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STRUCTURE AND COMMUTATIVITY OF RINGS WITH
CONSTRAINTS ON NILPOTENT ELEMENTS

DAVID L. OUTCALT and ApIL YAQUB

Recently [3] the authors proved the following :

Theorem 1., Let R be an associative ring with a left identity, and
let N be the set of nilpotent elements in R. Suppose that (P) for every x
in R, there exists a positive integer n = n(x) and an element x' in the
subring, {x), gemerated by x suchthat x"=x""'x', and M) x—y EN
implies x° = y* or both x and y commute with all elements of N. Then
R is a subdirect sum of local commutative rings and nil commutative rings.

As was noted in the final section of [3], Theorem 1 need nof be true
if the prime 2 in hypothesis (M) is replaced by any prime q > 2, even if
we were to replace hypothesis (M) by the stronger hypothesis: x —y E N
implies x*= 3. This naturally gives rise to the following question:
What hypotheses, in addition to hypothesis (P) and the hypothesis that
x —y € N implies x°= 3°, should be added in order to guarantee the
commutativity of the ground ring R? It turns out that one such hypothesis
is to assume that the set N is commutative. In fact, by assuming this
additional hypothesis on N, it turns out that we do not need to assume that
the ground ring R has a left identity — an assumption which is absolutely
essential for Theorem 1 to be true (see [3]). Our theorem, then may be
stated as follows :

Theorem 2. Let R be an associative ring and let N be the set of
nilpotent elements of R. Suppose q is a fixed prime. Suppose, further,
that (i) N is commutative, (ii) for every x in R there exists an element
x' in {x) and a positive integer n = n(x) such that x" = x"*'x', (iii)
x—y &N implies x'=y". Then R is a subdirect sum of local commutative
rings and nil commutative rings.

In preparation for the proof of Theorem 2 we first establish the
following lemmas.

Lemma 1. Let R, N, g beasin Theorem 2. Then,
(a) Hypothesis (ii) of Theorem 2 is equivalent to the following : For
every x € R, there exists an element x' in {x) such that x— x’x' = N.
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16 D.L. OUTCALT and A. YAQUB

(b) Hypothesis (iil) of Theorem 2 implies that
ab® = b%a, forall a= N and all b € R,

and necessarily all of the idempotent elements of R are in the center of R.

Proof. (a)is almost trivial. We shall prove (b). Since (a + b) —
b € N, therefore by hypothesis (iii),, (¢ + 6)° = #". Hence,

b%(a + b) = (a + b)(a + b) = (a + b)(a + b)* = (a -+ b)b",

which simplifies to d%'a=ab’. As is well known, every idempotent element
commuting with all nilpotent elements is central.

Lemma 2. In the notation, and under the hypotheses, of Theorem 2,
we have

(a) N isa commutative nil ideal of R.

(b) If f is a homomorphism of R onto R*, then f(N) coincides
with the set of all nilpotent elements of R*.

Proof. The proof is obvious from the proof of Lemma [1]. However,
for the sake of selfcontainedness, we shall give here the proof.

(a): Let a be an arbitrary element of N, andlet 4 = R. Suppose
a" = 0. By hypothesis (ii), there exists a ¢ € < ab> such that (ab)"=
(ab)"*'c. Let e = (ab)"d, where d = c". Then, as is readily verified,

(1) (ab)* = (ab)’¢ and € = e.
By Lemma 1 (b), e is in the center of R, and hence
e = &' = elab)"d = aeb(ab)"'d = are{b(ab)""'d}" = 0,

since @"=0. Thus, e=0 and hence by (1), (ab)'=0. Therefore, ab
is nilpotent. Similarly, ba is nilpotent. We have thus shown that ab
and ba are nilpotent, forall a € N and 4 € R. Combining this and
hypothesis (i), we conclude that N is a commutative nil ideal of R.

(b): Let d* be an arbitrary nilpotent element of R*, and let
(d*)*=0. Choose d in R such that f(d)=d*. By Lemma 1 (a), there
exists d'=<{d) such that d —d’*d’E N. Since N is an ideal [by part (a)l,
we obtain

d—d*(d"y = (d—d’d") +dd'(d—d'd))+. . . +(dd')"(d—d’d') E N.

Recall that f(d) = d*, (d*)* =0, and hence it follows that d* € f(N).
This proves part (b).
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Corollary 1. If R satisfies the hypotheses (i), (ii), (iii) of Theorem
2, then any subring of R and any homomorphic image of R satisfy (i),
(i), (iii).

Proof. The statement is obvious for subrings. Now, let f be a
homomorphism of R onto R*. By Lemma 2 (b), it follows at once that
R* satisfies (i). Clearly, R* satisfies (ii). To prove that R* satisfies
(iii), suppose that x* —y* € f(N) [ = set of nilpotents of R*, by Lemma
2 (b)]l. Then x* —y*=n*=f(n), for some » in N. Let x* = f(x),
y*=f(y). Since x—(x—n)E N, x'=(x—n)% by (iii), and hence (x*)'=
(x* —n*)=(y*% Thus, R* satisfies (iii).

We are now in a position to prove Theorem 2.

Proof of Theorem 2. Since, as is well known, the ground ring R is
isomorphic to a subdirect sum of subdirectly irreducible rings, we may in
view of Corollary 1 assume that R is subdirectly irreducible. Recall that,
by hypothesis (ii), x"=x""'x', and hence, as is readily verified, e=x"(x')"
is idempotent and x” = x". Also, by Lemma 1 (b), e is a central
idempotent in R, and hence e=0 or e=1(if 1€ R). Now, if R does
not have an identity, then x"=x"¢=0, and hence R= N is commutative,
by hypothesis (i). Next, suppose 1 = R. Inthiscase, ¢e=0 or e=1
implies that, for every x in R, =z is nilpotent or x is a unit in R; that
is, R is alocal ring. To prove that R is commutative, we may further
assume that R is finitely generated. By Lemma 1 (a) and Corollary 3.5
of [4], it readily follows that, for every x in R, there exists a positive
integer » such that x —x™"*'= N. Hence, by Jacobson’s Theorem (see,
e.g.,[2]), R/N is afield. Infact, since R is finitely generated, R/N
is a finite field, say,

(2) R/N = GF(r), where r = p", p prime, a >1.

Clearly, if N ={0}, then R is commutative. So, suppose N =0, and
let @ be an arbitrary element of N. Suppose that ¢*= 0 but &*'s40,
(>=2). Since by hypothesis (iii), (1 + «)'= 1, we have

(3) ga*7' = {(1 + a)— 1} * =

On the other hand, by (2), the characteristic of R is equal to p* for some
positive integer 3, and hence p°¢*' = 0. Combining this with (3), we
get ga*'=0=pa"*"'. Now, if p5~¢, then the last implies that ¢*'=0,
which is a contradiction., This contradiction shows that p = q. Hence,
by Lemma 1 (b), we have
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(4) ab"="b'a, (@€ N, b ER).

Moreover, by (2), " — b = N, and hence by hypothesis (i), we conclude
that

(5) alb" —~b)= (" —b)a, (@a= N, b =R).
Combining (4) and (5), we see that
(6) ab=0ba, (@& N, b €R)

Also, by (2), the multiplicative group of nonzero elements of R/N is
cyclic. Combining this fact with (6), we can easily see that R is
commutative. Note that in the above proof, we have shown that the
ground ring R has the structure described in Theorem 2. This completes
the proof.

It is well known that Theorem 2 need not be true if any of the
hypotheses (i), (ii) is deleted (see '[3]). In the subring R = {(8 8),
(3 1. (G &) (} 1)} of (GF@), all the hypotheses of Theorem 2
hold except (iii). Observe that R is not commutative, and hence
hypothesis (iii) cannot be deleted. We conclude this paper with the

following

Remark. Let ¢ = 3. Let R be an algebra over GF(2) of dimension
4 with {1, & 7, '} as a basis, and with the following multiplication
table :

Ep=y', Ef=y-+y' =95 9E=y,
Egzl’l‘f, 77771,:77{)):772:(7]1)2: .

It can be verified that (R, -, X) is an associative ring, and that all the
hypotheses of Theorem 2 hold except that hypothesis (iii) is now replaced
by that x — y € N implies = »* or both x and y commute with all
elements of N (where ¢ = 3). In verifying this, observe that, for x in
R, x*= x%. Note, however, that R is not commutative. This example
shows, then, that Theorem 2 need not be true if we replace hypothesis
(iii) by the weaker hypothesis that x — y € N implies x? = »* or both x
and y commute with all elements of N.

In conclusion, we would like to express our indebtedness and gratitude
to the referee for his helpful suggestions and valuable comments.
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