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ON THE RATIONAL HOMOTOPY OF FIXED
POINT SETS OF CIRCLE ACTIONS

ToMoyosHl YOSHIDA

1. Introduction. Let S' be the circle group consisting of the
complex numbers with absolute value 1. Let X be a simply connected
finite CW complex on which S' acts continuously. Let F be a connected
component of the fixed point set of X which is a simply connected sub-
complex of X. Choose and fix a point x, in F, and let 2X (resp. 2F)
be the loop space of X (resp. F) with x, as its base point. For g & S*
and x € X, g-x denotes the point of X obtained by transforming x by
g. Then S actson 92X by (gh)(®) =g - h(#) for g= 8", he X and
t = [0, 1]. The fixed point set of this S' action on ¢X is QF.

Let ES'——> BS' be the universal S’ bundle. For an S' space Y,
let Y; be the quotient space of ES' X Y by the diagonal S' action. Y
is a fibre bundle over BS' with fibre Y. The equivariant cohomology
ring of Y with rational coefficient is defined by H&(Y, Q)= H*(Y,, Q),
the singular cohomology ring of Y; with rational coefficient. Throughout
this paper the coefficients of the cohomology rings are always @, and we
shall ommit it. H&(Y) isa H*(BS') module via the bundle projection
Y, —> BS'. Now choose and fix a generator ¢ of HZ?(BS'). Then
H* (BS") is a polynomial ring @[¢]. Let H oY) [#'] be the localization
of H}(Y) with respect to the multiplicative system of powers of #([3],
[4]). Our first theorem is the following localization theorem.

Theorem 1. Let X, F, QX and QF be as above. Then the inclusion
QF —> QX induces an isomorphism,

HEQX) '] —> HE (QF) [t7'].

We note that the usual localization theorem of the equivariant
cohomology ([3], [4]) cannot be applied to £X, for 2X is neither
compact nor of fiinite cohomological dimension over @ in general (the
cohomological dimension over @ of a space Y means the supremum,
finite or infinte, of the integer m such that there exists a sheaf % of @
modules with A™(Y, & )s40). In fact there are many S' spaces for
which the usual localization theorem does not hold (the simplest example
is S+ S~ with trivial S! action on S" and free S' action on S~).

As an application of Theorem 1, we shall prove the following theorem.
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Theorem 2. Let X and F be as above. Assume that X has a finite
rational homotopy type, that is, g‘, dim, 7 (X)Q Q@ << oo, Then F has a

finite rational homotopy type and the following inequality holds for each
F=0, 1, -eeee ,

ijo dimg (7.4, (F) @ Q) < 2} dimg (7:.2, (X) Q@ Q), where dim, denotes

the dimension over Q.

The inequality of the above theorem is a substantial improvement of
the inequalities given in G. E. Bredon [2] and C. Allday [1] (Theorem
3.3, 3.7).

2. Proof of Theorem 1. Let X and F beasin §1, and x, be a
point of F. Let PX and PF be the path spaces of X and F respectively
with x, as the common base point. S acts on PX by (gp) (u) =g - (p(w))
for g= S, p= PX and u = [0, 1]. The fixed point set of this action
on PXis PF. Weobtain the following two fibre squares,

02X — PX QF —> PF
b =
x — X x, —> F

where the vertical maps are the maps obtained by taking the endpoint of
each path, and the horizontal maps are the inclusions. All the maps in
the above fibre squares are S' equivariant and the fixed point set of the
left fibre square is the right one. Hence we obtain the following two fibre
squares,

(2X); —> (PX)e (2F); —> (PF)q
l o= l
(*)e —> Xe (%)e —> Fg
where Y, denotes the space defined in §1 for Y=0X, PX, ---. Now

as X and F are finite CW complexes, H*(X) and H*(F) are finite
dimensional, so that H¥(X) and HX(F) are finite dimensional in each
degree.

PX and PF are equivariantly contractible to x,, and H}(PX) =
H*(PF)= H}(x,). Since X and F are simply connected, X; and F;
are of homotopy type of simply connected CW complexes. Therefore
we may apply the Eilenberg-Moore spectral sequence to the cohomologies
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of the above fibre squares ([5]),
EF® = Tor™ 1 ( X)(Hs(xo), HE(x,)) = H¥(LX)

|

EpP? = Tor™* H3(F) (H&(x0), H¥(x0))=> H5(2F).

where the vertical maps are the maps induced by the inclusion and the
naturality of the spectral sequences, Now the localization functor is an
exact functor, hence we obtain the localized versions of the above spectral
sequences,

Tor™? HEX)[] (Hi(x) [#71], H¥(xo)[t7']) = Hg;(-QX) [+ 1]

l

Tor™ pracpy(z-) (B (7], Hilx) [#7']) => HE(QF) [+7],

here we regard all the cohomology rings as Z-graded (deg¢'= — 2).
Let F' be the disjoint union of all the components of the fixed point set
in X other than F. Then the usual localization theorem gives the
isomorphism induced by the inclusion,

HX X))+ 1— H(F) '] D HE (F) ],

where HZ(F) [t7'] and HZ(F') [¢+'] annihilate each other. As x, is
a point of F, H& (F')[t™'] annihilates H# (x,) [£7']. Therefore the
inclusion induces an isomorphism of the E, terms of the above localized
spectral sequences, and it induces an isomorphism H#(2X) [¢7'] —>
H¥(QF) [¢+7']. This proves Theorem 1.

3. Proof of Theorem 2. Let X be asin Theorem 2in §1. Since
X is simply connected and of finite rational homotopy type, the rational
homotopical property of 2X is the same "as that of a finite product of
Eilenberg Maclane complexes K(Q, #;) X -+ X K(@Q, n,) (n; < --- < n.).
Now BS' is K(Z, 2) and (2X); is a fiber space over BS' with fiber
£X. From the rational Postnikov decompsition of (2X),;, we may
construct a minimal model of (£X); such that,
A (2X)e)=S< %1, -, % > Q Q[t] as agraded algebra, where deg
2, =m(j=1, -, 7), deg t =2 and S  x, -, x, > denotes
the free graded algebra generated by x;, -+, x,, that is, the tensor
product of the polynomial algebra generated by the even graded
elements and the exterior algebra generated by the odd graded
elements,

(1)
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the differential is given by df = 0 and dx; = a polynomial of x,, ---,
(2) x;_, and ¢ which is divisible by ¢.

Now let .#(£2X) and _#(BS") be the minimal model of £X and
BS' respectively. The differential of them are trivial. The map induced
by the fibre inclusion, Z((£2X)s) —> -#(£X), is given by putting
t =0, and the map induced by the projection, .#(BS') —> Z((2X).)
is given by the inclusion Q[{] —> S < x4, .-+, x. > @ Q[#]. Since F is
simply connected, the rational homotopical property of £F is the same as
that of a product of Eilenberg Maclane complexes. Hence the minimal
model of (2F); = (@F) X BS' isgivenby A (F)e) =S <y, y2 >
@ Q[¢] with trivial differential, where each y, corresponds to an element
of a base of mn(2F)Q Q=17+ (F)®Q and deg y,=m(s=1,2,).
The inclusion (2F)s——> (2 X)e induces a differential graded algebra map
i: A(RX)e) —> . #(LF)s), and the inclusion (xp)s — (2F)° (x, is
regarded as the constant loop) induces a differential graded algebra map
e: A((QF)e —> A ((x,)e) = Q[t]. Replacing x; by (x; — e o i (xy)) if
eoi(x;) %0, we may assume that ¢ ¢ (x;) =0 for each j=1, -, 7.
Now put Az = ker eoi, .7 = ker ¢ and put My My = {abe Ay |
a, b € Ay} and My H = {cd € Hr|c, d € M;}. Define Q; =
M| Ay Ay and Qe = My| Ay Mr. Then Q; and @, are Q[t]
module, and 7 induces a Q[#] homomorphsim i,: @z —> Q.

Lemma 1. For each element y E Qr, there is an element x € Qx
such that t'y = i(x) for some integer u = 0.

Proof. We may constuct Z-graded differential algebras £ ((2X);)
[, A (QF)) [t™], A#z[+'] and A [t7'], and Q[Z #'] modules
Qr [t'] and Qr[¢t7']. ¢ induces Q[# ¢ ']J-homomorphism #((2Xs))
[ — A{(QF)) [t7'], and Qx[t"'] — Qr[¢7']. Now it suffices to
prove that the latter map is onto. Since the localization functor is an
exact functor, the homology of # ((2X)s) [#'] with respect to its
differential is H# (2X) [¢+']. By Theorem 1, the map induced by the
inclusion H} (2X)[t™']—> H¥ (QF) [t7'] = 4 ((2F)¢) [t™'] is an isomor-
phism. Hence the above map Z ((2X;) [t7'] —> A ((2F)s) [¢t7'] is onto.
Clearly ¢ (Ax M) C M. My, so that the above map Qx [t™'] —>
Q-[t] is onto. q.e.d.

Now let %; be the classof x; in Qz(j =1,--+, 7) andlet y. be the
class of 3, in @ (s =1,2,---). Then the set {x,, -, %} is linearly
independent over Q[#] and generates Qy, and the set {y,, ¥, -} is
linearly independent over Q[#] and generates Q. Therefore from
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Lemma 1, it follows that the number of the set {y,, y,, --'} is finite, say
k, and k<r. This proves that F has a finite rational homotopy type.

By Lemma 1, we can choose a subset {z, -, 2.} of {x, -+, %)}
such that {ig(z)), ', %o(z)} is linearly independent over Q [t]. Put
iq (2)) = ap¥, + apy, + -+ + axy.,, where ay, -+, ax € Qt1(G=1, --- k).
We construct a fundtion ¥ from the set {¥,, -, 3.} to {zy, -, 2z} as
follows. Consider the coefficient matrix of the above equations,

apy Gzt Qi

iy G "t Gw

Asdet A5~0, there is such an index (j, #) that both &, and its cofactor
@y are not zero. Choose such an index arbitrarily and put ¥ (3,) = z,.
Let ' be the matrix obtained from . by deleting the A-th column and
the j-th row. Thendet A’ is notzero. Choose such an index (j', k-1)
(7'~ j) that both ayu-1; and its cofactor in ' are not zero, and define
Y (9:-) = 2y, and so on. Repeating this process, we obtain a function
V¥ {3, =, 3} — {21, -, 2} which is one to one. If Y (y.)=2z, the io(z)
contain a term of the form a;y,, a;70. Hence deg z, =deg y,+2n for
some n=0(z; and y. are both homogeneous). Now each 3. corres-
ponds to an element of a base of =, (2F)® @ = 7, .: (F)® @, and each
z, corresponds to an element of a base of =, ... (2X) ® Q = 7y 1142.(X)
® Q. This proves the inequality in Theorem 2.
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