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COHOMOLOGY FOR COMODULES

Dedicated to Professor Goré Azumaya on his 60th birthday

ATsUsHI NAKAJIMA

In [1], D.W. Jonah shows that the equivalence classes of singular
coalgebra extensions are related to certain 2-cocycles. Here we show
that the first cohomology modules are directly connected with extensions
of comodules. This treatment is a dual continuation of D.S. Trushin’s
paper [4].

In §1, we introduce the notion of cohomology modules for comodules
M and N and discuss the first cohomology modules. § 2 begins with the
definition of the relative cohomology modules of comodules with respect to
a coalgebra map #: C—— D. An exact cohomology sequence is
exhibited, and certain functorial properties of the sequence are examined.
Moreover we give a necessary and sufficient conditions for a comodule to
be a relative injective or a relative projective.

Throughout this paper, k& is a fixed field. All vector spaces are
k-vector spaces and all linear maps are k-linear. Unadorned &, Hom
mean &),, Hom,, respectively. For a coalgebra C, C-comodules always
mean left C-comodules.

1. Cohomology for comedules. A coalgebra is a triple (C, 4, ),
where C is a vector space, J: C—> CQ® C and ¢: C—> k are linear
maps such that IR 4) =X 1S and (R I=1=(1Re)d. If C
and D are coalgebras, a coalgebra map @ : C——> D is a linear map such
that (?Q @) . = dp®?. A C-comodule is a pair (X, p), where X is a
vector space and p: X —> C@® X is a linear map such that (1 QR p) p =
(4@ Dp and (@ Dp=1. A C-comodule map f: X—> Y of C-como-
dules is a linear map such that pyf = (f@ 1)py. For any vector space
V, weset V"=V - Q@ V (n-timees), and V°= k.

In case #: C——> D is a coalgebra map, any C-comodule X is a
D-comodule with respect to the structure map (¢ @ 1) px.

Let M, N be C-comodules, and » a non-negative integer. For the
vector space Hom (M, D" @Q N) and Hom(M, D""' @ N), we define a
linear map

3, : Hom(M, D" @ N) —> Hom(M, D" '@ N)
by
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A, (f) = ((/) ®f) par + 2354 (”" 1)i (]-z'—l ® d ® j - ® 1)f
(=D (1L.Q @R py)f,

where 1;,: D’—> D7 is the identity map. Since p(= py or py) is a
comodule structure map, @ is a coalgebra map and (4 ® 1) (@ Q 1)p =
(P?Q@?@1)(1Q p)p, we can easily check that

Basia(f) = L2 T4 (= 1) (= 1Y (1m,Q IR, .1 Q1)(1;-, QIR 1. ,R1)f.
Moreover, by induction, we have
ST (Y1 QIR 1111 R4 1a-5) = 0

and SO 0,.0. = 0. Thus we obtain the cochain complex

Ay A
0 —> Hom (M, N) —> Hom (M, DQN) —> -+
0 0 o,

n—2 a1
Hom (M, D""'@QN) —> Hom (M, D"QN) —>
- Hom(M, D""' Q N)—> -+ .

In the rest of this section, we put always C= D and @ = 1.

Definition 1.1. Given D-comodules M and N, weset C"(M, N:D)
=Ker(5,) and B"(M, N:D) = Im(5,_,). The vector space H*(M, N: D)=
CYM, N:D)/B*(M, N:D) is said to be the n-th cohomology module of
M into N with coefficients in D.

Let M and N be D-comodules. A D-comodule extension of M by
P

N is a short exact sequence E= (v, #:K): 0 >N— K ! M—0
of D-comodules and D-comodule maps. Two D-comodule extensions
E=(@, p¢:K) and E' = (, ¢/ : K") of M and N are equivalent if there
exists a D-comodule maps 3: K — K’ such that the following diagram
is commutative

v 2
0 N — K M 0

7|

0 > N > K —> M > 0,
v o
In case the short exact sequence E = (v, p: K) splits, E issaid tobe a
split D-comodule extension of M by N.

Given D-comodules M, N, and f€ C'(M, N: D), we construct a

1y
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D-comodule K, as follows: K,= N@ M as vector space, and define a
linear map

p:K,=NSEM— DRN)DDPRIM)=DRNDM)

by p(n, m) = (ox(n) + f(m), px(m)). Then it is easy to see that

(1R p)p(n, m)= (1R px)px(n) -+ (1Qpx)f (m) + (1Qf) pu(m), (1R px)px(m)).
Moreover, since 6,(f) =0, we have
(*) ARNpu+ 1R p)f=URDS.
Therefore

A& p)p(n, m) = (LR D(px+ ), (JQD) pu(m)) = (UQ 1) p(, m).
Applying 1 ® R 1) to (*), we have f=(1Q (@ 1)f)pxs+ f and so
(e®1)f = 0, because py is a monomorphism. Hence we have

(@) p(n, m) = (c@1)px(n) -+ (cR1)f(m), (1) pu(m)) = pln, m).

We have therefore seen that K, is a D-comodule.

Now, let ¢ : N——> K, be the injection map and let v: K, —> M
be the projection map. Then it is easy to see that E= (¢, : K;) is a
D-comodule extension of M by N.

Theorem 1.2. Let M and N be D-comodules. If f= g in
H'(M, N :D), then the two extensions E= (,7:K;) and E' = (;, 7 : K,)
are equivalent.

Proof. Since f=g in H'(M,N:L), there exists &£ € Hom(M, N)
such that g — f = 8§ = A1 ® &) py — px€. Define a map #: K,—> K,
by B(n, m) = (n + E(m),m). Clearly, B is linear and bijective. Let ,’
be the D-comodule structure map of K, Then, by g —f=(1QE&)py —pk,
we have

OB, m) = (px(n) + pyE(m) + g(m), py(m))
= (px(n) + (1 Q E)pu(m) + f(m), py(m))
=1 QB pn m).

Therefore K, = K, as D-comodule, and the equivalence of E = (¢, - : K)
and E’ = (¢, - : K,) is easily seen.

According to Th. 1. 2, we may denote any E=(;, =: K,) by (M, N: f).
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Theorem 1.3. Let M and N be D-comodules. If E= (v, p: K)
i~ @ D-comodule extension of M by N, then there exists a unique element

f in H (M, N: D) such that E= (v,p: K) is equivalent to (M, N: f).

Proof. Let ¢: M —— K be an inverse linear map of ¢ We define
fo:M—>DQK by f.(m) = (1@ &)px — pxo)(m). Then, by po=1
and (1 ® p)px = pur, we have (1Qu)f, = py — putte = 0 and thus

Im(f,)) CKer(1® ) =Im1Q )= DR N.
Moreover, by (1 ® pw)pyr = (4 @ 1)px, we obtain that

01(fs) = 1Q(1RQe) px—1Q pxa) px — (dQ1)((1Qa) py— pxa)
+(1Qpx)((1Qa) px — pxa)
= —(1®e)((1Qa)px— pxa) + (1Qp(1&Qs) pi— pra=0.

Hence f, € C'(M, N:D).

First, we claim that )_‘., is independent of the choice of 4. If
w: M——>K is another linear map such that pw=1, then, by plo—wm)=0,
we have

Sle— o) = 1R —1Qw)ps— (pxo — pxw) = fo— fu,

that is, f; = ﬁ.,

Now we define a map g: K——> (M, N: f,) by g(k)=(op(k)—k, op(k)).
(We identify «(M) with M.) Clearly, g is bijective and linear. Let
p- be the D-comodule structure map of (M, N:f,). Then, by k—ou(k)
& N and the definition of f,, we have

peg(k) = (px(op(k)—k) + folu(k), pute(k))
= (pxop(k)—px(k)+ fo (u(R)), pu(k))
= ((1Qow)px(k)—px(k), (1Q 1)px(k))
= (1Qg)px(k).

Thus g is a D-comodule map. Since -g(k) = p(k) and gv(n) = — v(n),
E= (v,¢: K) and (M, N; f,) are equivalent.

Corollary 1.4. A D-comodule extension K of M by N is split if
and only if K corresponds to the O class of H'(M, N:D).

Proof. InTh.1.3, if K=NEHM andif 0: K—> M is the projec-
tion, then there exists a D-comodule map o : M ——> K such that o0 = 1.
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Thus f, = 1@ a)py—pxo =0, and so f,=0 in H'(M, N: D). The
converse is immediate.

By Cor. 1. 4, we have the following

Corollary 1.5. Let M be a D-comodule. Then

(1) M is a projective D-comodule if and only if H'(M, N: D)=0 for
every D-comodule N.

(2) M is an injective D-comodule if and only if H'(N, M:D)=0 for
every D-comodule N.

Corollary 1.6. A coalgebra D is cosemisimple ([3, p. 290, Def. ]) if
and only if H'(M, N:D) =0 for every pair of D-comodules M and N.

2. Relative cohomology. Throughout this section, let ¢ :C—— D
be a coalgebra map. If X is a C-comodule, then X is a D-comodule via

((I)@ ]-)Px-

Proposition 2.1. Let M and N be C-comodules. Then for any
non-negative integer n, there exists a linear map ¢é,: Hom (M, C" @ N)
——> Hom (M, D" R N) such that the following diagram is commutative

o
Hom (M, C*" @ N) —> Hom (M, C*"' @ N)

Hom (M, D@ N) —>Hom (M, D' QN).

oy,

Proof. We define ¢, by ¢.(f)(x) = @"Q1)f(x)(x = M). Then
it is clear that ¢, is alinear map, and we have

Gur10:(F) = (@' QLAKS ) pu+ (=D QD(1-R4R1,-.QL)f
+ (=D "' QL (L.Qpx)f
=(@R@ Q@D )px+ 2 (—1D)'(1L- RIR1L.- QU@ QL) f
+(— )" (1L.QQN(@"Qpu) f
=3.8.(f).
If # : C——> D is an epimorphism, then there exists a linear map
ir: D—> C such that &y»=1. Therefore, for any g =Hom (M, D"QN),

we can define a linear map f: M —> C"®N by f= (¥+"®1)g, and then
8.(f) = g. Thus we have the following
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Proposition 2.2. If & : C——> D is an epimorphism, then ¢, is an
epimorphism for any non-negative integer n.

Since @,.+.10, = 6.9,, 4, maps Ker(s,) into Ker(¢,:,). Therefore
the following proposition is clear.

Proposition 2.3. Let o, be the restriction of 6, on Ker(¢,). Then
the diagram

_ .
Ker{(¢,) —> Hom (M, C" @ N)

3 ~
On l ' On
v

Ker(¢.)) —> Hom(M, C""'@ N)

o

is commulative, where ¢, is the canonical inclusion. Moreover we have

Definition 2.4. Let M and N be C-comodules. We set

C'(M, N: C, D)={fe C'(M, N: D)|$,(f) = 0} = Ker(s,) and

B*M,N:C,D)={fe B"(M, N: C)|f = 0...(g) for some g with
éu_1(g)=0} =Im(3,-,), and H"(M, N: C,D)=C"(M, N: C, D)/B*(M, N: C, D)
is called the n-th cohomology module of M into N with coefficients in C
relative to D.

Theorem 2.5. Let @ : C~—— D be an epimorphism and let M and
N be C-comodules. Then there exists an exact sequence of vector spaces

En ‘n Dn
o> H ' MN: D) — H'M,N:C,D) —> H"(M,N:C) —>
H' (M N:D)— -,

P?’OOf. FOI' ? (S H”(M, N: C, D), we pllt ;n(f) = ‘n(f)- If f = 0,
then f = d._,(f’) For some f’ & Ker(¢..,). By d.. = 6.0, we have

z, (7-) = ‘n(}n-—l(f,) = 671—If7z(f’) = (}n—-l(f,) = 0.

Thus 7, is well defined, and linear. Similarly if we set ¢.(g) = &, (g),
then, by 6,6, = &...6., &, is well defined and linear.

Now, we define z,. Let f = H*'(M,N:D) with f& C*(M, N:C).
Since @ is an epimorphism, there exists f/ € Hom(M, C*' @ N) such
that ¢,.,(f) = f. Since »
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0 = 3,1(f) = 6u-sfui(f') = Gubca(f ),
we have 4., (f) € Ker(s,). If f'— f”  Ker(¢,-,), then

0 = dur@ums (f — f") = $u0uci(f — f7),
and so 4,...(f — f”) € Ker(¢,), thatis, 4,(f  — f") = 0. This proves
that 4,.,(f) is independent of the choise of f’.

Suppose f=0 in H"'(M,N:D). Then f=4,_,(g) for some g €
Hom (M, D" *Q N) and ¢,_.(g") = g for some g’ € Hom(M, C"* Q@ N).
Since @ is an epimorphism, there exists f’ € Hom (M, C" '@ N) such
that ¢,-,(f’) = f. Then we have

Pu10n-2(g) = 01_10.-8) = 8.Ag) = f = du_i(f),
and so &._(f’ — $._.(g"))=0. Therefore o, ,(f'—a._.(g")=4. (f') and
¢. define by c.(f) = 4._,(f’) is well defined.
Finally, we need to show the following ;
(1) Im() = Ker(),
(2) Im(.) = Ker(¢,), and
(3) Im(g,) = Ker(c,-,).

First, we prove (1). If f=Im(¢v), then Ff=243._(g for some
g € Hom(M, C""'@ N). Then

w(f) = ;7!(3n—l(g)) = tuhn-1(g) = Fusi(g) = 0 in H,(M,N:C).
Thus Im(c,) © Ker(s). Conversely, if ¢, ( A=wt(H=Ff=0 in
H"(M, N:C), then f= #,,(g) for some g < Hom(M, C"'@ N).
Since ¢,(f) = 0, we have

6n—l.éu—l(g) = ‘;')nau—l(g) = ‘?r)n(f) = O-
Thus &, .(g) € C'(M,N:C), andso f =4,,(g) = ¢ (Paa(2)).
Next, we prove (2). Since ¢, = ¢, Im()  Ker(4,) is clear.

Let f € Ker(¢,). Then ¢.(f)=d,-,(g) for some g € Hom(M,D"'®N)
and ¢, ,(g) =g forsome g’ & Hom(M, C"' @ N). Since

,én(f) = Bn_](‘y'n_](g’) = ¢116n—1(g1) ’

we have f— 8._,(g") € Ker(#,). Moreover, by 4.(f — 4...(g")) = 0,
f— an(g) € C*(M,N:C,D). Therefore

;n(f_ ’?H—l(g,)) = f— 8n—1(gl) = f'— ""n—l(g,) = f;
that is, Ker(¢,) < Im(z,).




12 A. NAKAJIMA

Finally we prove (3). Let f = Hom(M,C* @ N). Then, by the
definition of ¢,, we have
Cot1Ba(F) = a1 (0u(F)) — 8.1(f) =0 in H*(M, N: C, D),
and so Im($,) C Ker(Z,.). Conversely, let f < Ker(z,). Then onlg)=f
for some g € Hom(M, C" @ N), and 0 = ¢,,,(f) = 6.(g), thatis,
d.(g) = d,(g’) for some g’ € Hom(M, C'Q N) and &._,(g") = 0.
Since g — g’ € C"(M, N: (), wehave 0, ,(g—g) = é...(g)=Ff Thus

f= 6...(g — g'). This shows that Im(¢,.,)  Ker(¢,), completing the
proof.

We denote the exact cohomology sequence in Th.2.5 by H(M, N:
C, D, ¥).

Definition 2.6, Let V:--> V,»V,.,, = Vo> and Wi >
W,—> W..,» W,..,— - be exact sequences of vector spaces, and
@ ={d;: Vi—> W,|: is linear}. We say that 7 is a morphism of exact
sequences if every square of the following diagram is commutative :

DV, Vi —— Vi — oo

‘,”n l "J’nﬂ ¢ RV J/

s> Wn__>Wn+]_>Wﬂ+2 > e,

We say that ¢ is surjective (resp. injective, bijective, split) if each +r;
is surjective (resp. injective, bijective, split).

Theorem 2.7. Let M,N, N’ be C-comodules and let -: N— N’ be
a C-comodule map. Then there exists a covariant morphism 2: H(M, N:
C, D, @) > H(M, N': C, D, &) and a contravariant morphism £ :
H(NM: C,D, ) > H(N',M: C, D, o).

Proof. Consider the following diagram

En Lo ¢n
v H* Y (M, N:D)->H"(M,N: C,D)>H"(M,N: C)>H"(M,N:D)—---
H"—‘rpl H"Tol H"z¢ l H"rpl
«-—>H" (M, N': D)-»>H"(M, N': C, D)>H"(M, N’: C)>H"(M, N’: D)—---,
Ta T b

where the maps H"t, H"c and H":p are defined as follows: For any
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fe C(MN:C), weset
H=(f)=1&2f

where H'c= H"zy or H"z.. H"rp is define in the same way. If
fe C' (M N:C), then

3’4(1'n®7-'>f= (1®(1n®7)f)PM+ 2 i:l(— 1);(1i~1®.’-’®1n—5®1)(11:®7) fPM
(=D (L px) (1. Q<) f
= (1u+1®?)(1®f),0.u+ 25 (— 1)[(1rt+]®:)(1f—l®d®1"—i®1)f‘0;)j
-+ ( — 1)R_] (1~+1 'XJ'T) (1": ®[Lv)f
= (L. ®<)@.(f)=0.

Thus (1, @ o)f € C'(M,N’:C). Moreover, if f= C'(M,N:C, D),
then

6.1, Q7)f = (6. QD1 Q) f = (LY. Q1S = (L.Q)4.(f) =,

and so (1,Qz)f = C'(M,N:C, D). Now, we show that H%, is well
defined. Note that f is in B"(M, N: C, D) if and only if f=4,_,(g)
and ¢,-,(g)=0 for some g=Hom(M,C"'Q@N). If fB"(M,N:C, D),
then

(1n®r)f= (1u®?)aﬂ—l(g) = 6‘,,_1((1",_]®f)g)

and
5‘67:—}((1"—1®'_)g) = (1‘n—1®7)¢n—:(g) = 0.

Thus (1,Qz)f € B* (M, N:C, D), thatis, H"z is well defined. Similarly
H'z¢ and H":; can be seen to be well defined.
We need to show that the above diagram is commutative. For f &

HM,N:C), we have
H"TD(‘.gn(?)) = Hn?D(¢n(f)) = (1ﬂ®7)¢n(f) = ¢n(1n®7)f
= 57:((1~®?f) = ;H(HRTC(?))

Hence H":p+ ¢, = 6, + Hzc+ For g = H(M, N:C, D),
H'zo(t.(g)) = H'zo(g) = 1.R1)g = t.(H"n(g)) ,

whence H'cp+ ¢n =7, - H'. Finally, let & be in H* (M, N: D). Then,
by 6. 1((1,-®)7k) = (1,-. &)k, we have
Hﬂfo(?n(z)) = Hnrb(an—l(k)) = (1n®r)6n—l(k) = 6n~1((111~1®7)k)
= ¢, (H"zp(h)),
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where %2 € Hom(M, C*' @ N) and &, ,(k) = &, completing the proof.

Corollary 2.8. Lef M,N,C,D beasin Th.2.7. If -: N—> N’
is @ split surjective (vesp. injective) C-comodule map, then £ : H(M,N:
C,D,&)—>H(M,N':C, D, &) is a split surjective (vesp. injective).

Corollary 2.9. Let M,N,C,D be as above. If N=@ .N, as
C-comodule, then HM,N:C,D,¢) =& ,HM,N,:C, D, ¢) and HN, M:
C, D #)=T1,HN,M:C,D, &), :

Definition 2.10. A C-comodule M is said to be (C, D)-projective if
any exact sequence of C-comodules 0 —> N— X —> M —— (0 splits
whenever it splits as a sequence of D-comodules. Dually (C, D)-injective
comodules are defined.

Theorem 2.11. (1) A C-comodule M is (C, D)-projective if and only
if o(H'(M,N: C,D)) = 0 for any C-comodule N.

(2) A C-comodule M is (C, D)-injective if and only if 7 (H'(N, M:
C, D)) =0 for any C-comodule N.

Proof. Assume that (H'(M, N:C, D)) = 0 for any C-comodule N.
Let

(**) 0—>N—>K—>M—>0

be an exact sequence of C-comodules and let o: M——> K be a D-comodule
map such that o= 1. Then by Th.1.3, f,E H (M, N: C) and K =
(M,N:f,) as C-comodule. Since any C-comodule is a D-comodule via ¢,
we have

K=(MN:f)=(MN: ¢(f))

as D-comodule. But, by K = N©@ M as D-comodule, we have ¢,(f) =0,
that is,

fe = Ker (6) =7,(H(M,N:C, D)) = 0.

Thus f= 0, and the sequence (**) is split as C-comodule.

Conversely, assume that M is (C, D)-projective. For any C-comodule
N and for any f&€ H'(M,N:C), there exists a C-comodule exact
sequence
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(***) 0—>N—>MN: f)— M—>0.

(***) is D-split if and only if & ( f)=0. Therefore if (f)=0. then,
by the (C, D)-projectivity of M, we have f = 0. Hence

0 = Ker (¢,) = o(H'(M, N: C, D)).

This completes the proof of (1). (2) can be proved similarly.

Corollary 2.12. (1) A C-comodule M is (C, D)-projective if and
only if ¢, is surjective, or equivalently, &, is injective for every C-comodule
N.

(2) A C-comodule N is (C, D)-injective if and only if ¢, is surjective,
or equivalently, &, is injective for every C-comodule M.

Finally, by Cor. 2. 9 and Th. 2. 11, we have the following

Corollary 2.13. (1) A C-comodule M is (C, D)-projective if and
only if H(M,N:C, D)= 0 for every C-comodule N.

(2) A C-comodule N is (C, D)injective if and only if H'(M, N :
C, D) =0 for every C-comodule M.

Corollary 2.14. Let M = D.M, as C-comodule. Then M is (C, D)-
projective (resp. injective) if and only if each M, is (C, D)-projective (resp.
injective).
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