COVERS OF ABELIAN GROUPS

Joun D. O’NEILL

Introduction. Recently papers have appeared in the literature [4, 5, 9]
dealing with rings and finite unions of subrings or ideals. This paper deals
with abelian groups and fiinite unions of subgroups.

If G is an abelian group and G = H, U - U H, where each H; is a
proper subgroup of G and » is finite, the set {H;} is called a cover of G.
In this paper we assume all groups are abelian and that a cover ceases to
be a cover if any member of it is omitted. We call a cover maximal if no
member of it has a cover. If groups G and G' have covers C and C,
respectively, then C and C' are said to be isomorphic if the members of C
are isomorphic (as groups) to the members of C' in a one-to-one manner.
An element or cyclic subgroup of a group G is called special if it is in
exactly one cyclic subgroup of G. We ask the questions : (1) What groups
have maximal covers ? (2) If two groups have isomorphic maximal covers,
are the groups isomorphic? (3) If a group has no cover, what is its
structure 7 The answers are found in the theorems.

1. General facts. Let a group G have the cover {H}}. we have
the following facts,

(a) The integer » cannot be 1 or 2.

(b) If =3, G/N H, is the Klein 4-group.

(c) A necessary and sufficient condition for a group G to have a cover
is that G/pG is not cyclic for some prime p.

(d) G/H, is finite.

(e) If the cover is maximal and H is a subgroup of finite index in
some H,, then H,/H is cyclic.

(f) If G is finite and the cover is maximal, then N H; is the direct
sum of the primary components of G which are cyclic.

(g) If the cover is maximal, it is unique.

The proof of (a) is trivial. The proofs of (b), (c), and (d) may be found in
[3], [1], and [7] (or in [8], page 227), respectively. To show (e),
suppose H,/H is not cyclic. Since it is finite, it has a non-cyclic primary
component and, by (c), a cover, say {K,/H}, KiCG. Then {K.} covers
H, which contradicts the maximality of {H;}. In (f), since G is finite, its
maximal cover consists of its special subgroups. A primary component of
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G which is cyclic is clearly contained in each special subgroup of G.
Conversely, if x is an element of G not contained in the direct sum of the
primary components of G which are cyclic, then G has a special subgroup
not containing x. To prove (g), suppose {H{} and {K;} are two maximal
covers of G. Let H= NH;and K= NK;. Since H and K have finite index
in G, so does HN K. Therefore G/HNK is finite and has covers C =
{H,/HNK} and C'={K,/HNK}. By the maximality of {H;} and (K},
C and C’ are maximal covers of G/H. Each consists of the special subgroups
of G/H and C=C'. For some arrangement of indices, then, H,=XK; for
each ¢,

2. Finite groups. Finite non-cyclic groups have maximal covers
(consisting of their special subgroups) and for these groups we seek an
answer to question 2 of the introduction. The number of special elements
of order m in a finite group G is designated by S;(m). We will provide for-
mulae to determine this number for an arbitrary finite group G and postive
integer m. We will then use these formulae to prove a theorem.

Formula 1. Let G be a p-primary finite group and, for n >0, let r,
equal the number of cyclic subgroups of order p" in some decomposition of G
into a direct sum of cyclic subgroups. Set ro=0. Then, for k>0

Se(@)=( 11 p*~Pn I1 p*~'n) (I p'a — I1 p'» — II p™ +1).
n€k n>k n n<k n>k

Proof. Suppose p*G =0 and G=B, @ :-- @ By is the decomposition
of G where each B, is a direct sum of 7, cyclic subgroups of order p"
Suppose g is a special element in G of order p*, £ >0, and let g=x+y+2z
where x, y, z are members of "E<BL B,, B;, ﬂ@. B,, respectively. We observe

that y or x must be special in G. Case 1. Assume that y is special in G.

Then o(y)=p* and the number of choices for y is | B,| — |pB:|. There are

| EP B,| choices for x and, since o(z) < p*, there are exactly | €>B P * B,|
n<k n>k

choices for zz The number of choices for g is the product of these three
numbers which is, by computation,

11 pm‘n(pkrk —pkrk"'k) H pk/"-

n<lk a >k
Case 2. Assume y is not special in G and hence x is. Then y is in pB;
and o(z)=p* The number of choices for x, y, z is, in turn, %‘ | B.| —
II |pB.|, |pB:|, and 1;1 |p"*B,| — I>"I |p"**'B,|. The number of choices
alk n>k n>k

for g is the product of these numbers which equals
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( H py;rn _ l—I pnr"—r") pkrk—-rk( I—I pkr" . H pkrn—r” ).
n<lk n<lk n>k n>k
Adding the results of the two cases and simplifying, we obtain the formula.

Formula 2. If a finite group G is the direct sum of t Prcomponents G;
for distinct primes py, -+, P, and m=ph---pir, k>0, then Se(m) equals
the product Se (pi1) -+ Se, (pit).

Proof. This follows from the observation that an element g is special
in G exactly if g=x,-+---+ 2. where each x; is special in G,.

Theorem 1. Two finite primary groups are isomorphic if and only if
they are cyclic of the same ovder or they have isomorphic maximal covers.
The restriction to primary groups is necessary.

Proof. Isomorphic finite groups are cyclic of like order or have
isomorphic maximal covers by Fact (g). Suppose, then, G and G’ are two
finite p-primary groups with isomorphic maximal covers C and C', respec-
tively. Let M be the least positive integer such that p"G=0=p"G".
Choose a set of ranks {7.} for G as in Formula 1, and, similarly, a set of
ranks {s,} for G'. We will show 7,=s, for each ». Since C and C' consist
of the special subgroups in G and G, these groups have the same number
of special subgroups of order p* for each . Since a special subgroup of
order p* contains exactly p*— p*' special elements, Sq(p*)=S;(p") for
each k.. We now use these equations to show 7,=s, for all n. We use
induction beginning with n=M. By our choice of M, Si(p")= Se.(p*) = 0.
If we make the substitutions in this equation indicated by Formula 1, we
obtain an equation of the form p*(p"¥—1)=p"(p'»—1) for some integers
a and b. Thus, ry=sy. Assume 7,=s, for n > N and that S;(p")=S:.(»")
= 0 (otherwise 7y=sy=0). By Formula 1, we have

P(I pn— T prn— T1 p™ +1)=p"( I p'» — I p'n— T1 p*r -+ 1)
n a<N a>N n alN a2>N

for some integers a and b. Now, if S;(p")= S (p")=0 for all #<<N, then

M pr=1=T1p%, p°II p=(p'v—1)=p° I p*(p'~—1), and r~=s~. However,
n<AN n<N a>N >N

if Sp(p™)= S (p") 0 for some n<CN, then l;[vp'n =15 EIV p'» and II p™» —
ITpn—TI p'a+1=11 p'» — II p°»— II p»+1. We cancel the two right-
nlN >N n alN a>N

hand terms on each side and obtain IT p™ ( IT p7« —1)= II p( I1 p™» —1).
alN n=N <N n>N

M af
Thus > 7,=2_ s, and ry=s,. By induction, r,=s, for all # and G = G'.
N N



118 J. D. O’NEILL

We verify the second sentence of the theorem by an example. For
positive integers »# and m, let Z, be the direct sum of m copies of the
integers modulo n. Let G=Zi® Z! and G'=Z,PH Z:. By Formulae 1
and 2, S;(10)=(2°—1) (5—-1)=124=(2—1) (6*—1)=5,(10), vet G is not
isomorphic to G'.

Remarks. 1) In Formula 1, S;is evaluated in terms of a particular
direct sum decomposition of G, but S; is, by definition, independent of this
decomposition. 2) The proof of Theorem 1 yields a new (albeit cumber-
some) proof of the invariance of ranks of a finite primary group under
different decompositions into direct sums of cyclic subgroups. Suppose G
and G’ are finite p-primary groups and that we have obtained particular
sets of rank {r.} and {s,} for G and G', respectively. If G=G’, then, for
each n, Se(p")=3S(p") and, by our proof, r,=s,. 3) The example we
gave relies on the fact that 1+2+224+2%542=31=1+545% There is no
other known example of a prime number which can be expressed as a finite
power series in two different ways.

3. Abelian groups in general. We now respond to the first two
questions of the introduction for groups in general.

Theorem 2. An abelian group G has a maximal cover iff it has a
decomposition G=H @ A where the order of A is positive but finite and,
for every prime p, either pA= A and H|pH is cyclic or pH=H and AlpA is
not cyclic.

Proof. 1) Suppose G has a maximal cover {H,} and H=NH, We
wish to show that H is a direct summand of G. Since G/H is a finite direct
sum of cyclic groups, it will suffice to show that H is pure in G (p*GNH=
p*H for every prime p and positive integer ). Set G=G/H. Suppose p is
a prime such that p5=§. Suppose p*g=H, for some g€ G and positive
k. Since (|G|, p)=1, there is an integer # such that rgEH and (7, p)=1.
Let a, b be integers so that ar--bp*=1. Then g={(ar+bp*)g=arg+ bp'g
€H and p*GN H=p*H. Suppose, then, p is a prime such that G 5 G.
We observe that G=G/H has a maximal cover {H,/H}, so that (H/H)
=0, and, by Fact (f), that the p-component of G/H is non-cyclic. Suppose
H + pH. Then H has a subgroup X, where |H/K|=p* k>0, and G/K
has a maximal cover {H;/K} with N(H./K)=H/K. But, since |H/K| is
a power of p, N (H,/K)=0 by Fact (f). Therefore pH=H and, as a result,
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p*GN H=p"H for all k. Since H is pure in G, for some subgroup 4, G=
H®@ A. If pis a prime such that pG =~ G, then A/pA is not cyclic and

pH=H. If p5= G, then pA= A and we now show H/pH is cyclic. If not,

H has a subgroup K such that | H/ K| =p* for some positive %, and H/ K is
non-cyclic. Now G/K has a maximal cover {H;/K} withN(H,/K)=H/K.

But H/K is non-cyclic and, by Fact (f), not inN (H,/K). Therefore, H/pH
is cyclic. The conditions of the theorem are satisfied. 2) Suppose G=
H @ A with the properties stated in the theorem. For some subgroups
H,C G, G/H has a maximal cover {H;/H}. Each H;=H @ C for some
cyclic subgroup C of A. For each prime p, H/pH, = H/pH+ C/pC which
is cyclic. Therefore, no H; has a cover and the cover {H;} of G is maximal.

From Theorems 1 and 2, we obtain the following :

Theorem 3. If groups G and G' have maximal covers and G/pG and
G'/pG' are cyclic for all primes p except one, then G = G' iff their maximal
covers are isomorphic. The restriction on primes is necessary.

Proof. 1t suffices to show that, if G and G’ have the given restric-
tions on primes and isomorphic maximal covers {H,} and {H:}, then G =
G. LetG=H® A, G'=H' A’ with appropriate properties, as indicat-
ed in Theorem 2. Then Hi=H®@® C; and H;=H' P C; with C,C A,
Cic A'. Now for fixed prime g, C; and C: are g-primary anc finite while
gH=H and ¢H'=H'. Since H; = H; for each i, it follows that C,= C;
and H = H'. Therefore G/H and G'/H' have isomorphic maximal covers
{H/H)} and {H!/H'}. By Theorem 1, then, G/H=G'/H', A=A
and G = G,

4. Groups without covers. A group G is without cover iff G/pG
is cyclic for each prime p. We now characterize these groups further. If
G is such a group, G=D @ R where D is divisible (pD=D for each p), R
is reduced (it has no non-zero divisible subgroups), and R/pR is cyclic for
each prime p. Let us assume, then, that G is reduced and G/pG is cyclic
for each p. Let [T= IPI (II G/p"G), the complete direct sum of the groups

G/p"G where p and n range over all primes and positive integers respec-

tively. Let ¢ be the natural map from G to [I. We claim ¢ is injective

and that ¢(G) is pure in 7. We first show that the kernel ¢, NN p"G,
p n

equals 0. Suppose x 5= 0 is a member of this subgroup. For fixed p, since
G is reduced and G/pG is cyclic, the p-primary component of the torsion
subgroup of G is cyclic, and G=A4 & B where p*A=0 for some N > 0 and
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B has no elements of order p. Since x= Np"G, *=B and B contains a set

of elements {x,} such that x=p"x, for all positive #. Since p™(Xn— p¥n-1)
=0 and B has no elements of order p, x,=px,., for each n. We can find
a similar set of elements for each prime p and the subgroup generated by
the elements in these sets is isomorphic to the rational numbers. However,
G is reduced has no such subgroup. Therefore, ﬂD p"'G=0 and ¢ is

injective. The proof that $(G) is pure in /7 is straightforward (see, for
example, Lemma 30. 3 or Theorem 39.5 of [2]). We now examine more
closely how ¢(G) sits in 77. For each prime p, let 7, be the projection of
I onto I1IG/p"G. Suppose first that p is a prime for which G has elements

of order p. Then G=AP B, as above, with A cyclic and p-primary, and
pB=B. Therefore, Bis the kernel of ¢ and 7,p(G) == A. Secondly,
let p be a prime such that G == pG but G has no elements of order p. We
claim that I1G/p"G contains a copy of the p-adic integers which, in turn,

contains 7,$(G). For n <<m, let 77 map G/p™G onto G/p"G by sending
g+p"Gto g+p"G. Then {G/p"G; =} forms an inverse system and the
inverse limit, 1<ir_n G/p"G, consists of all vectors (:++, a@n,---) in IIG/p"G
such that 7la,=a,, n <m (see [2], Vol. I, page 60, for details). Since
G/pG is cyclic of order p and G has no elements of order p, each G/p"G is
cyclic of order p”. As a result, the subgroup I(g_n G/p"G of TIG/p"G is

isomorphic to the p-adic integers (see [2], Vol. I, page 62, for a proof).
Now, if x € G and 7, p(x)=(-"*, %X, *--), then 7yx,=x,, n<m, since ;=
x+p'G for each i. Therefore, n,$(G)Clim G/p"G. We have proved half

of the following theorem.

Theorem 4. A group G has the property: G/pG is cyclic for each
prime p iff G is a pure subgroup of a group of the form DD I'IJ K,, Jaset
PE

of distinct primes, where D is divisible and each K, is either cyclic and
p-primary or isomorphic to the p-adic integers.

Proof. Necessity was established above. Suppose, then, G is a pure
subgroup of some K=D& I1 K,. We must show G/gG is cyclic for each
prime q. Now K,/qK,= K/qK 2 (G, ¢K)/qK = G/GNgK=G/gG by the
purity of Gin K. If K, is cyclic, then G/¢G is cyclic. If K, is isomorphic
to the g-adic integers, it is well known that K,/¢K, is cyclic (e. g., see Th.
88.1 of [2]). Again, G/¢G is cyclic, and the proof is complete.

A further discussion of torsion-free groups of finite rank with the
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property of Theorem 4 may be found in [6].
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