NOTE ON COMMUTATIVITY OF RINGS. II

Dedicated to Professor Gorô Azumaya on his sixtieth birthday

ISAO MOGAMI

Throughout the present note, R will represent an associative ring, N the set of natural numbers, and Z the set of integers. The purpose of this note is to present a theorem which includes H. Bell [1, Theorem 2] as well as M. Hongan and I. Mogami [2, Theorem].

Given an element x of R, we consider the following properties concerning x:

(P₂) For each $y \in R$ there exist $m, n \in N$ such that

$$(xy)^{\alpha} = x^{\alpha}y^{\alpha},$$
 $\alpha = m, m+1;$
 $(yx)^{\beta} = y^{\beta}x^{\beta},$ $\beta = n, n+1.$

(P₁) For each $y \in R$ there exist m, $m' \in N$ with (m, m') = 1 and $n \in N$ such that

$$(xy)^n = x^{\alpha}y^{\alpha},$$
 $\alpha = m, m+1, m', m'+1;$
 $(yx)^{\beta} = y^{\beta}x^{\beta},$ $\beta = n, n+1.$

(Q₂) For each $y \in R$ there exists $m \in N$ such that

$$(xy)^{\alpha} = y^{\alpha}x^{\alpha}, \qquad \alpha = m, m+1.$$

(Q₁) For each $y \in R$ there exist $m, m' \in N$ with (m+1, m'+1) = 1 such that

$$(xy)^{\alpha} = y^{\alpha}x^{\alpha}, \qquad \alpha = m, m+1, m', m'+1.$$

 (Q'_2) For each $y \in R$ there exists $m \in N$ such that

$$(yx)^{\alpha} = x^{\alpha}y^{\alpha}, \qquad \alpha = m, m+1.$$

(Q'₁) For each $y \in R$ there exist $m, m' \in N$ with (m+1, m'+1) = 1 such that

$$(yx)^{\alpha} = x^{\alpha}y^{\alpha}, \qquad \alpha = m, m+1, m', m'+1.$$

Among the properties (P), (Q), (Q') considered in [2] and those above, there holds the following: (P) \Longrightarrow (P₁) \Longrightarrow (P₂), (Q) \Longrightarrow (Q₁) \Longrightarrow (Q₂) and (Q') \Longrightarrow (Q'₁): \Longrightarrow (Q'₂).

Let $m, k \in \mathbb{N}$. Following [1], R is called an (m, k)-ring if it satisfies $(xy)^n = x^n y^n$ for all integers α with $m \le \alpha \le m + k - 1$. If m and n are

52 I. MOGAMI

relatively prime positive integers, then every element of a ring which is both an (m, 2)-ring and an (n, 2)-ring possesses the property (P_1) .

Now, we can state our theorem as follows:

Theorem. If every element of an s-unital ring R possesses one of the properties (P_1) , (Q_1) , (Q_1) , then R is commutative.

The following are immediate consequences of our theorem.

Corollary 1 ([1, Theorem 2]). If m and n are relatively prime positive integers, then any s-unital ring which is both an (m, 2)-ring and an (n, 2)-ring is commutative.

Corollary 2 ([2, Theorem] and [3, Corollary 2 (a)]). If each element of an s-unital ring R possesses one of the properties (P), (Q), (Q'), then R is commutative.

As in [2], careful scrutiny of the proof of [3, Corollary 2 (a)] shows that our theorem is an easy consequence of the next

Proposition (cf. [2, Proposition]). If an element x of an s-unital ring R possesses one of the properties (P_1) , (Q_1) , (Q_1) , then for each $y \in R$ there exists an $r \in N$ such that $x^r[x, y] = 0 = [x, y]x^r$, where [x, y] = xy - yx.

Moreover, [3, Corollary 1 (c)] can be generalized as follows:

Corollary 3. Assume that an element x of an s-unital ring R possesses one of the properties (P_1) , (Q_1) , (Q_1) . If, for every $e \in R$ with ex = xe = x, x + e possesses one of the properties (P_1) , (Q_1) , (Q_1) , then x is central.

In advance of proving the proposition, we state two lemmas.

Lemma 1. Assume that an element x of an s-unital ring R possesses one of the properties (P_2) , (Q_2) , (Q_2') . Let $y \in R$, and $r \in N$. If $x^r y = 0$ (or $yx^r = 0$), then for each $z \in R \cup Z$ there exists $p \in N$ such that $x^p z y = 0 = yzx^p$.

Proof. It suffices to show that if xy=0 (resp. yx=0) then $yx^p=0$ (resp. $x^py=0$) with some $p \in N$. But, careful examination of the proofs of [3, Lemma 2 (a)] and [2, Lemma] shows that the last is still valid.

Lemma 2. Let R be an s-unital ring. Let $x, y \in R$, and $m \in N$. (a) If x possesses the property (P_2) and $x^m[x, y^m]y=0$, then for each $t \in N \cup \{0\}$ there exists a $p \in N$ such that $[x, y^{tn}]yx^p = 0$.

(b) If x possesses the property (Q_2) (resp. (Q_2')) and $[x, y^{m+1}]x^m = 0$ (resp. $x^m[x, y^{m+1}] = 0$), then for each $t \in N \cup \{0\}$ there exists a $p \in N$ such that $[x, y^{t(m+1)}]x^p = 0$.

Proof. We understand xy'' = x = y''x, and proceed with induction on t.

- (a) Assume that $[x, y^{tm}]yx^h = 0$ with some $h \in N$. By Lemma 1, there exists $s \in N$ such that $[x, y^m]y^{tm+1}x^s = 0$. If $p = \max\{h, s\}$, then $[x, y^{(t+1)m}]yx^p = [x, y^m]y^{tm+1}x^p + y^m[x, y^{tm}]yx^p = 0$, which completes the induction.
- (b) Assume that $[x, y^{t(m+1)}]x^h = 0$ with some $h \in \mathbb{N}$. Again by Lemma 1, there exists $s \in \mathbb{N}$ such that $[x, y^{m+1}]y^{t(m+1)}x^s = 0$. If $p = \max\{h, s\}$, then $[x, y^{(t+1)(m+1)}]x^p = [x, y^{m+1}]y^{t(m+1)}x^p + y^{m+1}[x, y^{t(m+1)}]x^p = 0$, completing the induction.

We are now ready to complete the proof of our proposition.

Proof of Proposition. We consider first the case that x possesses the property (P_i) . There exist $m, m' \subseteq N$ with (m, m') = 1 such that

$$(xy)^{\alpha}=x^{\alpha}y^{\alpha}, \qquad \alpha=m, m+1, m', m'+1.$$

As is easily seen, there holds that

$$x^{m}[x, y^{m}]y=0, x^{m'}[x, y^{m'}]y=0.$$

Without loss of generality, we may assume that tm-t'm'=1 with some $t, t' \in N$. By Lemma 2(a), there exist then some $p, p' \in N$ such that

$$[x, y^{\ell m}]yx^p = 0, \qquad [x, y^{\ell' m'}]yx^{p'} = 0.$$

We set $p'' = \max\{p, p'\}$. Then

$$[x, y] y^{tm} x^{p''} = [x, y] y^{t'm'} y x^{p''} = [x, y^{tm}] y x^{p''} - y [x, y^{t'm'}] y x^{p''} = 0.$$

Hence, by Lemma 1, $x^q[x, y]y^{tm} = 0$ with some $q \in \mathbb{N}$.

By [3, Lemma 1 (a)], we can find $e \in R$ such that ex = xe = x and ey = ye = y. Repeating the above argument for y + e instead of y, we readily see that $x^{q'}[x, y](y + e)^u = 0$ with some $q'(\ge q)$, $u \in N$. If tm > 0, then $x^{q'}[x, y]y^{tm-1} = x^{q'}[x, y](y + e)^u y^{tm-1} = 0$. Continuing the same procedure (if necessary), we obtain eventually $x^{q'}[x, y] = 0$. Again applying Lemma 1, we see that $x^r[x, y] = 0 = [x, y]x^r$ with some $r \in N$.

Next, we consider the case that x possesses the property (Q_i) (resp. (Q'_i)). There exist $m, m' \in N$ with (m+1, m'+1) = 1 such that

$$(xy)^{\alpha} = y^{\alpha}x^{\alpha}$$
 (resp. $(yx)^{\alpha} = x^{\alpha}y^{\alpha}$), $\alpha = m, m+1, m', m'+1$.

As is easily seen, there holds that

54 I. MOGAMI

$$[x, y^{m+1}]x^m = 0, [x, y^{m'+1}]x^{m'} = 0 \text{ (resp. } x^m[x, y^{m+1}] = 0, x^{m'}[x, y^{m'+1}] = 0).$$

Without loss of generality, we may assume here that t(m+1)-t'(m'+1)=1 with some $t, t' \in N$. By Lemma 2 (b), there exist then some $p, p' \in N$ such that

$$[x, y^{t(m+1)}] x^p = 0, \qquad [x, y^{t'(m'-1)}] x^{p'} = 0.$$

We set $p'' = \max\{p, p'\}$. Then

$$[x, y] y^{t(m+1)} x^{p''} = [x, y] y^{t'(m'+1)} y x^{p''} = [x, y^{t(m-1)}] y x^{p''} - y [x, y^{t'(m'+1)}] y x^{p''} = 0.$$

Hence, by Lemma 1, $x^{q}[x, y]y^{t(m+1)} = 0$ with some $q \in N$. Now, by making use of the same argument as in the latter half of the first case, we can easily see the conclusion.

Remerk. Let R be the non-commutative ring considered in [2, Remark]. Then it is easy to see that

$$(xy)^n = x^n y^n$$
, $\alpha = 3, 4, 6, 7;$
 $(xy)^{\beta} = y^{\beta} x^{\beta}$, $\beta = 2, 3, 5, 6$

for all $x, y \in R$. This example shows that our theorem need not be true if the condition (m, m')=1 in (P_1) (resp. (m+1, m'+1)=1 in (Q_1) and (Q_1')) is replaced by (m+1, m'+1)=1 (resp. (m, m')=1).

REFERENCES

- [1] H.E.Bell: On the power map and ring commutativity, Canad. Math. Bull. 21 (1978), 398-404.
- [2] M. Hongan and I. Mogami: A commutativity theorem for rings, Math. Japonica 23 (1978), 131—132.
- [3] I. Mogami and M. Hongan: Note on commutativity of rings, Math. J. Okayama Univ. 20 (1978), 21-24.

TSUYAMA COLLEGE OF TECHNOLOGY

(Received August 15, 1979)