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A COMMUTATIVITY THEOREM FOR
s-UNITAL RINGS

MoTosHl HONGAN and Hisa0O TOMINAGA

A ring R is called an s-unital ring if every element ¢ of R belongs
to aR N Ra. It is the purpose of this paper to prove the following
commutativity theorem.

Theorem. If R is an s-unital ring, then the following are equivalent :

1) R is commutative.

2) For each pair of elements x, y of R there exist relatively prime,
posititive integers k and | such that (xy)* = (yx)* and (xy) = (yx)".

3) For each finite subset F of R there exists a positive integer n
such that (xy)* = (yx)* for all x,y € F and all k>n.

4) There exist relativey prime, positive integers k and 1 such that
[z*, y*]1 = 0= [x, ¥'] forall x, y = R.

5) There exists a positive integer n such that [x', y'] =0=
Lx"*Y, y**'] for all x, y € R.

Obviously, our theorem includes [2, Theorem] and [3, Theorem 2].
However, we borrow heavily from the papers [2] and [3] at various
points. Among other things, [3, Theorem 1] plays an important role in
our proof.

In what follows, R will represent a ring. The center of R and the
Jacobson radical of R will be denoted by C and J, respectively. Let
R° be the set of all quasi-regular elements of R. As is well known, R°
is a group (the adjoint group of R) with respect to the circle composition
defined by xcy=x 4y —xy. If R is an s-unital ring then for each
finite subset F' of R there exists an element e of R such that ex=xe=x
forall x = F (see [1, Lemma 1]). This result will be freely used in the
subsequent study.

Now, we begin with the next lemma.

Lemma 1. Lel e, x and y be elements of R, m an integer, and n
a positive integer.

@) If ex=xe=x, ey=ye=y and mx"[x, y]=0=m(x+e)'[x+e, y],
then mix,y] = 0.

(b) If x[x,y] =[x, y]x then [x",y] = nx"""[x, y].
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Proof. (a) We have 0= mx""'(x -+ e)"[x + ¢, y] = mx""'[x,y] and
0= (—=1)m(x+e)" ' {—e+(x+e)}"[x,y] = m(x+e)" '[x+e, y]. Continu-
ing this process, we obtain eventually m[x, y] = 0.

(b) Since [x*"!,y]=x[x",y]+ [x,y]x", the assertion can be shown
by induction method.

Lemma 2. Assume that an s-unital ring R salisfies the condition 3)
in Theorem.

(@) R° is included in C.

(b) R/J is commutative.

(c) For each pair of elements x, y of R there exists a positive integer
n such that [x,y"] = 0.

Proof. (a) Let & be an arbitrary element of R°, and &' the
quasi-inverse of ¢. As is well known, the map ¢ : R — R defined by
yi—3y—a'y — ya + a'ya is an automorphism of R, Let x be an arbi-
trary element of R. Then there exists an element ¢ of R such that
ea=ae=qa (which implies ea' =a'e=a') and ex=xe=x, and there exists
also ¢ = R such that ¢'a =ae' =a and ¢ (x+e)=(x+ e)e =x + e
By the condition 3), we can find then a positive integer » such that for
all 2> n there holds the following :

(e — a")x*(e — a) = a(z") = a(x)*
={le—a)x(e—a)}*
= {(e — a)(e — a')x}* = ¥,
(¢ —a)(x + e)(e" — a) = (x + e).

From the above we have x*(¢ — a) = (e — a)x* and (x -+ &) (' — a) =
(¢ — a)(x + e)*. Hence, we obtain x*¢ = agx* and (x + e)'a = al(x + e)~.
By making use of these relations, we get x"[x, ¢] =x""'a — x"ax= x""'a—
ax"' =0 and (x+e)'[x +e,a¢] =0. By Lemma 1 (a), it follows then
that [x,4] = 0.

(b) In virtue of (a), the proof is quite similar to that of [2, Claim 3].

(c) Choose an element ¢ of R such that ex=xe=x and ey=ye=3y.
By the condition 3), there exists a positive integer »# such that (xy)' =
(yx)* and {(x+e)y}"= {y(x+e)}”. Then, (xy)"x=x(yx)"=x(xy)", and
therefore [(xy)", x] = 0. Noting that (xy)" — x"y" = J C C by (a) and
(b), we have x"[x, y"] = [x, 2"y"]=[x, (xy)']= 0. Similarly, we have
(x+e)*[x+e,y"] =0. Hence, by Lemma 1 (a), it follows that [x, y*] =0.

n+1

Lemma 3. Assume that an s-unital ring R satisfies the condition 5)
in Theorem.
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(a) R° generates a commutative (multiplicative) semigroup.
(b) R/]J is commutative.

(c) J* is included in C.

@ [a, y""''1=0 forall a=] and y = R.

Proof. (a) For x=R, we define inductively x°=x, x® =x%* oy,
Given x,y € R, we choose an element ¢ of R such that ex=xe=x and
ey = ye = y. As can be easily verified by induction method, there holds
x® = ¢*— (e —x)* for all positive integers k. By the condition 5), we
see that x(n) oy(n) o y(n)ox(n) and x(n-i-l) oy(nH) = y(u+1) ox(-nH)' Hence, by
[3, Theorem 1], the adjoint group of R is commutative, i. e., a -+ b—ab
=b-+a—ba forall ¢, b = R°. Now, itis evident that ab = ba.

(b) In virtue of (a), the proof is quite similar to that of Claim 2 in
the proof of [3, Theorem 2].

(c) If @ b= J and y € R, then by (a) we have (ab)y = a (by) =
(by)a = b(ya) = (ya)b = y(ab).

() Let &' be the quasi-inverse of @, and e an element of R such
that ea=ae=a and ey =ye=y. By(a), [e — a, y"] commutes with
¢—a. Then, by Lemma 1l (b), 0=[(¢e—a)', y"l=nle—a) '[e—a,y"]=
—n(e—a)" '[a,y"]. Hence, O0=n(e—a')" (e—a)"'[a, y"] =ne*""a, y"]
=nla, y*], andsimilarly 0= (n-+1)[a, y"*']. Since J*= C by (c), the
only terms in the expansion of (y + @)"' which do not commute with
y™*! are those involving exactly one . By making use of this fact and
nla, y"] = 0, we see that

0 =y [(y + a)n-l-l, yu-T—lj P n[zgy%—kayk’ yn+l:l

—_ 2(7’1 nyn—kayn-l-ki-l — El’; ny ay

— nay3u+l — fly"+layn —_ ny;’n[a, y] )

n—k+1 nAk

Hence, by Lemma 1 (a), it follows that #[a, y]=0, and also n[a, y*']=0.
We obtain therefore [a,y"*'] = nla,y'"'] + [a,y"*'] = (n+1)[a, y"*]=0.

We can now complete the proof of our theorem.

Proof of Theorem. The proof of 2)=>3) is given in [2, Claim 1],
and the proof of 4)=>5) is easy. It remains therefore to prove 3)=>1)
and 5)=>1).

3)=1) Given x,y € R, we choose an element ¢ of R such that
ex = xe=x and ey = ye =y. By Lemma 2 (c), we can easily see that
there exists a positive integer m such that [x,y"] = 0= [x, (y + ¢)"].
By the condition 3), there exists a positive integer # such that for each
k=n
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mk—1 k&

ymkxk —_ (ymx)k — {(ym—lx)y}k = ym—l(xym)k—lxy i y - x y,
(y + ™ x* = (y + )" 2"y + o).

Then, y™ [y, 2*] = 0 = (y + &)*"'[y + ¢, 2], and therefore [y, x*] =0
by Lemma 1 (a). Hence, x*[x,y] = x**'y —x*yx = 0. Now, repeat the
above with x replaced by x -+ e to obtain a positive integer #' =# such
that for each # > n' there holds (x+e)*[x-+e,y] =0. Again by Lemma
1 (a), we have then [x,y] = 0.

5)=>1) Let x,y= R, and ¢ = J. By Lemma 3 (c) and (d), we
have

0=y [(y+a), "]y = y[Z37'y" " ay", "]y
— Zn 1 27: L+1 Zn—l '7n—h k+1

21z+1 7o+ 2n+l

=)y =y ey =y

ay2n+|.

Combining this with Lemma 3 (d), we obtain 0 = ay”** — y***%qg =
y**[a, y]. Hence, by Lemma 1 (a), [a, y] = 0, which means JC C.
Since R/J is commutive by Lemma 3 (b), there hold x[x, ¥"] = [x,3"]x
and y[x,y]=[x, y]y. Hence, by Lemma 1 (b), 0=[x", y"]=nx"""[x, y"]
and [x, "] = ny"'[x,y]. By the repeated use of Lemma 1 (a), we have
then 0 = n[x, y"] = #’y"'[x, y] and #*[x, y] = 0. Similarly, we have
(n + 1)*[x,y] = 0. Since n* and (n + 1)’ are relatively prime, we
conclude [x, y] = 0.
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