ON THE p'-SECTION SUM IN A FINITE GROUP RING

YUKIO TSUSHIMA

Let G be a finite group, and p a prime number. Let $C_1 = \{1\}$, C_2 , \cdots , C_r be all the p-regular classes of G. We denote by S_i the p'-section containing C_i , namely $S_i = \{\sigma \in G | \sigma' \in C_i\}$, where σ' denotes the p'-component of the element σ of G ($i = 1, 2, \dots, r$). In particular, S_1 is the set consisting of all the p-elements of G. Let k be a field of characteristic p, and f the Jacobson radical of the group ring f (f).

Recently, the author is informed by T. Okuyama that in 1955 R. Brauer stated the following without proof.

Theorem (Brauer [2]). Let $\hat{S}_j = \sum \sigma$, where the summation is taken over all $\sigma \in S_j$. Then there holds that $\bigcap_{j=1}^{\tau} (0:\hat{S}_j) = J$.

We recall here the previous paper [6]. There, we showed that $(0:\hat{S}_1)\supset J$, while the inclusion $\bigcap_{j=1}^r (0:\hat{S}_j)\subset J$ is an easy deducement of Proposition 1 in [6]. So that, we should like to provide a new proof of the above Theorem along with the arguments used in the proofs of these results.

As a consequence of the Theorem, we have that if e is a primitive idempotent of k[G], then $k[G] \hat{S}_{j}e$ is the socle of k[G]e, provided $\hat{S}_{j}e \neq 0$. The condition will be described by the value on C_{j} of the Brauer character afforded by k[G]e. On the other hand, Okuyama's proof of the Theorem is different from ours. There, the condition $\hat{S}_{j}e \neq 0$ is discussed in connection with the coefficients a_{r} 's which appear in the expression $e = \sum_{r \in G} a_{r}\tau$, $a_{r} \in k$. We refer to it at the end of this paper.

In the proof of the Theorem, from the beginning, we may assume that k is a splitting field for G. In addition to the notations introduced above, we shall use the following.

Let \mathfrak{p} be a prime divisor of p in an algebraic number field containing the |G|-th roots of unity, and ν the exponential valuation associated with p multiplied by a factor to make $\nu(p)=1$. We assume henceforth k is the residue class field of ν . If α is a \mathfrak{p} -integer, then $\overline{\alpha}$ denotes the residue class of α in k. Let $\{\eta_1, \eta_2, \dots, \eta_r\}$ and $\{\phi_1, \phi_2, \dots, \phi_r\}$ be the set of the principal indecomposable Brauer characters of G and the set of

the irreducible Brauer characters of G respectively, in which we arrange the indices so that $(\eta_J, \phi_J) = \delta_{ij}$ for all i, j $(i, j = 1, 2, \dots, r)$. The k-algebra k [G]/J is isomorphic to a direct sum of full matrix algebras over $k ; k [G]/J \simeq \sum_{i=1}^r M(n_i, k)$. We assume that under the isomorphism the simple component corresponding to the irreducible k-character $\overline{\phi}_i$ is mapped onto $M(n_i, k)$ and so $n_i = \phi_i$ (1). If I is a subset of k [G], then (0:I) denotes the set of the right annihilators of I in k [G]. Finally, we put $\lambda(\sum_{\sigma \in G} a_{\sigma}\sigma) = a_1$, where $a_{\sigma} \in k$ and 1 denotes the identity of G.

Now we enter into the proof of the Theorem. Let S_j be a fixed p'section and $\sigma \in C_j$. There holds that $\nu(\eta_i(\sigma)) \ge \nu(|C_{\sigma}(\sigma)|)$ for all η_i ([3], (84.14)). After a suitable change of indices if necessary, we may
assume that the first $\eta_1, \eta_2, \dots, \eta_i$ are all that enjoy the equality sign in
the above. We put $\eta_i'(\sigma) = \eta_i(\sigma)/p^n$, where $|C_{\sigma}(\sigma)| = p^n h$, (p, h) = 1.

From the orthogonality relation

$$\sum_{i=1}^{\tau} \eta_i(\sigma) \phi_i(\tau^{-1}) = \begin{cases} |C_{\sigma}(\sigma)| & \text{if } \tau \text{ is conjugate to } \sigma \\ 0 & \text{otherwise} \end{cases}$$

and that $\overline{\phi_i(\tau)} = \overline{\phi_i(\tau')}$ for any element τ of G, we get (reducing mod \mathfrak{p})

(*)
$$\sum_{i=1}^{t} \overline{\gamma'(\sigma)} \, \overline{\phi_i(\tau^{-1})} = \begin{cases} \overline{h} & \text{if } \tau \in S_j \\ 0 & \text{otherwise.} \end{cases}$$

Let $U_j = \sum_i k [G] e + J$, where e runs over the primitive idempotents such that k[G]e affords a Brauer character η_i with s > t. Then U_j is a two sided ideal of k[G]. In fact, it is the inverse image of $\sum_{i=t+1}^r M(n_i, k)$ by the composite map $k[G] \longrightarrow k[G]/J \simeq \sum_{i=1}^r M(n_i, k)$. We identify $k[G]/U_j$ with $\sum_{i=1}^t M(n_i, k)$ and denote by ρ_i the projection of $k[G]/U_j$ onto $M(n_i, k)$. If we put $\mu = \sum_{i=1}^t \overline{\gamma_i(\sigma)}$ tr ρ_i , then μ is a (symmetric) non-singular linear function on $k[G]/U_j$. Hence by Theorem 9 of Nakayama [3] (or see [1], (55, 11)), there exists an element c of k[G] such that $(0:U_j)=k[G]c$ and $\eta\phi(x)=\lambda(cx)$ for all $x\in k[G]$, where ϕ is the natural map $k[G] \longrightarrow k[G]/U_j$. From this, by making use of (*), we get easily that $c=\overline{h}\widehat{S_j}$ and hence $(0:\widehat{S_j})=U_j$, as k[G] is Frobeniusean. It is clear that $\bigcap_{j=1}^r U_j = J$ (namely, for any i, there exists a p-regular element σ such that $\nu(\eta_i(\sigma))=\nu(|C_G(\sigma)|)$. This follows easily, for instance, from the relation $(\eta_i, \phi_i)=1$). Thus we conclude that $\bigcap_{j=1}^r (0:\widehat{S_j})=J$ and the proof is complete.

From the above argument, we get also

Corollary A. Let e be a primitive idempotent of k[G], and let η

be the Brauer character afforded by k[G]e. If S_j is a p'-section of G, then the following are equivalent:

- (1) $\hat{S}_{i}e \neq 0$.
- (2) $\nu(\eta(\sigma)) = \nu(|C_{\sigma}(\sigma)|)$, where σ is a p-regular element in S_{J} .

We continue our argument to give an alternative proof to the following result of Okuyama.

Corollary B (Okuyama [5]). Under the same notation as in Corollary A, let $e = \sum_{\tau \in G} a_{\tau}\tau$. Then the following are equivalent:

- (1) $\hat{S}_1 e \neq 0$.
- (2) $\sum a_{\tau} \neq 0$, where the summation is taken over all $\tau \in S_j^{-1} = \{\sigma^{-1} | \sigma \in S_j\}$.

Proof. Recall that if ξ is a symmetric linear function on M(n,k), then there exists some $a \in k$ such that $\xi(x) = a \cdot \operatorname{tr}(x)$ for all $x \in M(n,k)$ (since the set $\{xy - yx \mid x, y \in M(n,k)\}$ spans the subspace consisting of the elements of trace zero). In particular, we have $\xi(e) \neq 0$ for any primitive idempotent e. Keeping the notation used in the proof of the Theorem, we know that μ is a symmetric, non-singular linear function on $k[G]/U_J = \sum_{i=1}^t M(n_i, k)$ and hence $\mu \psi(e) \neq 0$ for any primitive idempotent e of k[G] not contained in U_J . And if $e = \sum a_i \tau$, then $\mu \psi(e) = \sum_{i,\tau} a_i \overline{\gamma_i'(\sigma)} \overline{\phi_i(\tau)} = (\sum a_i) \overline{h}$, where the second summation is taken over all $\tau \in S_j^{-1}$. From these observations, we get the above assertion.

Remark. According to a result of Okuyama [5], there holds that the summation $\sum a_{\tau}$ in the above (2) is equal to the restricted summation $\sum' a_{\tau}$, where τ runs over all $\tau \in C_J^{-1}$.

REFERENCES

- [1] G. AZUMAYA and T. NAKAYAMA: Daisugaku II (Algebra II), Iwanami, Tokyo, 1954 (in Japanese).
- [2] R. Brauer: Number theoretical investigations on groups of finite order, Proc. Intern. Symposium on Algebraic Number Theory, Tokyo and Nikko, 1955, pp. 55—62, Science Council of Japan, Tokyo, 1956.
- [3] C. W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras, Wiley & Sons, New York, 1962.
- [4] T. NAKAYAMA: On Frobeniusean algebras I, Ann. of Math. 40 (1939), 611-633.
- [5] T.OKUYAMA: To appear.

86 Y. TSUSHIMA

[6] Y. TSUSHIMA: On the annihilator ideals of the radical of a group algebra, Osaka J. Math. 8 (1971), 91—97.

DEPARTMENT OF MATHEMATICS OSAKA CITY UNIVERSITY

(Received January 24, 1978)