ON SOME SUMS INVOLVING FAREY FRACTIONS
SHIGERU KANEMITSU

1. Introduction

It is our aim in this paper to give some refinements of theorems
proved by Hall [4] and Lehner-Newman [5] on some sums involving Farey
fractions on the one hand, and determine passingly the values of some
series appearing as the constant terms in our asymptotic formulas on the
other.

First of all we shall fix the following notations and preserve them
throughout this paper.

Let F,(» € N) be the Farey series of order », thatis, F, be the
aggregate of irreducible fractions between 0 and 1 with denominators < #,
arranged in ascending order of magnitude: F,={h/R|0Sh <k <,
(h, k)=1}. For any term h/k (<1) of F,, we denote by A4'/k’ its successor
in F,, and by @, the set of all pairs (%, %') of the denominators of thus
adjacent terms : Q, = {(k, k) | A'/%' follows h/%k in F,}. For any func-
tion f: NXN— C write
(1) Sa= 3 f(k F').

*#0=q,

We now state briefly Lehner-Newman’s [5] and Hall’'s [4] results
which we shall need or improve in this paper, and further refer to our
refinements of them.

Using the fact that @, ={(a, 8) | 0<<a, 0 #, (a, D) =1, n+ 1<
a+ b<2n — 1} and interpreting the sum S, as the one taken over all
coprime pairs (g, b) satisfying the conditions above, they obtained the
useful formula (r = 2)

(2) S = S = TAf b )+ B) = £y 7 — B,
Ck,r)=1

and as a result the sum formula (which we shall refer to as the Lehner-
Newman sum formula)

(3)  Si=fWD+3 5 (Fln)+f00—fhr— k).
© k=1

The motivation of Lehner and Newman for considering these types of
sums seems to be found in the attempt to determine the value of the series
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oo r
riy i+ k)7,
=t (:,=r§=l

which has been proved by Gupta [2] and by themselves to be equal to 3/4.
As an application into another direction of (3) they have proved the
following

Theorem (Lehner-Newman).  For the function
(4) flx, ) =x2%"(0<a bER),
it holds that

S.-z — ca,b na+b+2 _|_ O(na+b+] ].Og n) ,

1 P(1+a)P(1+b)}

with c,,z,=—6—{ —
' 7 (1+a)(1+b) I'2+a+b)

We shall prove that the error term can be replaced by
(5) O (n****' log™*n (log log »n)'**)

for any ¢ >0, in the special case when 0<q, b= Z. Our result is
not only a refinement of Hall’s asymptotic formula but also a generalization
since he considered the case when the exponents @, b are equal, while
ours are arbitrary integers = 0; and Lehner-Newman's are any real
numbers = 0, which is also a case lying within our reach of improvement
via the Euler-Macluarin sum formula as in [5] though we shall confine
ourselves to the special case as the essence is the same.

We now turn to the statement of Hall’s results and our strengthening
of them. He considered sums definedby @< m & N)
(6) S.my=_ (kE)™

k)=,

and has proved

Theorem (Hall).  The following asymptotic formulas are valid :
(7) S.(@)=12a"n"" {log n+ 7+ 27— £(2)'¢'(2)} + O (n*log® n),
(8) Su(m)=2E(m) ' Em—1Dn™" + 0w " 'log"n), (m=3),

where 0 is 0 or 1 according as m=4 or m = 3.
Our refinement concerning Hall’s theorem will be that the error can
be reduced to
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(9) O (n7* log™ n (log log »n)'**)

for any €>0 in case m = 2, while we shall not be able to obtain
refinements in case m =3, when all that we can do will be that we are
convinced that his theorem is best possible in so for as the error is esti-
mated as O (™™ 'log® n). We shall, however, be able to determine the
values of the series

oo r =1
(10) com=xrmx S () kre—n,
r=2 ke=] 1=}

(k.r)=1

which will be proved to have the value 1.

We shall primarily be concerned with the study of cases when m = 2
and m = 3 because the former is of more importance and other cases can
be treated similarly to the latter.

In both cases of refining the error by log'*~* » the sum

= uld)d P (sla)
where P; (@) is the ordinary Bernoulli function defined by P (a)= {a} —1/2
({a} 1is the fractional part of « : & — [«]), will play the vital role, to
which we shall essentially appeal in the latter case, and, in the former
case, on the equivalent of which, namely, the sharper estimate for the
average order of Euler's ¢-function, we shall base our arguments.

The author expresses his great thanks to Professor K. Shiratani for
useful advices and suggestions in treating the (partial) refinement of
Lehner-Newman'’s theorem, whose article [8] he owes greatly some of his
calculations to. He also greatly appreciates Professor S. Uchiyama for his
kindly informing him of Hall's paper and for suggesting him the possibility
of improving some of the theorems of Hall. He owes also a lot to his book
[9] not a few of his calclations throughout the paper.

2. Basic formulas and estimates
We shall collect in this section some formulas and estimates which we
shall require in what follows.

Defining the Bernoulli numbers B, as coefficients appearing in the
expansion :

_t= \f‘ & m —
=i Tt By=1,

we have the summation formula [1], [8]
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1'—1ha _ (N+B)a+I_BrL+l
=1 a+1

(11) >

h

0=aee Z).

Let o(r) denote the sum of divisors of 7 : o(r) = 3° d, then it holds
dajr
that [3]

(12) S(N) = i;la(r) = 1272 N* + O (Nlog N).

Denoting by ¢ (r) = kZ,(' 1 Euler’s function, we have a sharper estimate
(kyrd=1

due to CantbikoB [7] and Walfisz [10] than used in [5]:
N
(13) #(N) =2 ¢(r) = 37 N® + O(Nlog™ N (log log N)'**)
r=]
for any e >0, or, equivalently, we have the CanThikoB-Walfisz estimate
[7], [10] (x=3)
U:. = 2 p(d) d™' P, (x/d)
(14) asr
= O(log®"® x(log log x)'**) (V€ >0).
As particular cases we have
(12') S(N) = O(N?),
(13" @(N)= {282} 'N*+ O(Nlog N).
Lastly, we need the Stirling formula valid for x =2

(15) log [x] ! = [x] log [x] — [x] + 27'log [x] + O(1).

3. Proof of the estimate (5)

Substituting (4) in (2), we obtain as in [5]

(16) S, — S, =7 2 B Lzl P — ? B (r — k).

3 = =1
(k.r)=1 (k,r)=1 k) =1

Let us consider the sum S®(r) = 3 £° firstly. Observing the
k=]
(k,r)=1
formula

1, if r=1,
{

(17) D) =0 if porl

d|r
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we argue as in [5] to obtain

SO (y) = \‘ { Y u(d) } k= Z 1(d) d“Y‘ A"

k=1 l|(kr h=|

Applying the sum formula (11), we have

rle a+!
E ht = —1— Z (ﬂ’};l) Ba+|_k(f/d+1)k

n=l a+1i=1
a+} k
+1,, x(aﬂ) - ‘—‘( )r £ (),
where we have put f, () = ? w(d)r]d) . As for f,(r) we see the
followings :
(18) fanr (1) = ¢ (7), fulr) =0 (since » =2),

whence we are led to the expression giving the dominant term explicitly

SO (y) = 7" ¢(r)

a+1
S 1) B () 0T 0]
so that
Elr SO () = ﬁi 7 ¢ (r)
o B () B (5) 20
+5 (T 5 A )

For /= a, we haveseen that f,(1)=1, f.(#) =0 (» %= 1), so the sum
corresponding to f.(r) is O(1). For !<a—1, f.(r) has the form
3 u(d) (d/r)* = f(r), say, with (e=) ke N. Therefore we infer that

dajr

14

rn+bf(r) _g_ SE ra+h—1 ; (d/r)k—l d
r=] r

r=1

g

|||V_}:s

a +b=-1 P (r) .

We apply the partial summation to obtain
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Zn}l r"le(r)=0—a—b) SnS(x)x‘““"2 dx + S(n)ne*>!
r= 1
= 0 n""*),
because of (127).
Next, let us calculate the sum
S®(r) = 3 bo(r — ).
ey

Arguing in the same way as before, we have
rla
S () = 3 3 11(d) (hdy" (r — hay
2 b ria
= Z (___1)1 ( ]) pot Z ‘fl(d)d‘“l Z ey
alr h=1

(—l)l(?) aJ,Z;,:H (a+l+1) Buvoin ﬁ (1;: )fu ),

m

=l2-1:) a+1+1 a1

where fei(r) = dzlr: wld) (r]dy—o",

The term corresponding to k—a—I=1, i,e, to m=k=a+1I+1 is

b
o (—1)
given by #**¢ () § ( ! )

PRI N I which proves to be the dominant term.

Applying the same reasoning as that used in evaluating > »* S® (r),
=]

we deduce that

r___il: S®(r) = c’a,bg patb 90(7,) + O (n**)
b o e t=(9)
" cor =B T

Substituting these results when we sum the terms (16) over
y =1, -+, n, we have

(19) S, =c"., é Fore (f(r) . O(na+b+l) ,
i w1 1,
with Clan= 7+ prg e

Now, let us transform the main term by using the sharper estimate
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(13). Applying the partial summation again, we infer that

r=1

31 et ¢lr) = — (a+b) S? ® (x)x" 7 dx + @ (n) 0™

— 3 a+b ardrz 4 O . a+ve2
= atb+2 Tt

+ 0 (S? £ log**x (log log x)'** dx) .

6 nﬂ+b+2

2 2Eb53 + O (n**"*1 log? n (log log »n)'*").

There remains to prove the coincidence of % ¢, with ¢,,, which is
¥l

seen as follows :

F(a""l) P(b"‘l)_ . ! by L 1 b ! +1
s DL~ B+, b+1)—50t"(1—t)dt—12=0(—1)(I)Lt“ dt

_ 9 By 1 _
=5 (1) grmr = o

Thus we have proved a refinement of the one mentioned in §1 in the
special case.

Theorem 1. Notations being the same as in the Lehner-Newman
theorem, for integers a, b =0, it holds that

Sp = Cap 8T 4+ O(n*** log™® n (log log #)'**), for any € >0.

4. Investigation of the case of m = 2
Putting f(x, y) = (xy)~? in the formula (3), we have
$.=S.(2)= L X kY= Nk

&, 1m)=1

(20) 134 Y R
= =t
= 1-427r7S,

say, where we have used the decomposition into partial fractions twice
and the fact that the condition (%, #) = 1 is equivalentto (r — %, r) = 1.

We now proceed to the computation of the sum S;. Noting the
identity (17) and applying the formula
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(21) NEktl'=1logN+7y+2'N'+ ON?,

x

which can be proven by means of the Euler sum formula, to it, we deduce
that

Il

w{x )= 53 pd)d 3 0

a1Ck,

; 1(d)d " log (r/d) + 7 2 d)d™
+ 27!
5

I

r! ?' w(d) + O@~* Y‘ dl d)])
z(d)d "log (r/d) + yr~'¢(r) + O(r~* (7)),

whence it follows that

@2 nSri=c@) - SP- 52+ 0( 5 i),

r=2 r=n+41

where we have put ¢(2) = iz S, 7_"3, S = Z, r? dZ w(d)d ' log (r/d),

r=n+1

and S® = Z o).

r=n+1

The O-term can readily be seen by an application of the partial sum-
mation and the trivial estimate (12') to be of order »#~%, which is negligible
compared with our error term expected to be of order »n ‘log"’n
(log log #)'** for any &> 0.

We now treat the sum S ° which is much easier than S °. Applying
the partial summation, together with the use of (13"), we have

St =4 r $(x)x " dx — (0 + 1) @(n)
a+l

(23)
= {25@)} "' u*+ O log n).

Here again the error is negligible compared with that written above.

Now we are in a position to be engaged in the consideration of the
sum S.°. In order to transform it we shall first treat the sum 7, defined
by (r=2)

r

(24) =X 2 d)d " log (k/d) = l,fz(d)d"tszr;dlog 1.

k=2

By the Stir]ing_ formula (15) we infer that
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E log k= log [x]!
=zxlogx — {x} logx — 2+ 27" log x + O(1)
=xlogx — x — P, (x) log x + O(1),

so that
@5) T,=v (log r)g md)yd™? — r?;‘.l wd)dlogd — r;‘; (d)d?
— (log #) E w(d)d' Py(r/d) +§ mw(d)d ' P (r/d) log d + O(log 7).

We now have the following formulas for finite sums appearing in the
above, without the factor P,(r/d) [9] :

(26) S pd)d = £@)7 + 00,
27 f;: m(d)d*logd = dil' p(ddlogd + O(r'log 7).

Recalling the identity — n(d) log d = Zld,u(d’) A(dd'™"), we see that (27)
a’ld

reduces to
(279 LHS of (27) = £(2)7%'(2) + O@ ' log 7).

There remains to deal with the terms containing the factor P {r/d).
By partial summation, together with (14), we have

S d)d™' P(r/d) logd = || Uex™ dx + Uy log 7
d=|
= O (log**r (log log 7)'*?) .

(28)

Substituting (14), (26), (27') and (28) into (25), we conclude that

T, =@ 'rlogr — @)@ Q)+ 1} r

29 . ,
(29) 4+ O (log™® r (log log »)'*).

With the aid of (29) and partial summation we can now transform S,” to
obtain

SV =3 Sm Toxdx — Tpry n°
a+l

=362 2w tlogn + 47wt — 27 n7UE (2)71EN(2) + 1)}
(30) — £2)'n {log n — £(2)7' £'(2)— 1} + O(n*log**n(log log n)'*)

=¢@2) 'n 2 logn — 271 5(2)71 (2 + 471}

+ O(n®log™® n (log log n)'*9).
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Substitution of (23) and (30) into (22) leads us to the conclusion that
31) ,Z Sir=¢(2)+ §(2) 'nt{—2log n+2715(2)71E(2) — 47 — 271y}
+ O (n~*log®” n (log log #)'*),
with the constant ¢(2) defined in (22). By (20) and (31) we have eventually
Sa(2) =1—4c(2) +2£(2) "' n~* {log n — £(2)7'L"(2) + 27" + 1}

32
(32) + O (n® log** n (log log n)'+).

On the other hand we have by Hall’s theorem (7) an asymptotic
formula for S, (2) without the constant factor, so, letting n— oo, we are
convinced that 1 — 4¢(2) must be equal to 0. We have thus proved

Theorem 2, For any ¢>0 and n=2 it holds that

(BEY =127 n{logn + v + 27 — £(2)7'¢' (2)}
k,K320Q,

+ O (#n*log®® n (log log #)'*9).

We have in passing obtined the value of a series, which is given by

Corollary 1. We have

t’a

i B =4,

1
(r)

<
[
~

5. The case of m =3, in particular of m = 3

We now turn to the investigation of the case m =3. We have first
of all

Si=S.(m)=1—c(m)+2m3 rm X o

r=r-—1 k=1
k)=l
+2m 2 rmt 3 Ry — B)T!
el =1
(33) _|_ 0 £‘| Ir~m kél lZ: ( ) kl-—m (r_k)—-l}
- dm='"

=1—c(m) + 2m SA ;m) + 2m S(2; m)
+o0{% » mz B - B,

r=n+l
r) 1

say.
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In the error term we have summands of type k™ *(r— k)™* with 2<a,
be N, a+ b= m, which are decomposed into partial fractions in the
following manner :

=R =r " r—k) "+ (r— k)" + 2 (r — k)Y
<r iR —R) R — R R - (r — R)7Y

Hence, summing over 2 and 7, we have

The error term

(34) - -
=0( rr oW+ 3y 0dlogn) = 0.

r=n+1

If m=4, then we discuss in the same vein, noting the inequality
E(r—B) 'y B+ (r — B)7Y), to have

(35) S@2;m=0@"".

If that is not the case, we have

2718(2:3) =3 5 3 kT

r=n+l1 k=1

k,r)=1
(36) = gﬂ r® {dZIr #d)d ™ log (r/d) + yr7'¢ (1)} + O (n™)
(by (21))
=5 S Toxdx =T, (n+ 1)+ 0 (™)  (by (13), (25))
=47'¢@)  'ntlogn + O™ (by (29)).

We now go back to the general case and set on the evaluation of the
sum S(1;m). As before, we have

u rid

k):l; k—mH — ZI 'u(d)d—mﬂh; h—m 3

37)  G@n=t alr =

=&m— 1) /L(d)d_m“ - ‘u(d)d-"“"l ST opml,
alr alr rla<n

Now we have by Euler’s summation formula,

(38) Z ! = (m - 2)_1 (r/d)_"”'z - O((r/d)—m-i-l) .

rid<n
Combination of (37) and (39) yields

LHS of (37)
=fm—1)2 nd)d™" —(m—2)"r o)+ 0™ (),

dlr

(39)
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where () = > 1.

alr

Consequently, we have

SWim)=Em—1) 3+ 5 pld)d"
(40) } r=n+! [;
HOLE, e £ 5 e

Using the estimates 21 7o (r) = O (n "), and i rY r(y) =
r=n+

r=n+l
O(n**'log n), we see that thus appearing errors can be absorbed in
Oon™"),
We proceed as to the first summand in (40), say, = s(1; m), as

follows : Putting Vy = Z Y‘ d)d ™", we have successively

Ma

V=5 pd)d—" (N/d]

&
1l
-

= Nd‘;: wdd ™+ o)
=NEfm)' + 0(1),

whence it follows that

s(L; m) = Em — 1) {(m + 1)5 V.x"dx— V. (n+ 1)~
= t(m — 1) Lom)~ m n" + O ("),

Substituting (41) into (40), we obtain the same formula for S(1; )
as the RHS of (41) ; hence by this formula and (33) (if m = 3, also by
(36)) we conclude that

Salm)=1—c(m)+25m—1) Em) ' n™
+ 305@2) 'ntlogn+ O (™).

(41)

(42)

where 8 =0 or 1 accordingas m=4 or m = 3.
By the same reasoning as before we have the value of c(m). We

have thus verified

Theorem 3. For any natural numbers m =3 and n =2 we have
an asymptotic formula
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(43) . FS' . (ke ™ =28(m) ' E(m — Dn™™
kK'Y= n
+308@) " 'ntlog n+0(m""),

where 0 is defined as above.
Further we have determined as a by-product the values of certain
series :

Corollary 1. We have for m=2 and n =2

i yom i; ”‘i‘ (17) k—m+l (7’ _ k)_[ =1,

Remark 1. We could obtain a more detailed asymptotic formula
than in Theorem 3 if only we took the terms appearing in the Euler-
Maclaurin sum formula to the higher order of derivatives instead of having
them absorbed in the error as in (38). But, if we do so, we cannot
remove those terms as the presence of the term #n ‘log # in (43) shows,
so that Hall’s estimate is best possible in the sense mentioned in § 1.

Remark 2. As is seen by the procedure employed in evaluating (33),

we can also treat the sum of type Eqk'“k’“", with 2<a, b= N; we have,
(k,k%)e n

however, restricted ourselves to the case a =5 for the sake of simplicity.
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