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ON FULLY RIGHT IDEMPOTENT RINGS
AND DIRECT SUMS OF SIMPLE RINGS

Dedicated to Professor Gordé Azumaya on his sixtieth birthday

YASUYUKI HIRANO

A ring R is said to be fully right idempotent if every right ideal of R
is idempotent, or equivalently, if a= (aR)? for any e=R. Following [10],
R is called a »ight s-unital ring if for each x = R there exists an element e
such that xe=x. If x,, -+, x,, are arbitrary elements of a right s-unital ring
R, then there exists e= R such that x.e=x, for all x; ([10, Theorem 1]).
It is immediate that R is a fully right idempotent ring if and only if every
non-zero ideal of R is a right s-unital ring.

In § 1, we shall prove that if R is a fully right idempotent ring with
identity, G is a locally finite group which acts on R and the order of each
element of G is a unit in R, then the skew group ring R*G is also fully
right idemotent (Theorem 1). As a particular case, Theorem 1 provides
another proof for the “if” part of [3, Theorem 9]. We shall prove also
that if Ris a fully right idempotent ring and G is a finite group of auto-
morphisms of R such that |G| '&R, then the fixed subring R® is fully
right idempotent. In § 2, we shall give necessary and sufficient conditions
for a ring to be a finite direct sum of simple rings with identity (Theorem 2).
Then, [1, Theorem 3.1], [9, Lemma 3.1] and [5, Corollary 16] are
corollaries of this theorem. Finally, we shall show that the group ring
R{G] is a finite direct sum of simple rings with identity if and only if R is
a finite direct sum of simple rings with identity and G is a finite group such
that |G| ~'= R (Theorem 3).

Throughout, R will represent a ring, J(R) the Jacobson radical of R,
and «(G) the augmentation ideal of the group ring R[G]. For a subset
I of R, r(I) will denote the right annihilator of 7/ in R.

1. Let G be a group which acts on R (by means of a homomorphism
into the automorphism group of R). For r&R and g=G we will let #*
denote the image of » under g. The skew group ring R+ G is defined to be
P, ¢ Rg with addition given component wise and multiplication given as
follows: if », s R and g, A=G, then (rg)(sh)=rs'gh. If x=3,cc V.8
is an element of R* G, then the support of x is the set! Supp (x)= {g= G|
r,70}.
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Lemma 1. Let G be a group which acts on R. If R is a fully right
idempotent ring with identity, then R+G|I is a flat left R-module for every
ideal I of R+G.

Proof. By [2, Corollary 11.23, p. 433], it suffices to show that
@+ R+GNICal for every ¢=R. By induction with respect to »#, we shall
show that if a(r,g,+---+r.g.)EI r.=R, g.G, then alr;g,+ - +7.82)
€al Since R is fully right idempotent, ar,=ar, >, b;ar,c; with some
b;, ¢;= R, and therefore arig,=ar 2 i biar,c;g1=ar, 24, bi(arlg])c,-"l_]
Eal, which proves the case =1, Now, assume that »>>1. As above,
there exist a@;, b, E R such that aer,=ar.2_1 b;ar,c:. If we set y=
a2t bia(r g+ raga)edn €I we see that v=a(rg1+ - +7ngn—7)
&7 and the cardinality of Supp (v) is less than #. By induction hypothesis,
there exists then some z&7 such that v=az. It follows therefore that
ari g+ +r.g)=aly+z)<al.

We are now in a position to state our first theorem.

Theorem 1. Let R be a fully right idempotent ring with identity, and
G a locally finite group which acts on R. If the order of each element in G
is @ unit in R, then R+ G is fully right idempotent.

Proof. We begin with proving the theorem for G of finite order. For
each prime divisor p of |G| there exists an element of G whose order is p,
and therefore |G| is a unit by assumtion. By [10, Proposition 5 (1)] and
[2, Corollary 11. 2, p. 433], S=R=*G is fully right idempotent if and only
if §/Iis a flat left S-module for each ideal Jof S. By Lemma 1, S/Iis a
flat left R-module. Hence for any <1, there exists an R-homomorphism
0: S—1 such that ¢(ga)=ga for all g =G (see [2, Proposition 11. 27,
p. 435]). As is easily verified, the map #: S— 1 defined by b(s) =
|G| '3 ,e0 £7'0(gs) is an S-homomorphism with §(a)=a. Hence, $S/Iis
flat again by [2, Propésition 11. 271, Consequently, S is fully right
idempotent.

Now, let G be a locally finite group, and x an arbitrary element of
R*G, Since Supp (x) generates a finite subgroup H of G, we can apply
the first step to see that x < (¢ R*H)?2C (x-R*G)?. Thus, we have seen
that R+* G is fully right idempotent,

Corollary 1 (see [3, Theorem 9 and Addendum]). Let R be a ring
with identity, and G a group. Then the group ring R[G] is fully right
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idempotent if and only if (a) Ris fully right idempotent, (b) G is locally
finite, and (c) the order of each element in G is a unit in R.

Proof. If (a), (b) and (c) hold, then R[G] is fully right idempotent
by Theorem 1. Conversely, if R[G] is fully right idempotent, then
R=R[G]/w(G) is fully right idempotent, and (b) and (c) hold by
[9, Lemma 6. 5].

We shall conclude this section with the following :

Corollary 2. Let R be a fully right idempotent ring with identity,
and G a finite group of automorphitms of R such that |G| "=R. Then the
fixed subring RC={r=R|r'=r for all g=G} is fully right idempotent.

Proof. R+»G is fully right idempotent by Theorem 1, and e=
|G| 'S ec g is an idempotent of R*G. Since R°==e(R+*G)e by
[4, Lemma 1.2] and the proof of [4, Corollary 1.4], it is obvious that
R® is fully right idempotent.

2. Aring R is said to have the finite intersection property on right
annihilators provided that whenever 7(A)=0 for a right ideal A of R there
exists a finite subset F of A such that »(F)=0 (see [11]). As is easily
seen, R possesses the property if and only if for any ideal A of R with »(A4)
=0, there exists a finite subset F of A with »(F)=0. It is also easy to see
that every ring with minimum condition on right annihilators possesses the
property.

A ring R (possibly without identity) is called a right strongly semiprime
ring provided if / is an ideal of R and is essential as a right ideal then
there exists a finite subset F of I with »(F)=0. A right strongly semiprime
ring is semiprime (see [5]). As is easily seen, if R is a semiprime ring,
then an ideal I of R is essential as a right ideal if and only if »(J)=0.
Therefore we see that a ring R is a right strongly semiprime ring if and
only if R is a semiprime ring and possesses the finite intersection property
on right annihilators. D. Handelman [5, Corollary 16] (see also
[7, Corollary 2. 8]) proved that any regular, right strongly semiprime
ring with identity is a finite direct sum of simple rings.

Now, we shall prove the following :

Theorem 2. The following conditions are equivalent :
1) R is a finite direct sum of simple rings with identity.
2) R is aright strongly semiprime, fully vight idempotent ring.



46 Y. HIRANO

3) Ris afully right idempotent ring and possesses the finite intersec-
tion property on right annihilators.

Proof. By the above, 2) implies 3) and conversely.

1)=>2). It is clear that R is a right strongly semiprime ring. In
order to see that R is fully right idempotent, it suffices to show that every
simple ring with identity is fully right idempotent. In fact, if S is a simple
ring with identity and 7is a right ideal of S, then I*=(IS)I=ISI)=1S=1

3)=>1). Let I be an arbitrary ideal of R, and choose an ideal X of
R which is maximal with respect to the property that /N K=0. We set
L=I® K. Since R is semiprime and (LN7(L))?=0, (L) has to be 0 by
the choice of X. Hence, there exists a finite subset F of L with »(F)=0.
Since the ideal S generated by F is a right s-unital ring, there exists an
¢=S such that xe=x for all x=F ([10, Theorem 1]). Since ¢—ea=r(F)
=0 for all a=R, e is a left identity of R. Now, let » be an arbitrary
element of R, and choose an element f such that (be—b5)f=be—b. Since
(be—b)f=bef —bf =bf —bf =0, we obtain be=», which means that e is the
identity of R. Recalling here that ¢ belongs to L, we readily obtain
R=L=IP K. We have therefore seen that R is a finite direct sum of
simple rings with identity.

Combining Theorem 2 with [7, Theorem 3. 4], we can improve
[7, Corollary 3. 5] as follows :

Corollary 3. Let R be a ring with identity. Then the following are
equivalent :

1) R is a direct sum of simple rings.

2) Ris a fully right idempotent ring and every nonsingular quasi-
injective right R-module is injective.

3) Ris a fully vight idempotent ring and every finite divect sum of
nonsingular quasi-injective vight R-modules is quasi-injective.

4) Ris a fully right idempotent ring and every direct product of non-
singular quasi-injective right R-modules is quasi-injective.

As another application of Theorem 2, we shall present the following:

Corollary 4. Let R be a fully right idempotent subring of a ring T.
If Tor T/J(T) satisfies the descending chain condition on vight annihilators,
then R is a finite divect sum of simple rings with identity.

Proof. First, we claim that RNJ(T)=0. Letz=RN J(T), and
choose y € RzR(C J(T)) such that z=2zy. Since {yx—x|x=T)}=7T, it
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follows that z7'=0, namely z=0. Consequently, R may be regarded as a
subring of 7/J(T). Hence, in either case, R satisfies the descending
chain condition on right annihilators. In particular, R possesses the finite
intersection property on right annihilators, and therefore R is a finite
direct sum of simple rings with identity (Theorem 2).

Now, the next is an immediate consequence of Corollary 4.

Corollary 5. (cf. [1, Theorem 31] and [9, Lemma 3. 1]). Every
right or left Goldie, fully right idempotent ring is a finite direct sum of
simple rings with identity.

Next, we shall give necessary and sufficient conditions for the group
ring R[G] to be a finite direct sum of simple rings. In preparation for the
proof of Theorcm 3 we establish the following lemma.

Lemma 2. Let R be a finite direct sum of simple rings with identity,
and G a finite group which acts on R. If |G| is @ unit in R, then the skew
group ring R G is a finite direct sum of simple rings.

Proof. Asis easily seen, R*G is a completely reducible R-R-module.
Let K be an arbitrary ideal of R+G. Then, K is a direct summand of
»R*G, and therefore by [4, Theorem 1.3], K is a direct summand of
wcR*G, say, RxG=K P L with some left ideal L of R*G. Recalling
that R G is fully right idempotent (Theorem 1), we see that KN L-R*G=
(KNL-R+G)*=KL-R*G=0, whence it follows that R*xG=K@PL-R=*G.
Thus, R*G is a finite direct sum of simple rings.

Remark. By making use of Lemma 2 and the argument employed
in the proof of Corollary 2, we can easily see thatif R is a finite direct
sum of simple rings with identity and G is a finite group of automorphisms
of R such that |G| 'R, then R€ is a finite direct sum of simple rings.
This is a thcorem of Kharchenko [6] for R with identity.

Theorem 3. Let R be a ring with identity, and G « group. Then
the following are equivalent :

1) R[G] is a finite direct sum of simple rings.

2) Ris a finite dirvect sum of simple rings, and G is a finite group
whose order is a unit in R,

Proof. 2)=>1). This is included in Lemma 2,
1)=2). Since R[G]=w(G) I with some non-zero ideal Jof R[G],
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we have 7(w(G)) % 0. Hence, G is a finite group (see [8, Lemma 2,
p. 154]), and |G| is a unit in R (Corollary 1). Finally, R(=R[G]/w(G)=1I)
is obviously a finite direct sum of simple rings.

Corollary 6. Let R be a rving with identity, and G a group. Then the
following arve equivalent :

1) R[G] is a finite direct sum of simple, right Goldie rings.

2) R is aright Goldie, fully right (or left) idempotent ring and G is
a finite group whose order is a unit in R.

Proof. 1)=>2). Since R[G]=w(G) P I with some ideal I of R[G],
R(==1I) is aright Goldie ring. The remaining is evident by Theorem 3.

2)=>1). Since R is a fiinite direct sum of simple rings (Corollary 5),
R{G] is also a finite direct sum of simple rings (Theorem 3). Noting that
R[G]x is of finite Goldie dimension, we see that R[Glxq; is of finite
Goldie dimension. Combining this with the fact that the right singular
ideal of R[G] is zero, we readily see that R[G] is a right Goldie ring.
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Added in proof. Let S be a separable extension of R. Then, itis
easy to see that a left S-module M is flat whenever M is flat. Now, assume
further that R is fully right idempotent and .S has a free basis {s1, =+, s}
such that s;:R 2 Rs; for all i. Then .S/ is flat for any ideal 7 of S (see
the proof of Lemma 1), and therefore so is ¢S/, namely S is fully right
idempotent. This proves the essential part in the proof of Theorem 1.
Moreover, as another direct consequence of this fact, we see that if R is
fully right idempotent then so is the full matrix ring (R)..

Finally, it should be mentioned that D. S. Passman and J. W. Fisher
proved Lemma 2 back in 1977 (although never published). The author
would like to thank Prof. J. W. Fisher for all the interest he has shown in
the paper.



