover, we have that

2yt 7y (s, + s = 1 and ;5 (7 + 72) a(sy; + s35) = 0.

This shows that A; @ A, is Galois over B. Thus f is Galois. The
converse is obvious, completing the proof.

Now, we shall prove the following theorem which is a partial generali-
zation of the result of [4, Th. 16].

Theorem 2. Assume that 2°B=2""'B for some integer n >0 and
B[X; p, D], contains an element g = X*— Xu —v sothat B=uB-+ 2B
and Dw)E2"B. Then, for f=X"—Xa—bEB[X; .p, D], f isseparable
if and only if f is Galois; and in this case, there holds that B = aB + 2B
and D(a) = 2"B.

Proof. Let f=X?— Xa—b<& B[X;p, D],. Asiswell known, if
f is Galois then it is separable. To see the converse, we assume that f
is separable. We shall here distinguish three cases.

Casel. 2"B= B. In this case, 2 is inversible in B. Hence by
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[4, Th. 7], f is Galois.

Case II. 2"B = {0}. By the assumption, we have that 2" = 0 and
B=uB+ 2B= Bu-+ 2B (by [4, (i)]). Hence, by [4. Lemma 10], » and
3(g)=u’+4v are inversible in B. Moreover D(x)=0. Since u’—up(u)=
2D(u) ([4, (i)]), this implies that p(#)=u. Therefore, by [4, Th. 16],
we obtain that f is Galois, B = aB -+ 2B, and D(a) = 0.

Caselll. B =2"B2{0}. By Lemma 1, each ¢;(2)f is separable
in e2)B[X; ple(2)B, D|ef2)B]. Since 2%,(2) B=e,(2)B, it follows
from the result of Case I that ¢,(2)f is Galois. Moreover, we have
2"¢,(2)B = {0}. Hence by the result of Case II, ¢,(2)f is Galois,
2,(2)B=(e,(2)a)e.(2) B-+-2¢,(2)B, and e,(2)D(a) =0. Therefore, it follows
from Lemma 1 that f is Galois. Moreover, one will easily see that
aB+ 2B = (e;(2) + ¢,(2)) (aB+ 2B) =B, and D(a) € e,(2)B=2"B. This
completes the proof.

Next, we shall deal with separable polynomials in B[X; p](D = 0),
and prove the following theorem which contains the result of [2, Cor. to
Th. 3.5].

Theorem 3. Assume that 2"B=2""'B for some integer n=>=>0. Then,
any separable polynomial in B[X; pl, is Frobenius.

Proof. Let f=X?— Xa—b be a separable polynomial in B[X; p],.
Then, by (4, Th. 1] and [3, (2, 0)], we have p(a)=@a, p(b) =b, aB= Ba,
and bB= Bb. We shall here distinguish three cases.

Casel., 2"B = B, In this case, 2 is inversible in B. Hence, by
[38, Th, 2.71, f is Galois, and so, f is Frobenius.

CaseIl. 2'B=1{0}. By [3, (2, x, xv, xvii], there exist elements
b, and b, in B such that

1 = b(b, + p(by)) — ab,, bra = p(b)a, and
uv = vy for each pair », v ={a, b, by, p(b)), b,}.

Then we have that
1= 0"y + p(d))* + ac, ac = ca
for some element ¢ in B, and whence
a = b"(b, + p(b)"a + aca = b"(b, + p(b,))""'2b1a + a’c
= 2"b"ab} + a’c = d’c.

Thus, we obtain that aBC ¢°*BC aB, thatis, aB=4*B. By Lemma I,
each e:.(a)f is separable in e.(a)B[X; plefa)B]. Since e;(a)a is
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inversible in ¢, (@) B, ¢,{@)f is Frobenius by the result of [1, Th. 1(a)].
Moreover, we have e;(a) = e,(a) (b(b, + p(b;)) — ab;) = e;(@)b(b, + p(by)).
This implies that e¢,(2)b is inversible in e¢,(¢)B. Hence by [1, Th. 1(b)],
e,(a)f is Frobenius. Therefore, it follows from Lemma 1 that f is
Frobenius. .

Case III. B22"B=2{0}. ByLemmal, each ¢;(2)f is separable in
e.(2)B[X; ple:(2)B]. Since 2",(2)B = e¢,(2)B, e,(2)f is Frobenius by
the result of Case I. Moreover, we have (e(2)2)".= 0. Hence e,(2)f is
Frobenius by the result of Case II, Thus, f is Frobenius by Lemma 1.
This completes the proof.

We shall conclude our study with the following corollary which is an
easy consequence of Th. 3.

Corollary 4. If the subring of B generated by 1 is finite then any
separable polynomial in B[X; pl, is Frobenius.
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