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COMMUTATIVITY THEOREMS OF
OUTCALT-YAQUB TYPE

Yasuvukt HIRANO, SuOUicHr IKEHATA
and HisaA0 TOMINAGA

Throughout R will represent a ring. Let A be an additive subsemi-
group of B, and N the set of all nilpotent elements in R. Given a
non-empty subset S of R, weset Vi(S)={x& R|sx=uxs for all s S}
and Vz(S)={xER|sx=—=xs forall s€ S}, and the subring generated
by S will be denoted by <{S>.

In this paper, we consider the following conditions :

A) Foreveryx & R, x — x’x' € A with some z' = {(x).

A,) For every x € R and every positive integer #, x—x"x'€ A with
some x' € {x).

B) x—y& A implies x%= 3" with some prime number gq=g(x, y)
or xy = yx.

B) x—y€E A impies x*= 3 or xy = yx.

B) *—y= Aand y— z€ A imply 2= 2* or zy = yx.

B,) x— y <= A implies x* = y* or both x, y € Vi(A).

B,) Either R is commutative or R= Vz(A4) and 4’=0 for all
ac A.

C) For every xER, x—x""'€N with some positive integer n==n(x)
or x € Vi{(4).

C,) For every x € R, x™ = x* with some distinct positive integers
m=m(x) and n = n(x) or x € Vp(A).

D) x—y€<E A implies [[x,y], y] = 0.

Remark. (a) The conditions A,), B;) and C,;) have been considered
in [4]. Obviously, C,) implies C,).

(b) Let A be the additive subgroup generated by A. If every
element of A commutes with each other, then B,) is equivalent to the
same with A’ instead of A.

(¢c) Let f be aring homomorphism of R onto R*. If R satisfies
one of the conditions A;) —D), then R* does the same with f(A4)
instead of A.

It is the purpose of this paper to prove the following commutativity
theorems.
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Theorem 1. Suppose every element of A commutes with each other.
If A), B), C) and D) are satisfied, then R is commutative.

Theorem 2. Let A be an additive subgroup of R. If A)) and C))
are satisfied, then B))—B,) are equivalent.

We shall present also a corollary to Theorem 1, which will improve
[4, Theorem 1]. Moreover, by [2, Lemma 3 (1) and (2)], the corollary
includes [2, Lemma 4 (3)] and Theorem 2 deduces [2, Theorem 2].

In preparation for the proofs of our theorems, we establish the
following lemmas,

Lemma 1. (a) A)) and A,) are equivalent. If A,) is satisfied, then
N isincluded in A.

(b) In general, B;)=>B,)=>B)=>B,)=>B). If every element of
A commutes with each other, then B,)) — B,) are equivalent.

(c) If B) is satisfied, then for each x € R and a € A there exists
a prime number q such that [x°, a] = 0.

(d) If R contains 1, then B,) implies D).

Proof. (a)is almost evident.

(b) The first assertion can be easily seen. Now, suppose that A4 is
commutative and B,) is satisfied. Suppose x—yE A4 and x’%~3»’. Then
xy =yx. If ax+xa with some e¢€ A, then (x+ a)x*x(x + @)
implies (x+a)*=2x%. Since (x —y)a=a(x—y), it follows that ay+ya,
and therefore (x+ a)y = y(x+a). But then we have y'=(x + @)’ = 22
This contradiction means that x, y € Vz(A4).

(c) Let xR, and ea= A. If axs*xa, then there exists a prime
number g such that (x+a)"=2x". Hence, x(x+a)=(x+ a){(x+a)=
(x + a)(x + a)'= (x + a)x°, which simplifies to x% = ax"

(d) Suppose x—y& A and xy5~yx. Then x’=3y’. Since (x+1)—
(y +1)= A, we have (x + 1)’ = (y + 1)), whence it follows 2x = 2y.
Now, from those above, we readily obtain [[x, y], y] = xy*+y'x—2yxy =
258 — 2x° = 0,

Lemma 2. Suppose A,) and B) are satisfied.

(a) Every idempotent of R is central.

(b) If every element of A commutes with each other, then N is an
ideal of R.

Proof. (a) Let e be an arbitrary idempotent of R. Then, by
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Lemma 1 (a) and (¢), e= Vi(A) ™ Ve(N). As is well known, the idempo-
tent e commuting with all nilpotent elements is central.

(b) Let x= R, and ¢ = N with ¢"=0. By Lemma 1 (c), there
exists a prime number g such that (xa)’ea=a(xa)’. Then, one will easily
see that (xe)"™ = {(xa)" 'x}"a™ = 0, and similarly (ax)™ = 0. We have
therefore seen that Re & N and ¢R S N. Since N is commutative as
a subset of A4 (Lemma 1 (a)), N is evidently an ideal of R.

Lemma 3. Let A be an additive subgroup of R. If B,) is satisfied,
then either AC Vp(A) or AC Vz(A) and a* =0 forall a € A

Proof. Suppose there exist @, » & A such that ab 5= ba. Since
a+b=a=0 (mod A) and (a+b)aa (a+b), by B,) we have (a-+ b)'=
a*=0, and similarly *=0. From these it follows ab= —ba. Now, by
making use of Brauer’s trick, we readily see that A is anti-commutative.
If ¢ is an arbitrary element of A commuting with all elements of A4,
then ac = ca = — ac. Hence, ¢ = (a+c)—2ac—a’ = 0.

Proof of Theorem 1. Since R is a subdirect sum of subdirectly
irreducible rings by Birkhoff’s theorem, we may in view of Remark (c)
assume that R is subdirectly irreducible. According to Herstein’s theorem
[1, Theorem 19], it is enough to prove that A is included in the center
of R. Suppose on the contrary that there exist a€ A and x=R such
that ax=4xa. Then x& Vp(A4), and hence x& N (Lemma 1 (a)). We
consider the reduced ring R = R/N (Lemma 2 (b)). By C,), z=%"*' for
some positive integer ». Since %" is a non-zero idempotent of R and R
is subdirectly irreducible, any idempotent lifted from %" must be 1 (see
Lemma 2 (a)). Hence, x isaunitof R. We claim that a(kx) 5% (kx)a
for some 2>1. In fact, ¢ cannot commute with both 2x and 3x.
Then, again by C,), kx = (kx)™*' with some positive integer m. Here,
without loss of generality, we may assume that m=mn. Then (E""'—Ek)z=0,
which means that the characteristic of R is non-zero. Recalling that R
is subdirectly irreducible, we conclude that p“R = 0 with some prime
number p. By B), there exists a prime number g such that {2+ x)"= &%,
Then there holds [z a] = 0 (see the proof of Lemma 1 (c)). Since
0= [la+x, x], x] = [[a, x], x] by D), an easy induction proves that
[x", al= hx""'[x, @] for all positive integers %. In particular, 0=[x" a]
= ¢gx"'[x, a], whence it follows ¢[x, a] = 0. Combining this with
p'R =0, we conclude that p = ¢q. Obviously, {Z)> is a finite field of
characteristic ¢ : {x) = GF(r), where »=¢" and #>0. Since r—x'&
NC A ~ Ve(A4) (Lemma 1 (a)) and x'a=ax’, it follows at once xa= ax,
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which is a contradiction.

Corollary 1. Suppose every element of A commutes with each other.
If A), By) and C)) are satisfied, then R is commutative.

Proof. By Lemma 1 (d), the proof proceeds in the same way as
that of Theorem 1 did.

Proof of Theorem 2. In virtue of Lemma 1 (b), it remains only to
prove that B)) implies B;). By Lemma 3, either AC Vr(A4) or AZ Vz(A4)
and ¢*=0 for all € A. If AC Vi(A) then R is commutative by
Corollary 1. Henceforth, we assume that A& V;(A4) but 4 C Vz(A).
Let xR and b= A such that xb5bx. Then (x + b)Y = x* by B,).
Hence we get xb= — bx. Now, by making use of Brauer’s trick, we can
easily see that R = Vi(A4) or Vz(A4). Since AZ Vp(4), R must be
Vz(A).
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Added in proof. Obviously, the condition D) is satisfied if and only
if [[x,y],y91=0 forall x& A and y € R. The principal theorem of
[3] is still valid under the weaker hypothesis that [[x, ¥], ¥] = 0 for all
xE N and y € R.



