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SUMS OF RECIPROCALS OF
SOME MULTIPLICATIVE FUNCTIONS

V. SITA RAMAIAH and D. SURYANARAYANA

1. Introduction. Throughout this paper, m denotes a positive
integral variable, p denotes a prime and x denotes a real variable > 3,
In 1900 Landau [5] established that

1 =315§(3)( s logp ) "
(1.1) "‘Eij‘;(m) ot logx+ ¢ %} Pl +O0(x7'log x),
where ¢ (m) is the Euler-totient function, ¢(s) is the Riemann zeta

function and j is the Euler constant. In 1916 Ramanujan [6] established
that

(L.2) zs:x 7(m)

JUn
1 __:x{ 4, T+ 4, i+"'+—Ar_r—_i+ O((logx)( 2))}’
(log x)2  (log x)? (log x) 2

where z(m) is the number of divisors of m, » is any positive integer,

-1 L

A == 211 {(pz——p)zlog (L)} and A4,, -, A, are more complicated
» p—1

constants,

In this paper, we establish the asymptotic formulae for the sums

> 1 and >

1
mSIM mlr "J"(m) ’
Jr(m) is Dedekind’s yr-function (cf. [2], p.123) which has the following
arithmetical form :

(L.3) Yo = 2 #@s=m1l (1 + %) ,

¢ being the Mobius function. In fact, we prove the following general

where o (m) is the sum of the divisors of m and

result and then deduce (see §4) asymptotic expressions for 3 -—(lm 5 and

mwsr @
1
mé"x \ll'(m) :
Theorem. Suppose g ts a multiplicative function satisfying
= _._—1 y
(1. 4) 7 g(p) E1 for all primes P,

and for each ¢ >0,
155
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(1.5) P @ — g™ = 0(p"),
for all primes p and positive integers j. Then we have
2 4
(1. 6) ZS} gL(mﬂ) = Alogx -+ B+0(x'log? x(log log x3),
where
(.7 A=A = REM
m=1 m

and

— a4. _ s & (m)logm
(1.8) B= A4y NZ=] - .
In the above, g* is the multiplicative function defined by
(1.9) g*m)=3 n(d)g (—'3—) .

dim

2. Prerequisites. In this section, we state some known results and
prove some lemmas which are needed in the present discussion. Let [x]
denote, as usual, the largest integer < x. We need the following best
known result of its kind which is due to Arnold Walfisz [8] :

Lemma 2.1 (cf. [8], (36), p.144).

5 () = 0@,

mSr M
where
(2.1) pr)=x—[x] - %,
and
2 4
2. 2) A(x) = {IOg? x(loglog x)¥, if x>3,
1, if 0<x<<3.

Remark 2.1. It is clear that A(x) is increasing for x =3. Using
this, it can be shown that if x>0, then

A(x) < Hi(y), forall y<ux,

where H is an absolute positive constant.

Lemma 2.2. Let f be any multiplicative function satisfying

(2. 3) flm) = O(m®), for every ¢>>0,
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and

(2. 4) f(B)+1=0Q1/vp) forall primes p.
Further, let h be the arithmetic function defined by

@5 h(m) = > f(a).

Then the series i h (m) m™ converges absolutely for any s > %

Proof. Smce f is multiplicative, it follows (cf. [4], Theorem 265,
p. 235) that % is also multiplicative. It is known (cf. [3], Theorem 41)

that if %~ is multiplicative and the product H {1 + Z |2 (@ )l} con-

m=1

verges then the series Z} h (m) m™* converges absolutely. Hence, in the

present context, it suffices to prove that 1'1 {1 + E lhj();t:x) l } converges
m=]

for s>%. Let s>% and 0<e<s-—%. From (2. 3) and (2.5)
it follows that A(m) = O(m?). Since h(p) =1+ f(p), by (2. 4) we have

5 1001 - /0], 5 1400
wm=1 p p m=2

=0 (P“—?) + 0( m2=2p—vr:(s—e))

0 (578 + 0(p~*=>(1 — p~-)-)

= 0(p “'%) + O0(p7®), for large p.

Now,

z L - oy h + oz

= 0(1) + 0(1) = 0(1),
since s> —;— and 2(s —¢)>1. Hence Lemma 2. 2 follows.

Lemma 2.3, Let f be as in Lemma 2. 2. Then we have

fm) _
mZSz 7 o O(l) -

Proof. By (2. 5) and the Mébius inversion formula ([4], Theorem
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266, p.236) we have
(2.6) fom =2 nd) h(2).
Since ; w(m)m™ = O(1), we have by (2. 6),

fm) _ 2 2@)hG6) _ 2 ) < 1)
XTm e B B s B d

maz dds do i<z 0 a<z/s

= O(E 1_h(§§)_|) = 0(1), by Lemma 2. 2.

Hence Lemma 2, 3 follows.
Lemma 2.4. Under the hypothesis of Lemma 2, 2, we have

@ F@=3x " ,(%) - 0aw,

mszr
where p(x) and A(x) are given by (2.1) and (2. 2) respectively.
Proof. By (2.6), Lemma 2. 1, Remark 2. 1 and Lemma 2. 2, we have

Py = BN () _ 2 BO) 5 ) ()

dan d 3 (’)‘ d<z/|a d

~o(z h@12(£)

iSx 8

)=ow@wgz L)~ ouw.
Hence Lemma 2. 4 follows.

Lemma 2.5. Let g* be given by (1.9). Then we have
(2. 8) G*(x) = § g*(m) = 0(Q1).

Proof. From (1.9) it follows that for j =1,
(2.9) g W) =g@)—g@®).
Since g* is multiplicative, it follows from (1.5) and (2.9) that
(2. 10) mg* (m) = O(m*), for every ¢=>0.

Further, by (2. 9) and (1. 4), we have

p8* (0 =)~ =p (557 —») = — 557,
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so that

@10 1422"0) = 1- 557 T 357 (p) (p%)'
Hence if we take f(m) = mg*(m), from (2.10) and (2. 11), it is clear

that the conditions (2. 3) and (2. 4) are satisfied. Now, Lemma 2. 5 follows
from Lemma 2. 3.

Lemma 2.6. We have
g o (£) = 06,

where g* is given by (1.9).

Proof. Taking f(m) = mg*(m) in Lemma 2.4, we obtain Lemma
2.6, in virtue of (2. 10) and (2. 11).

Lemma 2.7. We have

Z}-g%m)=fl+ O(x7),

m<x

where A is given by (1. 7).

o *
Proof. The series X g_’g_n) converges absolutely by (2. 10). If G*(x)
m=]

is given by (2. 8), then by Lemma 2. 5 and partial summation we have

g*m) _ _ G*(x) * 1_ 1
rgz m  ([x]+1) * E:G (m) (m m+1)
=0G )+ 0(2 L) =06 + 06 = 06,

* %*
Since by (1. 7), ZS} %?") =A-3 5751@, we obtain Lemma 2. 7.

msx

Lemma 2.8. We have

* o
3 £"(m)logm _ > g_(_"ﬁ%ﬁ + O(x7'*%), for every ¢ > 0.

m<z m m=]

Proof. By (2.10) we have

*(m)1 - 1\ _ op e

m<zx m>x

Hence Lemma 2. 8 follows,
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Now, we are in a position to prove the following important

Lemma 2.9. Let g be as given in the statement of Theorem. Then
we have

(2.12) Zg(m) = Ax + 0((x),
where A isgiven by (1.7) and i(x) as defined in (2. 2).

Proof. From (1.9) and the converse of the Mébius inversion formula
(cf. [4], Theorem 267, p.236)

(2. 13) g(m) = 2g'@).
Now, by (2.13), (2.1), Lemmas 2. 6 and 2. 7, and (2. 8), we have
2 glm = % g*(d) = 2.&@ [i]

= Ax+ O(l) + 0(1 ) + 0(1) = Az + 0(a(x)).

Hence Lemma 2, 9 follows.

Lemma 2.10 (cf. [4], Theorem 422, p. 347). For x =2,
L —logx+ r+ O(x™) .

m<z M

3. Proof of Theorem. Let
G(x) = g g(m) and 4(x) = G(x) —

Then by (2.12) we have 4(x) = O(i(x)), Now, by partial summation,
we have

PN g(m) = G(x) + r th) dt

msz M X

—a+ 28 v sy a
=4+ A8 d Sl—"']—(z,f)—dt

— A+ Aﬁx)—I-Algx-l—S 4@ 4 E

=A@ g,

x

~ AQogz+ C) — S AW gt + 0 2(x),
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where C=1 + % gw ;ltzi)dt, is a constant. (Here, of course, we
1

assume that 42x0). Also, we have
4@ , () _ e, = dt
SI 't—zdt = O (gr tz dt) = O(x /s(x) SI F)
= O(x " a(x) x7*%) = O(x7'a(x)),

where we used that xi(x) is decreasing for every ¢ > 0. Hence we
obtain

(3. 1) > % = Aflog x + C) + O('2()) .

m<r

On the other hand, we have by (2. 13), Lemmas 2, 10, 2.7, 2.8 and (1. 8),

glm) _ < g*d) _ < g*(d) 1
mé:m m ._dgm do d%r d HSZIN ']

= %(d){logx — logd + y + O(%)}

d<r

= (logz+7) S £ — 5 £7@logd, g1 32 | g(g)))

d i<z
= (logz + 7) (4 + O(x™) — ¥} £ @ logd
£ 06 + 06 212 @)])
= Alogx + B+ O(x™") + O(x'ld; lg*@d))).
Now, by (2.10), we have
= le* @1 =0(x 2 1) = 06" 1og) = 06,
i<z i<z d
for every ¢ > 0. Hence we have

3.2) 2 % = Alog x+B+0 (x7*%),

mLx

for every ¢ >0. Now, comparing (3. 1) and (3. 2), we find that AC= B,
from which the theorem follows.

4. Applications. First we have

Corollary 4.1. For x >3

1 (p —1)*8(p)logp
2 am) “(1°g"+f+ Z—‘p&(p);‘g)

(4. 1) \ .
+ O (x"‘ log s x (log log x)3 ),
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where
4.2) a= I a(p),
- (p —1)°
“.3 al) =1~ P2 B ey
and
(4. 4) B(p) =

( —1) (P’“

Proof. Taking g(m) = (m) in Theorem, we see that g satisfies

(1.4). Since o(p) = 1’;1 T e have for j =1,
g* () =g@) —g(p’)
(45) _ pj(p._.l) —pj—l(p__l): _ j?j—-](p'_.l)z
PjH-—l j)j‘—']. (p;-ﬂ_l)(p_,__l),
so that
i -1 _1 2 J+i
Plee) — g =pj___1.(rT) - A
i +1
gp,p_ p,{'l <2.2=4¢

Thus g satisfies (1.5) also. Further by (4.5) and the Euler infinite
product theorem (cf. [4], Theorem 286) for s >0 we have

m=]1 j=2 p_;s

— _ — 1)2 !

*9@ (# DE(M myﬂwﬂ
From (4.6) (s = 1), (1. 7), (4.2) and (4. 3), we have
4.7 A=a.

(4.6)

Now, differentiating the series in (4. 6) with respect to s termwise, and
then putting s = 1, we obtain

(4.8) S gtimlogm _ _ < (b—1°B(p) logp

m=1 m : ? pa(p)

where @, a(p) and B(p) are respectively given by (4. 2), (4.3) and (4. 4).
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Now, (4.1) follows from (4. 7) and (4. 8), by taking g(m) = in (1. 6).

(m)

Remark 4.1. Asymptototic formula for the sum 3 _.1__
:smzs log e (m)

been established by J.-M. De Koninck and J. Galambos (cf. [1], § 3,
Theorem).

Corollary 4.2. For x =3, we have

(4.9) P ,( T (logx-l— -+ Z: 5 l_gip 1) +0<x'llog%x(log logx)%),
where

- 1
1o «=n 5G-1):

Proof. Taking g(m) = ; ( ) in Theorem, we see that g satisfies
(1.4). By (1.3)wehavefor j=>1,

[ 1
R e e
ifj > 2.

if j==

Thus g satisfies (1. 5) also. Now, by the Euler infinite product theorem
and (4. 11), we have for s >0,

- (m) — — 1
. 12) £ n(1 p'(p+1))'
From (4.12) s = 1), (1. 7) and (4. 10), we see that
(4.13) A=q.

Now, differentiating the series in (4. 12) with respect to s termwise, and
then putting s = 1, we obtain

& g% (m)logm _ log p
(4.14) 5 LR e
where « is given by (4. 10). Now, (4.9) follows from (4. 13) and (4. 14),

by taking g(m) = in (1. 6).

_m
& (m)

Remark 4.2, Formula (4. 9) has been established by Suryanarayana
(cf. [7], Lemma 2. 10, p. 12) with a weaker O-estimate for the error term,
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namely O(x~' log x) .

Remark 4.3. It may be interesting to improve the O-estimate of the
error term in (1. 1), which we could not do.
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