DIRECT SUMS OF NONSINGULAR INDECOMPOSABLE
INJECTIVE MODULES
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Throughout this paper R is an associative ring with identity and all
R-modules are unitary R-modules.

The main purpose of this paper is to study direct sums of nonsingular
indecomposable injective R-modules. Let @ be the maximal ring of left
quotients of R/G(R), where G(R) is the Goldie torsion submodule of R.
It is easy to check that a nonsingular R-module is annihilated by G(R),
and it is also nonsingular as an R/G(R)-module. [2, Theorem 2.2] says
that every nonsingular injective R-module has a left @-module structure
compatible with the R/G(R)-module structure. The following easy lemma
is frequently used in this paper: A nonsingular injective R-module is
indecomposable as an R-module iff it is simple as a @-module.

In Theorem 2. 4, we give a simple proof of the following result ([3],
[8]): Every complete decomposition of any completely decomposable non-
singular R-module complements direct summands. Further the following
more general result is shown in Theorem 2.5: Let M be a completely
decomposable R-module, and N a direct summand of M. If N is non-
singular, then N is quasi-injective.

In Theorem 3. 2, we prove that a nonsingular locally injective R-module
M is completely decomposable iff the ascending chain condition holds for
the annihilator left ideals of elements of M. This result yields several
known characterizations and some new ones for @ to be a semisimple
artinian ring.

Finally it is shown in Corollary 4. 2 that the ascending chain condition
holds for irreducible left ideals of R iff every locally injective submodule
of any completely decomposable R-module M is a direct summand of M.

1. Preliminaries. Following Yamagata [6] we call an R-module M
locally injective if for each x in M there exists a submodule N which
contains x and is isomorphic to E(Rx), the injective hull of Rx.

Let M= ZEBM be a direct sum of R-modules {M}.,e;, and N a
direct summand of M. N has the exchange property in M= Z}GBM if

there exists a submodule M; of M; for each ¢ such that M N&D
(E D M;).
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An R-module is said to be completely decomposable if it is written as
a direct sum of indecomposable injective submodules. We call such a
decomposition complete. A completely decomposable module M com-
plements direct summands if every direct summand of M has the exchange
property in any complete decomposition of M.

For a subset N of an R-module, we set S (N)={(0:a):|aE N},
where (0:a@)s= {rER|ra=0}. Let N and M be R-modules with
NEM We use NS,M to denote that M is an essential extension of
N. For a given R-module M, we denote its singular submodule and its
Goldie torsion submodule by Z:(M) and G(M), respectively. Note that
Ze(M] Zp(M))=G(M)] Zn(M), G(R) is a two-sided ideal of R and R/G(R)
is a left nonsingular ring.

Now it is easy to verify that if M is a nonsingular R-module, then

(1) G(R)M=0 and therefore M becomes a left R/G(R)-module by
a usual way,

(2) M is also nonsingular as an R/G(R)-module and

(3) M is injective as an R-module iff it is injective as an R/G(R)-
module,

Thus [2, Theorem 2. 2] says that a nonsingular injective R-module has
a unique @module structure compatible with the B/G(R)-module structure,
where @ is the maximal ring of left quotients of R/G(R). Therefore if
M is a nonsingular R-module, then we have M S QM S E,(M).

It is well known (e. g. [2, Theorem 3. 12]) that every finitely generated
nonsingular @Q-module is both projective and injective. Using injectivity
of every cyclic nonsingular §@-module, we can easily show the following
result which is a key lemma in this paper.

Lemma 1.1. Let M be a nonsingular injective R-module. Then M
is indecomposable as an R-module iff M is simple as a Q-module.

A left ideal I of R is said to be a closed left ideal provided it has no
proper essential extension in R. If I is a closed left ideal of R contain-
ing G(R), then I/G(R) is clearly a closed left ideal of R/G(R). The
converse of this fact is also true:

Lemma 1.2. If I is a left ideal of R containing G(R) such that
I/G(R) is a closed left ideal of R/G(R), then I is a closed left ideal of R.

Proof. Let J be a left ideal of R with 7<.J. Then J/I is singular
as an R-module and so is (J/G(R))/(I/G(R)). Hence by [2, Proposition
1. 28], (J/IG(R))/(I/G(R)) is a singular R/G(R)-module. However J/G(R)
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is nonsingular as an R/G(R)-module. It follows that I/G(R)S.J/G(R),
whence we get /=] as required.

2. Indecomposable nonsingular injective modules. In this section
we also use @ to stand for the maximal ring of left quotients of R/G(R)
as before.

By examining the proof of [2, Proposition 6. 18] we have

Lemma 2.1. Let M be an R-module which is a direct sum of R-
modules {M;}ic:, and N a direct summand of M. Then for each i, there
is a submodule M; of M such that NN PM)=0 and NO_ DM,

=7 =¥

S.M

Lemma 2.2. If M is an R-module such that G(M) is a direct sum-
mand of M, then, for any direct summand N of M, G(N) is a direct
summand of N.

Proof. Let M=G(M)D F=N@PL. Then G(M)=G(N)D G(L),
which implies that N=GWN)B N N(F P G(L)).

Lemma 2.3. Let M= GOF for some submodules G and F. Then
any direct summand N of M containing G is the form N=GODF' for
some direct summand F' of F. (Infact F'=NNF).

Proof. Let M=GHF=NPHL Then N=GPHHNNF) and so
M=GB(NNF)PL. From this we also have F=(NNF)P(FN(GPHL)).
Hence NN F is a direct summand of F.

Theorem 2.4. For a completely decomposable nonsingular R-module
M, every complete decomposition of M complements direct summands.

Proof. Let M= M, be any complete decomposition of M, N
i€EL

any direct summand of M, and M= N@ L Then QM= QNG QL
because ER(N)N Ex(L)=0. However, QM= QM= ZIEB M=M
i€l i€

and so we have N=@N. Since each M, is simple as a @-module by Lemma
1.1, M is completely reducible as a @-module. Hence there exists a
subset J of I such that M= N@ (§ &G M,).

i€J

Remark, This theorem is also given as a consequence of Harada
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[3, 6.5.1] or Yamagata [8, Corollary 4.3]. However their results can
be obtained from the following theorem as its corollaries,

Theorem 2.5. Let M be a completely decomposable R-module, and N
a divect summand of M. If N is nonsingular, then N is quasi-injective.

Proof. Since any indecomposable injective R-module is either Goldie
torsion or nonsingular, we see from Lemmas 1.1, 2.2 and Theorem 2. 4
that N is a direct sum of indecomposable injective modules and is com-
pletely reducible as a @-module. Now, to show the assertion, let N’ be
an R-submodule of N, and f an R-homomorphism N’ —> N. Then the
mapping f': QN'—> QN = N given by ¥ gm—> L g:f (), a.€ Q,
n: € N', is a @-homomorphism and @N' is a direct summand of N. There-
fore we can extend f to an R-homomorphism N——> N as required.

Theorem 2.6. Let M be an R-module with M= G (M) P (Z‘i & M)
le

where each M; is indecomposable injective. Then, for a direct summand
N of M, the following statements hold :

(1) There exists a subset J of I and submodules M), (; € J) of M
such that M;=M,(jJ) and N = G(N)G)(jé‘]l D M;).

(2) There exists a subset K of I for which
M= G(M)@SE;@M;)@EEZKEBM).

Proof. (1) Let M=N@®N'. By Lemma 2.2, N=G(N)PH
and N'=G(N')@ H' for some submodules HS N and H' S N'. Since
M=G(M)PD HP H', we have E S M=HDH'. Applying Theorem

I

2.4, there exists a subset / of I and submodules M, of H with
M; = M,(j € J) such that H = ; @ M,. Consequently we have
eJ

N=GN) B & D M)

(2) Since M=GM)DHDH, by Lemma 2.3 G(M)PH=
G(M)@D F for some direct summand F of 3> @ M, According to
er

Theorem 2, 4, there exists a subset K of I for which E; OM=F]
ﬁég @G M) Thusweget M=GM)PDHD (kgl‘EB M) .

Remark. In order to study the problem when complete decomposi-
tions of modules complement direct summands, Theorem 2.6 essentially
reduces it to the case of Goldie torsion modules (cf. [6]).
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3. Nonsingular locally injective modules. @ also denotes the
maximal ring of left quotients of R/G(R).
The following lemma is easily verified, so we omit its proof.

Lemma 3.1. If M is a nonsingular R-module, then the following
conditions are equivalent :

(a) M is locally injective as an R-module.

(b) M is locally injective as an R/ G(R)-module.

(c) M=@M.

Theorem 3.2. If M isa locally injective R-module, then the following
conditions are equivalent :

(a) M does not contain proper essential locally injective submodules.

(b) Any locally injective submodule of M is a direct summand of M.

(¢) M does not contain proper essential submodules which are direct
sums of injective modules.

(d) Any submodule of M which is a direct sum of injective sub-
modules is a direct summand of M.

Furthermore, in case M 1is nonsingular, the following conditions are
also equivalent to each of the above conditions (a) through (d).

(e) M isa direct sum of indecomposable injective modules.

(f) The ascending chain condition holds for elements in 7 (M).

Proof. (a)=—=>(b). Let N be a locally injective submodule of M.

We can choose a maximal independent family {M};e; of injective sub-

modules of M such that NN (ZIGB M)=0. Since NP (DM, is an
ie i€l

essential locally injective submodule of M, we have M= NP (ZI & M,).

(b)=(d) and (d)=>(c) are trivial.
(c)=(a). Let N be alocally injective essential submodule of M.
Then we can find injective submodules {N;} ., of N such that > PN, &,
=34

N. By (c) @GN, =M and so M= N.
et

(f)=(a). Let N be a locally injective essential submodule of M,
and suppose that M= N. Then, by (f), % (M — N) has a maximal
member (0: e)z under inclusion. Since NE. M, ReN N0 and by
the local injectivity of N there exists an injective submodule F of N such
that 0% Re N F. Hence M= F@ L for some submodule L. We
express ¢ as e=f+k fEF, kL Then (0: ¢S (0: k)r But
k cannotbein N and so we have (0:e)rs=(0: k). Since FN Res~0,
there exists 7 in R such that O0s%re= F. Inasmuch as 0= (rf —re) +
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rke FP L, we see that »2 =0 and re =0, a contradiction. Thus
M= N.

(d)=>(f). Suppose that there exists an infinite subset {x:| 1 =1, 2,
s} of M such that 0:x)x = (0: %)% --~. Then for each i the
canonical map Rx; —> Rx;., induces the canonical map @Qx.——> Qx4
which is not an isomorphism. Since each @x;.; is projective as a @-
module, the sequence &Qx; —> @Qx;.,, —> 0 splits. As a result, there
exists an infinite subset {y; |7 =1, 2, ---} of non-zero elements in Qx;

such that {@y,|i=1, 2, ---} is an independent family. By (d), i D Qy,
it

is a direct summand of @x,. But this is impossible, Therefore the
ascending chain condition must hold for elements in ' (M).

(f)=>(e). First we claim that M has the essential socle as a Q-
module. To see this, let 0s*x & M. Then @Qx= Qe for some idem-
potent ¢; in @ since @x is projective as a @-module. We may show that
Qe, contains a simple @-module. If Qe; is not simple, then there exist
non-zero idempotents e,, f, in Qe such that e, =e,+f,, e fo=fre,=0
and Qe;, = Qe, P Qf,. Since (0: )¢ & (0: e,)q, it follows that (0: e;)z
Z (0: e)r. If Qe is not simple, similarly we can take a non-zero
idempotent ¢; in Qe, such that (0: e,). S (0: e;)r. By repeating this
argument, we obtain a subset {e;, ¢, ---} of Qe, such that (0:¢): &
(0: &) % -~ But by (f) this sequence must terminate. Thus Qg
contains a simple @-submodule as claimed.

As we have shown above, (f) implies (a) and from (a) we see that
M just coincides with its socle, because the socle of M is a locally
injective submodule of M. We write M=2,_; P Qx; as a direct sum of
simple @-submodules. Then @Qx,= Er(Rx;) and so by Lemma 1.1 it is
indecomposable. Consequently M is a direct sum of indecomposable
injective R-submodules.

(e)=>(f). Assume that the ascending chain condition does not hold
for elements in (M), andlet {x, | i=1, 2, ---} be an infinite subset of
M such that (0: x)2& (0: 2)z & ---. Inasmuch as (0: %) E(0:4,)0 &
.-, we can obtain an independent infinite family of non-zero @-submodules
of Qx,. However @Qx; is completely reducible as a @module and so it
does not contain such an infinite family of non-zero submodules. Therefore
(f) holds.

Using Theorem 3. 2, we show the following result.

Theorem 3.3. The following conditions are equivalent :
(a) Q is asemisimple artinian ring.
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(b) The ascending chain condition holds for elements in 7 (Q).

(c) For every monsingular injective Rmodule M, the ascending
chain condition holds for elements in S(M).

(d) For every nonsingular locally injective R-module M, the ascend-
ing chain condition holds for elements in 27 ( M).

(e) Every nonsingular injective R-module is a direct sum of in-
decomposable injective submodules.

(f) Every nonsingular locally injective R-module is a direct sum of
indecomposable injective submodules.

(g) Every nonsingular locally injective R-module is injective.

(h) Any direct sum of nonsingular injective R-modules is also in-
Jjective.

(i) Every nonsingular locally injective R-module is a direct sum of
injective submodules.

Proof. Since (e) and (f) in Theorem 3.2 are equivalent, we obtain
the equivalences (a)<=>(b), (c)<=(e) and (d) <= (f).

(a)=(f). Any nonsingular locally injective R-module M is a @
module by Lemma 3. 1 and so by (a) it is a completely reducible @ module.
As we have shown in the proof of Theorem 3.2, M is a direct sum of
indecomposable injective R-modules.

The implications (d)=>(c)==(b), (f{)=>(i) and (a)=>(h)=>(g) are
trivial.

(g)=>(a). Let A be a left ideal of Q. Since A is a locally
injective nonsingular R-module, A is injective as an R-module and so is
as a @module. Hence A is a direct summand of @ as a @module.

(i)=(a). Since every left ideal of @ is a locally injective non-
singular R-module, we see from (i) that every left ideal of @ is a direct
sum of principal left ideals. Therefore every left ideal of @ is projective
as a Qmodule, whence @ 1is a left hereditary ring. Since @ is left self-
injective, this vields that @ is a semisimple artinian ring (see [4]).

Remarks. (1) The equivalence of (a), (e) and (h) was shown by
Teply [5, Theorem 1. 2].

(2) It is easy to see that ¥ (M) S (@) for every nonsingular
R-module M.

(3) &7(Q) coincides with the family of all closed left ideals of R
containing G(R). (Therefore (a) <= (b) in Theorem 3. 3 is nothing but
a well-known result in case Zz(R)=0.) To see this, let x= Q. Since Q
is regular, xx'x = x for some x' in @. Putting ¢ = xx', we see that
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e=¢% (0: x)x=(0: &)z and (0: &)z/G(R)= Q1 —e) N (R/G(R)). Since
Q1 —e) N (R/G(R)) is a closed left ideal of R/G(R) (see [1, p.112]), by
Lemma 1.2 (0: e)z is a closed left ideal of R. Conversely let 7 be a closed
left ideal of R containing G(R). Then I/G(R) is a closed left ideal of
R/G(R). Hence I/G(R) = Qe N (R/G(R)) for some idempotent ¢ in Q,
and thus 7= (0:1 — &),

4. Indecomposable injective modules.

Theorem 4.1. Let M be a direct sum of injective R-modules (M)} ;=1
and consider the following conditions :

(a) The ascending chain condition holds for elements in U ;e; ' (M,).

(b) M satisfies any of the conditions (a) through (d) in Theorem 3. 2.

(c) Every direct summand of M has the exchange property in the
decomposition M = Z &P M.

(d) Every dzrect summand of M is a direct sum of injective modules.
Then we have (a)—=> (b) => (c) = (d).

Proof. (a)=>(b). By an argument similar to that used in the proof
of (f)=>(a) in Theorem 3. 2, we shall show that M does not contain proper
essential locally injective submodules. Assume that M contains a proper
essential locally injective submodule N. Since (M — N) N (iLEJI M,) is not
empty, & ((M— N)N (ﬂLEJ[ M;)) has a maximal member, say (0: x),, under
inclusion. Since NS, M and N is locally injective, there exists an
injective submodule F of N such that F Rx50. Since F is injec-
tive, as is well-known (e. g. [2, Proposition 6. 18]), F has the exchange
property in M = E & M. Hence there are submodules M; S M, for
all ¢ such that M FEB(EGBM) Let x=f+x + - +x, fEF,
0, EM, j=1,2, -, n Take any rx(#~0) FN Rx. Then 0= (rf—7x)
SR 2700 L 2 and so 7x; =--=rx, =0. This implies that (0: x), =
(0: %) for all j and hence by the maximality of (0: x): we must have
%, € N for all j. However this contradicts the fact that x&Z N. Thus
M does not contain proper essential locally injective submodules.

(by=(c). If N is adirect summand of M, then by Lemma 2.1
there are submodules M; of AM; for all ; such that NP (EGB E(MY))

€S.M. Hence, by Theorem 3. 2(a), we have M = N (_.Z_,l‘ P EMY)).
(¢)=(d). This is trivial.

Finally we show the following result.
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Corollary 4.2. The following conditions are equivalent :

(a) The ascending chain condition holds for irreducible left ideals
of R.

(b) Ewery locally injective submodule of any completely decomposable
R-module is a divect summand.

Proof. In [7; 8], Yamagata gave several conditions which are
equivalent to (a). One of these was

(*) Any complete decomposition of any completely decomposable
R-module complements direct summands.

However both (a)=>(b) and (b)=>(*) follow from Theorem 4.1,
and so (a) and (b) are equivalent.
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