ON GENERALIZATIONS OF V-RINGS AND REGULAR RINGS

ROGER YUE CHI MING

Introduction. Rings whose proper cyclic right modules are injective (called right PCI-rings) are studied in [1] and [7]. In this paper we consider rings whose cyclic left modules are either p-injective or projective (called left CPP-rings) and rings whose cyclic left modules are either p-injective or flat (called left CPF-rings). Left PCI-rings and regular rings are obviously left CPP-rings but the converse is not true in either case. The following results are proved in Theorem 2: (1) If A is a left CPP-ring then A is a left CPF-ring that l(b) is principal for each $b \in A$; (2) If A is a CPF-ring such that l(b) is principal for each $b \in A$ then A is a fully left idempotent, left p. p. ring. We then continue our study of regular rings and (generalizations of) V-rings in [12] - [15]. without identity, cf. [3], [4], [10] and [11].) The characterization of a regular ring as an absolutely flat ring [8] may be weakened as follows: A is regular iff every cyclic singular left A-module is flat This will provide a generalization of [14, Theorem 9 (ii)] (Theorem 5). (cf. also [11, Theorem 2 6)]). A well-known theorem of Villamayor [9] states that A is a left V-ring iff every left ideal of A is an intersection of maximal left ideals of A. We here prove an analogous result for rings whose simple left modules are f-injective (Theorem 6). Two further characteristic properties of left V-rings are also given (Theorem 8).

Throughout A will represent an associative ring with identity, and A-modules are unitary. A left A-module M is called p-injective (resp. f-injective) if for any principal (resp. finitely generated) left ideal I of A and any $g: {}_{A}I \rightarrow {}_{A}M$ there exists $y \in M$ such that g(b) = by for all $b \in I$. Recall that the left singular submodule of ${}_{A}M$ is $Z(M) = \{z \in M \mid I(z) \text{ is essential in } {}_{A}A\}$. M is called singular (resp. non-singular) if Z(M) = M (resp. Z(M) = 0). A is said to be fully left idempotent if every left ideal of A is idempotent. As usual, A is called a left p. p. ring if every principal left ideal of A is projective. Finally, given a left ideal I of A, the intersection of all maximal left ideals of A containing I is denoted by I^* .

1. CPF-rings and regular rings. Left PCI-rings are obviously left CPF-rings but the converse is not true (cf. [7, Theorem 14]). Also, A

is not necessarily regular when A is a left CPF-ring such that l(a) is principal for any $a \in A$. However, we shall prove that such rings are fully left idempotent, left p, p, rings.

Lemma 1. Let I = Aa be a principal left ideal of A.

- (1) If I is p-injective then I is a direct summand of A.A.
- (2) If A/I is flat then A/I is projective and I is a direct summand of ${}_{A}A$.
 - (3) If I is projective and A/I is p-injective then $I = I^2$.

Proof. (1) is easy (cf. [12, Lemma 2]), and (2) is a direct consequence of [2, Corollary to Proposition 2. 2].

(3) Define $f: {}_{A}A/I \rightarrow {}_{A}I/I^{2}$ by $x + I \rightarrow xa + I^{2}$. Since I is projective, there exists $g: {}_{A}I \rightarrow {}_{A}A/I$ such that $fg(y) = y + I^{2}$. Also, there exists an element b in A such that g(y) = yb + I. Then $y + I^{2} = fg(y) = f(yb + I) = yba + I^{2} = I^{2}$ for any $y \in I$, namely, $I = I^{2}$.

Theorem 2. Consider the following statements:

- 1) A is a left CPP-ring.
- 2) A is a left CPF-ring and l(b) is principal for any $b \in A$.
- 3) A/Ab is either p-injective or flat, and l(b) is principal for any $b \in A$.
- 4) A is a fully left idempotent, left p. p. ring. Then i) implies i + 1 for i = 1, 2, 3.

Proof. By Lemma 1 (1), $1) \Longrightarrow 2) \Longrightarrow 3$). Now, assume 3), and let l(b) = Ac. If $Ab (\cong A/Ac)$ is p-injective or A/Ab is flat then Ab is a direct summand of $_AA$ (Lemma 1 (1) and (2)). If $Ab (\cong A/Ac)$ is flat and A/Ab is p-injective, then Ab is projective and idempotent (Lemma 1 (2) and (3)), proving 4).

If A is a P. I.-ring or a left semi-Artinian ring, then A is regular iff A is fully left idempotent [8, Theorems 16 and 17]. This together with Theorem 2 yields the following

Corollary 3. If A is a P. I.-ring or a left semi-Artinian ring then the following are equivalent:

- 1) A is a regular ring.
- 2) A is a left CPP-ring.
- 3) A is a left CPF-ring such that l(b) is principal for any $b \in A$.

Rings whose singular left modules are p-injective need not be regular

(cf. [5]). However, the next proposition shows that such rings are left p. p. rings.

Proposition 4. The following conditions are equivalent:

- 1) A is a left p. p. ring.
- 2) For every left A-module M, \hat{M}/M is p-injective, where \hat{M} is an injective hull of M.
- *Proof.* As was noted on p. 176 of [13], A is a p, p, ring iff all homomorphic images of any injective left A-module are p-injective. It remains therefore to prove that 2) implies 1). Let Q be an injective left A-module, and S a submodule of Q. Then, $Q = \hat{S} \oplus T$ with an injective hull \hat{S} of S and a submodule T. Since \hat{S}/S is p-injective and $(T \oplus S)/S$ ($\simeq T$) is injective, $Q/S = \hat{S}/S \oplus (T \oplus S)/S$ is p-injective. Hence, A is a left p, p, ring.

Concerning rings whose singular left modules are flat, we have the next (cf. [8, Theorem 1] and [14, Theorem 9]):

Theorem 5. The following conditions are equivalent:

- 1) A is a regular ring.
- 2) Every cyclic singular left A-module is flat.
- 3) A is a left CPF-ring such that every principal left ideal is the left annihilator of an element of A.
- 4) Every cyclic singular left A-module is either p-injective or flat and every principal left ideal is the left annihilator of an element of A.

Proof. Obviously, $1) \Longrightarrow 2$ and $1) \Longrightarrow 3 \Longrightarrow 4$.

- 2) \Longrightarrow 1) Given $b \in A$, there exists a left ideal K such that $L = Ab \oplus K$ is essential in ${}_{A}A$. Now, the cyclic singular left A-module A/L is flat, and so b = bc with some $c \in L$ [2, Proposition 2.1]. Setting c = ab + k ($a \in A$, $k \in K$), we have $b bab = bk \in Ab \cap K = 0$, namely, b = bab.
- 4) \Longrightarrow 1) Given $b \in A$, there exists a left ideal K such that $L = Ab \oplus K$ is essential in A. According as A/L is flat or p-injective, the proof of 2) \Longrightarrow 1) above or of [14, Theorem 9] applies to obtain b = bab with some $a \in A$.
- 2. Left V-rings. Following Tominaga [10], A is called a left p-V-ring if every simple left A-module is p-injective. We call A a left f-V-ring if every simple left A-module is f-injective. Both regular rings and left

V-rings are obviously left f-V-rings but the converse is not true in either case (cf. [5], [6]). We recall here that every non-zero left ideal of a p-V-ring contains a maximal left subideal [13, Lemma 1 (ii)]. The first two theorems of this section are motivated by [9, Theorem 2.1].

Theorem 6. The following conditions are equivalent:

- 1) A is a left f-V-ring.
- 2) Every finitely generated left ideal of A and its maximal left subideals are intersections of maximal left ideals of A.
- *Proof.* 1) \Longrightarrow 2) Let I be a finitely generated left ideal of A. Suppose there exists some $b \in I^* \backslash I$. Then F = I + Ab is finitely generated, and there exists a left ideal K which is maximal with respect to $I \subseteq K \subset F$. Now, the simple module F/K is f-injective and the natural projection $F \to F/K$ can be extended to $h: {}_AA \to {}_AF/K$. Then $H = \ker h$ is a maximal left ideal of A containing I and $I^* \subseteq H$, whence it follows $F = I^* \cap F \subseteq H \cap F = K$. This contradiction shows $I^* = I$. Now, let L be a maximal left subideal of I. Suppose there exists some $c \in L^* \backslash L$. Since $L^* \subseteq I$ and L is a maximal left subideal of I, we have then $L + Ac = I (= L^*)$. Now, by making use of the above argument for the natural projection $I \to I/L$, one readily obtains a contradiction $I \subseteq L$.
- 2) \Longrightarrow 1) Let M be a simple left A-module, F a finitely generated left ideal, and $g: {}_{A}F \to {}_{A}M$ a non-zero homomorphism. Since $G = \ker g$ is a maximal left subideal of F, by hypothesis there exists a maximal left ideal L of A such that $G \subseteq L$ but $F \not\subseteq L$. Then there holds $A/G = F/G \oplus L/G$, and it is easy to see that g can be extended to A.

The next extends [13, Remark 3].

Corollary 7. If A is regular then every finitely generated left ideal and its maximal left subideals are intersections of maximal left ideals of A.

We now give two characteristic properties of left *V*-rings, the second extending [14, Corollary 4] (cf. also [11, Corollary 6]).

Theorem 8. The following conditions are equivalent:

- 1) A is a left V-ring.
- 2) A is a left p-V-ring and every left ideal I of A is a two-sided ideal of I^* .
- 3) Every minimal left ideal of A is injective and every cyclic singular left A-module is semi-simple.

- *Proof.* By [9, Theorem 2. 1], 1) implies 2) and 3).
- 2) \Longrightarrow 1) Let I be a left ideal of A. Suppose there exists some $b \in I^* \setminus I$, and set T = I + Ab. There exists a left ideal K which is maximal with respect $I \subseteq K \subset T$. Then the simple left A-module T/K is p-injective, and the natural projection $g: Ab \to T/K$ can be extended to $h: {}_AA \to {}_AT/K$; $x \mapsto xd + K$ with some $d \in T$. Since $Id \subseteq II^* \subseteq I$ $\subseteq K$, I is contained in the maximal left ideal ker h. Hence, $I^* \subseteq \ker h$, which implies a contradiction $Ab = I^* \cap Ab \subseteq \ker h \cap Ab = \ker g$. This means $I^* = I$, proving 1).
- 3) \Longrightarrow 1) Let ${}_{A}M$ be simple, L an essential left ideal of A, and $h: {}_{A}L \to {}_{A}M$ a non-zero homomorphism. Obviously, $H = \ker h$ is a maximal left subideal of L. If H is not essential in ${}_{A}L$ then M is isomorphic to some minimal left ideal which is injective by hypothesis. On the other hand, if H is essential in ${}_{A}L$, then so is it in ${}_{A}A$ and there holds $H^* = H$ and $L^* = L$. Since $H \subset L$, there exists a maximal left ideal J of A such that $H \subseteq J$ but $L \not\subseteq J$. Now, it is easy to see that $J \cap L = H$ and J + L = A. Hence, h can be extended to $g: {}_{A}A \to {}_{A}M$.
- In [8, p. 114, Query (b)], it is asked which left V-rings are regular. The next proposition shows that left V-rings whose essential right ideals are two-sided are regular.

Proposition 9. If every essential right ideal of A is two-sided, then the following conditions are equivalent:

- 1) A is a regular ring.
- 2) A is a left CPP-ring.
- 3) A is a left p-V-ring.
- 4) A is fully left idempotent.
- 5) Every cyclic semi-simple, singular right A-module is p-injective and flat.

Proof. Obviously, 1) implies 2) through 5). 2) implies 4) by Theorem 2, and 3) does 4) by [13, Lemma 1].

- $4)\Longrightarrow 1)$ For any $b\in A$, $R=bA\oplus K$ is essential in A_A with some right ideal K. Since R is an ideal and $b\in (AbA)$ $b\subseteq Rb$, we have b=(ba+k)b with some $a\in A$ and $k\in K$. Then, $b-bab=kb\in K\cap bA=0$, proving 1).
- $5) \Longrightarrow 1$) Let R be an arbitrary essential right ideal of A. Patterning after the proof $2) \Longrightarrow 1$) of Theorem 8, one will easily see that A/R is semi-simple and therefore flat. Then, A is regular by Theorem 5.

Question. Is a left V-ring whose essential left ideals are two-sided regular?

The proof $4) \Longrightarrow 1$) of Proposition 9 together with Lemma 1 (2) and (3) yields the following:

Corollary 10. If A is a left CPF-ring whose essential right ideals are two-sided, then every principal projective left ideal is a direct summand of $_4A$.

As a combination of [9, Theorem 2.1], Theorem 8 and Proposition 9, we readily obtain

Corollary 11. If every essential right ideal of A is two-sided, then the following conditions are equivalent:

- 1) A is a regular, left V-ring.
- 2) Every minimal left ideal of A is injective and every cyclic singular left A-module is semi-simple.

Corollary 12. If every essential one-sided ideal of A is two-sided, then the following are equivalent:

- 1) A is a regular ring whose minimal right ideals are injective.
- 2) A is a right V-ring.

Finally, we return to strongly regular rings.

Theorem 13. The following conditions are equivalent:

- 1) A is a strongly regular ring.
- 2) A is a reduced left p-V-ring whose essential left ideals are two-sided.
- 3) A is a right duo, left V-ring.
- 4) A is a right duo, left p-V-ring.
- 5) A is a reduced left CPF-ring whose essential left ideals are two-sided.
- 6) Every simple left A-module is either p-injective or flat and A is a reduced ring whose essential left ideals are two-sided.

Proof. Obviously, $1)\Longrightarrow 2)\Longrightarrow 6$), $1)\Longrightarrow 5)\Longrightarrow 6$), and $1)\Longrightarrow 3)\Longrightarrow 4$). By Proposition 9, 4) implies 1). Finally, we shall show that 6) implies 1). To our end, it suffices to prove that A=Aa+l(a) for every $a\in A$. Suppose $I=Aa+l(a)\ne A$ for some a. Let J be a maximal left ideal containing I. First we claim that J is an essential (two-sided) ideal. In fact, if not, J=Ae with an idempotent $e\ne 1$, whence it follows a

contradiction $1-e \in r(J) \subseteq r(a) = l(a) \subseteq J$. If A/J is p-injective, considering $f: Aa \to A/J$ defined by $xa \mapsto x+J$, we can find an element $c \in A$ such that 1+J=ac+J. Since J is an ideal, this implies a contradiction $1 \in J$. While, if A/J is flat then by [2, Proposition 2.1] there exists an element d of J with a=ad, and $1-d \in r(a)=l(a) \subseteq J$, which is a contradiction.

Acknowledgement. We are indebted to Professor H. Tominaga for the final form of the paper.

REFERENCES

- [1] A.K. BOYLE: Hereditary Ql-rings, Trans. Amer. Math. Soc. 192 (1974), 115-120.
- [2] S.U. CHASE: Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473.
- [3] K. Chiba and H. Tominaga: On strongly regular rings, Proc. Japan Acad. 49 (1973), 435—437.
- [4] K. Chiba and H. Tominaga: Note on strongly regular rings and P₁-rings, Proc. Japan Acad. 51 (1975), 259—261.
- [5] J. H. COZZENS: Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc. 76 (1970), 75-79.
- [6] C. FAITH: Lectures on Injective Modules and Quotient Rings, Lecture Notes in Math. 49, Springer-Verlag, 1967.
- [7] C. FAITH: When are proper cyclics injective? Pacific J. Math. 45 (1973), 97-112.
- [8] J. W. FISHER: Von Neumann regular rings versus V-rings, Ring Theory: Proc. Oklahoma Conference, Lecture Notes in Pure and Appl. Math. 7, Dekker, 1974, 101—119.
- [9] G.O. MICHLER and O.E. VILLAMAYOR: On rings whose simple modules are injective, J. Algebra 25 (1973), 185—201.
- [10] H. TOMINAGA: On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.
- [11] H. TOMINAGA: On s-unital rings, II, Math. J. Okayama Univ. 19 (1977), 171-182,
- [12] R. YUE CHI MING: On von Neumann regular rings, Proc. Edinburgh Math. Soc. 19 (1974), 89-91.
- [13] R. YUE CHI MING: On simple p-iniective modules, Math. Japonica 19 (1974), 173-176.
- [14] R. YUE CHI MING: On von Neumann regular rings, II, Math. Scand, 39 (1976), 167
- [15] R. YUE CHI MING: On annihilator ideals, Math. J. Okayama Univ. 19 (1976), 51—53.

Université Paris VII

U. E. R. DE MATHÉMATIQUES

2, Place Jussieu, 75005 Paris, France

(Received March 28, 1978)