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ON QF-2 ALGEBRAS WITH COMMUTATIVE
RADICALS
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SHIGEMOTO ASANO and KAORU MOTOSE

Group algebras (of finite groups over an algebraically closed field)
with commutative radicals have been studied by a number of authors:
D. A. R. Wallace [4, 5, 6], S. Koshitani [1] and K. Motose and Y. Ninomiya
[2]. In particular, Wallace has given, in [6], a result which determines
the structure of blocks of group algebras of this type. The most important
part of his result may be stated in the following form : Let A be a block
of a group algebra of the type mentioned above. If the radical N of A
is such that N* 0, then A is a commutative completely primary algebra.

The purpose of the present note is to generalize this result to the
case of QF-2 algebras in the sense of R. M. Thrall [3], over an arbitrary
field K.

Theorem. Let A be a QF-2 algebra over a field K and let A be
itself a block. Assume that the radical N of A is commutative and N°*
does not vanish. Then A is a completely primary almost symmetric algebra
over K such that the residue class algebra A/N is a (commutative) field.
Moreover, if the base field K is perfect, then A is a commutative
completely primary symmetric algebra over K.

Proof. We note that, since N is commutative, N? is contained in
the center of A. Let us first consider the case that K is an arbitrary
field. We begin by proving the following contention: Let ¢ and f be
two primitive idempotents. If eN? (= N?%) 0, e¢f = fe = 0 and either
eAf 70 or fAe+#0, then e¢A and fA are isomorphi¢c (as right A-
modules). To show this, let M denote the left annihilator of N. If
eM=0, then eMf = 0. On the other hand, assume that eM 0. Since
eM is the unique minimal right A-submodule of ¢4, we have eM C eN?,
hence eMf . eN*f = ¢fN? = 0. Thus in either case we have eMf = 0.
Since eNf-N=¢-N-fN=¢e-fN+-N=0, wehave eNf S eMf, and
therefore eNf = 0. Similarly we have fNe = 0. The condition that
either eAf~0 or fAes0 implies now that ¢4 and fA are isomorphic.
From the assumption that A is itself a block, together with what we
have proved above, it follows that the indecomposable direct summands of
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the right regular module A are all isomorphic each other. Therefore A
is a full matrix ring over a completely primary algebra. But, by the
commutativity of N it follows that A itself is a completely primary
algebra. By the same fact we have (ab-ba)N?= 0 for all a, b E A
Since the left annihilator /(N?) of N? is a proper ideal of 4, A/N is
a field. Now let ¢ be the nilpotency index of N, and m a nonzero
element of N'”'. Then we see that M= N'""'= Am. Here m is a
central element of A and the mapping ¢~ N—am(a < A) is an isomor-
phism of A/N onto M (as left and right A-modules). Therefore A4 is
an almost symmetric algebra.

Now let K be a perfect field. Then there exists a subalgebra L of
A which is isomorphic to A/N (as an algebra over X). Thus A4 is a
direct sum of L and N, as a K-space. Since M is isomorphic to A/N
as a left L-module, we get M = Lm. Let «a be a generating element
of L over K (i.e. L = K(a)), andlet f(x) be the defining polynomial of
a over K. To prove that A is commutative, it suffices to show that the
primitive element « commutes with any x & N, First of all one verifies
directly that xa — ax & M; hence one can choose an element 2 in L to
write xa = «x + im. We can then establish, by induction, the formula
xat=a'x+ta " 'm (t=1, -+, deg f(x)). From this it follows that 0 = zf ()
= f(@)x+ 2f(a)ym=Af'(a)m, and hence 2=0. This proves that A is
a commutative symmetric algebra. ‘

Example. If K is not perfect in Theorem, then A is not necessarily
commutative. To show this let us construct an example.

Let F be a field of characteristic 2, P = F(f) the field of rational
functions in one variable t over F, and K = F(#®). For an arbitrary
element a=a+ bt (a, b = K) of P, let & denote b, the coefficient of
t. Then a3 = &3 + ap for any two elements «, 3 in P. Let A be an
associative algebra over K defined in the following way :

1) A is a 3-dimensional left vector space over P with a basis
{1, m, m?)}.

2) The multiplication in A is defined by the rule

m? =0 and ma = am + am® for any a« € P.

Then A is a non-commutative almost symmetric algebra over X such
that the radical N = Pm -+ Pm® is commutative.

Corollary. Let A be a weakly symmetric algebra over a field K and
let A be itself a block. Assume that the radical N of A is commutative.
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Then A is of one of the following three types :

(1) A is asimple algebra over K.

(2) Aisafull matrix ring over @ completely primary weakly symmetric
algebra B over K such that the squarve of the radical N'(= NN B) of B
vanishes, (In this case B/N' is q division algebra and N' is one-dimen-
sional as a left B/ N'-space as well as a right one.)

(3) A is a completely primary almost symmetric algebra over K
such that A/N is a field.

Proof. 1In view of Theorem, we have only to consider the case that
N=£0 and N® = 0. Let ¢ be an arbitrary primitive idempotent. Then
Ne is isomorphic to Ae/Ne as a left A-module. Hence the indecomposable
left ideal Ae has only one (non-isomorphic) composition factor. Noting
that A is itself a block, we can see that A is a full matrix ring over a
completely primary algebra B. It is now easy to see that B is an algebra
as described in our corollary.

If, in the corollary, we assume moreover that K is perfect, we can
say something more,

(i) When A is of type (2), B satisfies the following conditions :

a) B is a 2-dimensional left D-space with a basis {1, m}, where D
is a finite dimensional division subalgebra of B over K.

b) The multiplication in B is given by the rule

m? =0 and ma = o(a)m forany a € D,

where ¢ is a K-algebra automorphism of D.
Conversely, let B be an associative algebra over K satisfying the condi-
tions a) and b), and let A be a full matrix ring over B. Then A is a
weakly symmetric algebra over K with radical of square zero.

(ii) When A is of type (3), then, by Theorem, A is a commutative
completely primary symmetric algebra.
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