COMMUTATIVITY THEOREMS OF OUTCALT-YAQUB TYPE

YASUYUKI HIRANO, SHÛICHI IKEHATA and HISAO TOMINAGA

Throughout R will represent a ring. Let A be an additive subsemigroup of R, and N the set of all nilpotent elements in R. Given a non-empty subset S of R, we set $V_R(S) = \{x \in R \mid sx = xs \text{ for all } s \in S\}$ and $V_R(S) = \{x \in R \mid sx = -xs \text{ for all } s \in S\}$, and the subring generated by S will be denoted by S.

In this paper, we consider the following conditions:

- A₁) For every $x \in R$, $x x^2 x' \in A$ with some $x' \in \langle x \rangle$.
- A₂) For every $x \in R$ and every positive integer n, $x-x^n x' \in A$ with some $x' \in \langle x \rangle$.
- B) $x y \in A$ implies $x^q = y^q$ with some prime number q = q(x, y) or xy = yx.
 - B_0) $x y \in A$ implies $x^2 = y^2$ or xy = yx.
 - B_1) $x y \in A$ and $y z \in A$ imply $x^2 = z^2$ or xy = yx.
 - B₂) $x y \in A$ implies $x^2 = y^2$ or both $x, y \in V_R(A)$.
- B₃) Either R is commutative or $R = V_R^-(A)$ and $a^2 = 0$ for all $a \in A$.
- C₁) For every $x \in R$, $x-x^{n+1} \in N$ with some positive integer n=n(x) or $x \in V_R(A)$.
- C_2) For every $x \in R$, $x^m = x^n$ with some distinct positive integers m = m(x) and n = n(x) or $x \in V_R(A)$.
 - D) $x y \in A$ implies [[x, y], y] = 0.

Remark. (a) The conditions A_1), B_2) and C_2) have been considered in [4]. Obviously, C_2) implies C_1).

- (b) Let A' be the additive subgroup generated by A. If every element of A commutes with each other, then B_2) is equivalent to the same with A' instead of A.
- (c) Let f be a ring homomorphism of R onto R^* . If R satisfies one of the conditions A_1 D), then R^* does the same with f(A) instead of A.

It is the purpose of this paper to prove the following commutativity theorems.

Theorem 1. Suppose every element of A commutes with each other. If A_1 , B, C_1 and D are satisfied, then R is commutative.

Theorem 2. Let A be an additive subgroup of R. If A_1 and C_1 are satisfied, then B_1)— B_3) are equivalent.

We shall present also a corollary to Theorem 1, which will improve [4, Theorem 1]. Moreover, by [2, Lemma 3 (1) and (2)], the corollary includes [2, Lemma 4 (3)] and Theorem 2 deduces [2, Theorem 2].

In preparation for the proofs of our theorems, we establish the following lemmas.

Lemma 1. (a) A_1) and A_2) are equivalent. If A_1) is satisfied, then N is included in A.

- (b) In general, $B_3 \implies B_2 \implies B_1 \implies B_0 \implies B$). If every element of A commutes with each other, then $B_0 B_2 = a$ are equivalent.
- (c) If B) is satisfied, then for each $x \in R$ and $a \in A$ there exists a prime number q such that $[x^q, a] = 0$.
 - (d) If R contains 1, then B_0 implies D).

Proof. (a) is almost evident.

- (b) The first assertion can be easily seen. Now, suppose that A is commutative and B_0 is satisfied. Suppose $x-y \in A$ and $x^2 \neq y^2$. Then xy = yx. If $ax \neq xa$ with some $a \in A$, then $(x+a)x \neq x$ (x+a) implies $(x+a)^2 = x^2$. Since (x-y)a = a(x-y), it follows that $ay \neq ya$, and therefore $(x+a)y \neq y(x+a)$. But then we have $y^2 = (x+a)^2 = x^2$. This contradiction means that $x, y \in V_R(A)$.
- (c) Let $x \in R$, and $a \in A$. If $ax \neq xa$, then there exists a prime number q such that $(x+a)^q = x^q$. Hence, $x^q(x+a) = (x+a)^q(x+a) = (x+a)^q(x+a)^q$, which simplifies to $x^q a = ax^q$.
- (d) Suppose $x y \in A$ and $xy \neq yx$. Then $x^2 = y^2$. Since $(x+1) (y+1) \in A$, we have $(x+1)^2 = (y+1)^2$, whence it follows 2x = 2y. Now, from those above, we readily obtain $[[x, y], y] = xy^2 + y^2x 2yxy = 2x^3 2x^3 = 0$.

Lemma 2. Suppose A₁) and B) are satisfied.

- (a) Every idempotent of R is central.
- (b) If every element of A commutes with each other, then N is an ideal of R.

Proof. (a) Let e be an arbitrary idempotent of R. Then, by

Lemma 1 (a) and (c), $e \in V_R(A) \subset V_R(N)$. As is well known, the idempotent e commuting with all nilpotent elements is central.

(b) Let $x \in R$, and $a \in N$ with $a^m = 0$. By Lemma 1 (c), there exists a prime number q such that $(xa)^q a = a(xa)^q$. Then, one will easily see that $(xa)^{q \cdot n} = \{(xa)^{q-1}x\}^m a^m = 0$, and similarly $(ax)^{qm} = 0$. We have therefore seen that $Ra \subseteq N$ and $aR \subseteq N$. Since N is commutative as a subset of A (Lemma 1 (a)), N is evidently an ideal of R.

Lemma 3. Let A be an additive subgroup of R. If B_1 is satisfied, then either $A \subseteq V_R(A)$ or $A \subseteq V_R(A)$ and $a^2 = 0$ for all $a \in A$.

Proof. Suppose there exist $a, b \in A$ such that $ab \neq ba$. Since $a+b\equiv a\equiv 0 \pmod{A}$ and $(a+b)a\neq a (a+b)$, by B_1) we have $(a+b)^2=a^2=0$, and similarly $b^2=0$. From these it follows ab=-ba. Now, by making use of Brauer's trick, we readily see that A is anti-commutative. If c is an arbitrary element of A commuting with all elements of A, then ac=ca=-ac. Hence, $c^2=(a+c)^2-2ac-a^2=0$.

Proof of Theorem 1. Since R is a subdirect sum of subdirectly irreducible rings by Birkhoff's theorem, we may in view of Remark (c) assume that R is subdirectly irreducible. According to Herstein's theorem [1, Theorem 19], it is enough to prove that A is included in the center Suppose on the contrary that there exist $a \in A$ and $x \in R$ such Then $x \notin V_R(A)$, and hence $x \notin N$ (Lemma 1 (a)). that $ax \neq xa$. consider the reduced ring $\overline{R} = R/N$ (Lemma 2 (b)). By C_1 , $\overline{x} = \overline{x}^{n+1}$ for some positive integer n. Since \bar{x}^n is a non-zero idempotent of \bar{R} and R is subdirectly irreducible, any idempotent lifted from \bar{x}^n must be 1 (see Lemma 2 (a)). Hence, x is a unit of R. We claim that $a(kx) \neq (kx)a$ for some k > 1. In fact, a cannot commute with both 2x and 3x. Then, again by C_1 , $k\bar{x} = (k\bar{x})^{m+1}$ with some positive integer m. Here, without loss of generality, we may assume that m=n. Then $(k^{n+1}-k)\bar{x}=0$, which means that the characteristic of R is non-zero. Recalling that R is subdirectly irreducible, we conclude that $p^{\alpha}R = 0$ with some prime number p. By B), there exists a prime number q such that $(a+x)^q = x^q$. Then there holds $[x^q, a] = 0$ (see the proof of Lemma 1 (c)). 0 = [[a + x, x], x] = [[a, x], x] by D), an easy induction proves that $[x^h, a] = hx^{h-1}[x, a]$ for all positive integers h. In particular, $0 = [x^q, a]$ $= qx^{q-1}[x, a],$ whence it follows q[x, a] = 0. Combining this with $p^{n}R = 0$, we conclude that p = q. Obviously, $\langle \bar{x} \rangle$ is a finite field of characteristic $q:\langle \bar{x}\rangle = GF(r)$, where $r=q^{\beta}$ and $\beta>0$. Since $x-x^r\in$ $N \subseteq A \subseteq V_R(A)$ (Lemma 1 (a)) and x'a = ax', it follows at once xa = ax,

which is a contradiction.

Corollary 1. Suppose every element of A commutes with each other. If A_1 , B_0 and C_1 are satisfied, then R is commutative.

Proof. By Lemma 1 (d), the proof proceeds in the same way as that of Theorem 1 did.

Proof of Theorem 2. In virtue of Lemma 1 (b), it remains only to prove that B_1) implies B_3). By Lemma 3, either $A \subseteq V_R(A)$ or $A \subseteq V_R^-(A)$ and $a^2 = 0$ for all $a \in A$. If $A \subseteq V_R(A)$ then R is commutative by Corollary 1. Henceforth, we assume that $A \subseteq V_R(A)$ but $A \subseteq V_R^-(A)$. Let $x \in R$ and $b \in A$ such that $xb \neq bx$. Then $(x+b)^2 = x^2$ by B_1 . Hence we get xb = -bx. Now, by making use of Brauer's trick, we can easily see that $R = V_R(A)$ or $V_R^-(A)$. Since $A \subseteq V_R(A)$, R must be $V_R^-(A)$.

REFERENCES

- [1] I.N. HERSTEIN: The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864-871.
- [2] Y. HIRANO and H. TOMINAGA: Two commutativity theorems for rings, Math. J. Okayama Univ. 20 (1978), 67—72.
- [3] S. IKEHATA and H. TOMINAGA: A commutativity theorem, Math. Japonica 24 (1979), 29-30.
- [4] D.L. OUTCALT and Adil YAQUB; A commutativity theorem for rings with constraints involving an additive semigroup, submitted.

HIROSHIMA UNIVERSITY
OKAYAMA UNIVERSITY
OKAYAMA UNIVERSITY

(Received October 31, 1978)

Added in proof. Obviously, the condition D) is satisfied if and only if [[x, y], y] = 0 for all $x \in A$ and $y \in R$. The principal theorem of [3] is still valid under the weaker hypothesis that [[x, y], y] = 0 for all $x \in N$ and $y \in R$.