STRUCTURE AND COMMUTATIVITY OF RINGS WITH CONSTRAINTS ON NILPOTENT ELEMENTS

DAVID L. OUTCALT and ADIL YAQUB

Recently [3] the authors proved the following:

Theorem 1. Let R be an associative ring with a left identity, and let N be the set of nilpotent elements in R. Suppose that (P) for every x in R, there exists a positive integer n = n(x) and an element x' in the subring, $\langle x \rangle$, generated by x such that $x^n = x^{n+1}x'$, and (M) $x - y \in N$ implies $x^2 = y^2$ or both x and y commute with all elements of N. Then R is a subdirect sum of local commutative rings and nil commutative rings.

As was noted in the final section of [3], Theorem 1 need not be true if the prime 2 in hypothesis (M) is replaced by any prime q > 2, even if we were to replace hypothesis (M) by the stronger hypothesis: $x - y \in N$ implies $x^2 = y^2$. This naturally gives rise to the following question: What hypotheses, in addition to hypothesis (P) and the hypothesis that $x - y \in N$ implies $x^2 = y^2$, should be added in order to guarantee the commutativity of the ground ring R? It turns out that one such hypothesis is to assume that the set N is commutative. In fact, by assuming this additional hypothesis on N, it turns out that we do not need to assume that the ground ring R has a left identity — an assumption which is absolutely essential for Theorem 1 to be true (see [3]). Our theorem, then may be stated as follows:

Theorem 2. Let R be an associative ring and let N be the set of nilpotent elements of R. Suppose q is a fixed prime. Suppose, further, that (i) N is commutative, (ii) for every x in R there exists an element x' in $\langle x \rangle$ and a positive integer n = n(x) such that $x^n = x^{n+1}x'$, (iii) $x - y \in N$ implies x'' = y''. Then R is a subdirect sum of local commutative rings and nil commutative rings.

In preparation for the proof of Theorem 2 we first establish the following lemmas.

Lemma 1. Let R, N, q be as in Theorem 2. Then,

(a) Hypothesis (ii) of Theorem 2 is equivalent to the following: For every $x \in R$, there exists an element x' in $\langle x \rangle$ such that $x - x^2x' \in N$.

(b) Hypothesis (iii) of Theorem 2 implies that

$$ab^q = b^q a$$
, for all $a \in N$ and all $b \in R$,

and necessarily all of the idempotent elements of R are in the center of R.

Proof. (a) is almost trivial. We shall prove (b). Since $(a + b) - b \in N$, therefore by hypothesis (iii), $(a + b)^q = b^q$. Hence,

$$b^{q}(a+b) = (a+b)^{q}(a+b) = (a+b)(a+b)^{q} = (a+b)b^{q}$$

which simplifies to $b^{q}a = ab^{q}$. As is well known, every idempotent element commuting with all nilpotent elements is central.

Lemma 2. In the notation, and under the hypotheses, of Theorem 2, we have

- (a) N is a commutative nil ideal of R.
- (b) If f is a homomorphism of R onto R^* , then f(N) coincides with the set of all nilpotent elements of R^* .

Proof. The proof is obvious from the proof of Lemma [1]. However, for the sake of selfcontainedness, we shall give here the proof.

(a): Let a be an arbitrary element of N, and let $b \in R$. Suppose $a^h = 0$. By hypothesis (ii), there exists a $c \in \langle ab \rangle$ such that $(ab)^n = (ab)^{n+1}c$. Let $e = (ab)^n d$, where $d = c^n$. Then, as is readily verified,

(1)
$$(ab)^n = (ab)^n e$$
 and $e^2 = e$.

By Lemma 1 (b), e is in the center of R, and hence

$$e = e^2 = e(ab)^n d = aeb(ab)^{n-1} d = a_n e\{b(ab)^{n-1} d\}^n = 0,$$

since $a^h = 0$. Thus, e = 0 and hence by (1), $(ab)^n = 0$. Therefore, ab is nilpotent. Similarly, ba is nilpotent. We have thus shown that ab and ba are nilpotent, for all $a \in N$ and $b \in R$. Combining this and hypothesis (i), we conclude that N is a commutative nil ideal of R.

(b): Let d^* be an arbitrary nilpotent element of R^* , and let $(d^*)^k = 0$. Choose d in R such that $f(d) = d^*$. By Lemma 1 (a), there exists $d' \in \langle d \rangle$ such that $d - d^2 d' \in N$. Since N is an ideal [by part (a)], we obtain

$$d-d^{k+1}(d')^k = (d-d^2d') + dd'(d-d^2d') + \ldots + (dd')^{k-1}(d-d^2d') \in N.$$

Recall that $f(d) = d^*$, $(d^*)^k = 0$, and hence it follows that $d^* \in f(N)$. This proves part (b).

Corollary 1. If R satisfies the hypotheses (i), (ii), (iii) of Theorem 2, then any subring of R and any homomorphic image of R satisfy (i), (ii), (iii).

Proof. The statement is obvious for subrings. Now, let f be a homomorphism of R onto R^* . By Lemma 2 (b), it follows at once that R^* satisfies (i). Clearly, R^* satisfies (ii). To prove that R^* satisfies (iii), suppose that $x^* - y^* \in f(N)$ [= set of nilpotents of R^* , by Lemma 2 (b)]. Then $x^* - y^* = n^* = f(n)$, for some n in N. Let $x^* = f(x)$, $y^* = f(y)$. Since $x - (x - n) \in N$, $x^q = (x - n)^q$, by (iii), and hence $(x^*)^q = (x^* - n^*)^q = (y^*)^q$. Thus, R^* satisfies (iii).

We are now in a position to prove Theorem 2.

Proof of Theorem 2. Since, as is well known, the ground ring R is isomorphic to a subdirect sum of subdirectly irreducible rings, we may in view of Corollary 1 assume that R is subdirectly irreducible. Recall that, by hypothesis (ii), $x^n = x^{n+1}x'$, and hence, as is readily verified, $e = x^n(x')^n$ is idempotent and $x^n = x^n e$. Also, by Lemma 1 (b), e is a central idempotent in R, and hence e=0 or e=1 (if $1 \in R$). Now, if R does not have an identity, then $x^n = x^n e = 0$, and hence R = N is commutative, by hypothesis (i). Next, suppose $1 \in R$. In this case, e = 0 or e = 1implies that, for every x in R, x is nilpotent or x is a unit in R; that To prove that R is commutative, we may further is, R is a local ring. assume that R is finitely generated. By Lemma 1 (a) and Corollary 3.5 of $\lceil 4 \rceil$, it readily follows that, for every x in R, there exists a positive integer n such that $x - x^{n+1} \in N$. Hence, by Jacobson's Theorem (see, e. g., [2]), R/N is a field. In fact, since R is finitely generated, R/Nis a finite field, say,

(2)
$$R/N = GF(r)$$
, where $r = p^{\alpha}$, p prime, $\alpha \ge 1$.

Clearly, if $N = \{0\}$, then R is commutative. So, suppose $N \neq 0$, and let a be an arbitrary element of N. Suppose that $a^k = 0$ but $a^{k-1} \neq 0$, $(k \geq 2)$. Since by hypothesis (iii), $(1 + a)^q = 1$, we have

(3)
$$qa^{k-1} = \{(1+a)^q - 1\}a^{k-2} = 0.$$

On the other hand, by (2), the characteristic of R is equal to p^{β} for some positive integer β , and hence $p^{\beta}a^{k-1}=0$. Combining this with (3), we get $qa^{k-1}=0=p^{\beta}a^{k-1}$. Now, if $p\neq q$, then the last implies that $a^{k-1}=0$, which is a contradiction. This contradiction shows that p=q. Hence, by Lemma 1 (b), we have

$$ab^r = b^r a, \quad (a \in N, b \in R).$$

Moreover, by (2), $b^r - b \subseteq N$, and hence by hypothesis (i), we conclude that

(5)
$$a(b^r - b) = (b^r - b)a, (a \in N, b \in R).$$

Combining (4) and (5), we see that

$$(6) ab = ba, (a \in N, b \in R).$$

Also, by (2), the multiplicative group of nonzero elements of R/N is cyclic. Combining this fact with (6), we can easily see that R is commutative. Note that in the above proof, we have shown that the ground ring R has the structure described in Theorem 2. This completes the proof.

It is well known that Theorem 2 need not be true if any of the hypotheses (i), (ii) is deleted (see [3]). In the subring $R = \left\{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\right\}$ of $(GF(2))_2$, all the hypotheses of Theorem 2 hold except (iii). Observe that R is not commutative, and hence hypothesis (iii) cannot be deleted. We conclude this paper with the following

Remark. Let q=3. Let R be an algebra over GF(2) of dimension 4 with $\{1, \xi, \eta, \eta'\}$ as a basis, and with the following multiplication table:

$$\xi \eta = \eta', \quad \xi \eta' = \eta + \eta' = \eta \xi, \quad \eta' \xi = \eta,$$

 $\xi^2 = 1 + \xi, \quad \eta \eta' = \eta' \eta = \eta^2 = (\eta')^2 = 0.$

It can be verified that $(R, +, \times)$ is an associative ring, and that all the hypotheses of Theorem 2 hold except that hypothesis (iii) is now replaced by that $x - y \in N$ implies $x^q = y^q$ or both x and y commute with all elements of N (where q = 3). In verifying this, observe that, for x in R, $x^2 = x^3$. Note, however, that R is not commutative. This example shows, then, that Theorem 2 need not be true if we replace hypothesis (iii) by the weaker hypothesis that $x - y \in N$ implies $x^q = y^q$ or both x and y commute with all elements of N.

In conclusion, we would like to express our indebtedness and gratitude to the referee for his helpful suggestions and valuable comments.

REFERENCES

- [1] S. IKEHATA and H. TOMINAGA: A commutativity theorem, Math. Japonica 24 (1979), 29-30.
- [2] T. NAGAHARA and H. TOMINAGA: Elementary proofs of a theorem of Wedderburn and a theorem of Jacobson, Abh. Math. Sem. Univ. Hamburg 41 (1974), 72-74.
- [3] D.L. OUTCALT and ADIL YAQUB: Commutativity and structure theorems for rings with polynomial constraints, Math. Japonica 23 (1978), 217—226.
- [4] P.N. STEWART: Semi-simple radical classes, Pacific J. Math. 32 (1970), 249-259.

DEPARTMENT OF MATHEMATICS AND
INSTITUTE FOR THE INTERDISCIPLINARY APPLICATION OF
ALGEBRA AND COMBINATORICS
UNIVERSITY OF CALIFORNIA, SANTA BARBARA
SANTA BARBARA, CALIFORNIA 93106, U.S.A.

(Received October 22, 1978)