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Throughout this paper a ring will mean an associative ring with
identity 1540. A ring R is semilocal if R}J(R) is Artinian, where J(R)
denotes the Jacobson radical of R. R is said to be semiprimary, or SP
for brevity, if R is semilocal and J(R) is nilpotent. If the ring R has
the property that every proper homomorphic image of R is semiprimary
(resp. Artinian), we call R a resiricted semiprimary (resp. restricted
Artinian) ring, or RSP ring (resp. RA ring) for brevity. E. P. Armendariz
and K. E. Hummel [1] have studied these rings in details.

Let AG denote the group ring of the group G over the ring A. Given
a subgroup H of G, wH will denote the right ideal of AG generated by
{1—r|heH}; if H is normal (written H<G) then wH is an ideal and
AGl/wH=A(G/H). If AG is SP, thensois A by A=AG/wG. Further,
AG being perfect, G is finite by [8, Theorem]. Conversely, suppose
that A is SP and G is finite. Since AG/J(A)G=(A!J(A))G is Artinian
and J(AG) contains the nilpotent ideal J(A)G, AG is SP. Thus we have
seen that AG is SPif and only if A is SPand G is finite.

In this paper, we are exclusively concerned with RSP group rings
which are not SP. We shall prove that if AG with G=*1 is RSP but
not SP then G is an infinite group in which every non-trivial subnormal
subgroup is of finite index (Theorem 1), and that AG is RSP but not SP
and G contains a non-trivial solvable subnormal subgroup if and only if A
is (Artinian) simple and G is either an infinite cyclic group or an infinite
dihedral group (Theorem 2).

1. In this section we shall prove the following :

Theorem 1. Let A be a ring, and G a non-trivial group. If AG
is RSP but not SP then A is (Artinian) simple and G is an infinite group
in which every non-trivial subnormal subgroup is of finite index.

In advance of proving the theorem, we state several preliminary lem-
mas. Anideal 7 of AH (H<G) is said to be G-invariant if g~'Ig= T for
all geaG.

Lemma 1. Let H be a normal subgroup of G such that |G: H| <o
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and AH is a prime rving. Then every non-zero ideal of AH contains a
non-zero G-invariant ideal.

Proof. Let {g1=1, g -, g.} be aright transversalof H in G. If
I is a non-zero ideal of AH, then I,= N gi'lg; is a G-invariant ideal of
i=1

AH contained in I. Since AH is prime, J; is obviously non-zero.

Let 4(G)={x=G ||G: Cs(x)| <o} be the {.c.subgroup of G. Itis
known [4, Theorem 8] that AG is prime if and only if A is prime and
G contains no non-trivial finite normal subgroup, or equivalently, A is
prime and /(G) is torsion free abelian. If H 1is a subgroup of finite
index then it is easy to see that 4H(H)CJ(G). Hence the next lemma is
immediate.

Lemma 2. If AG is prime and H is a subgroup of G with |G: H]|
<00, then AH is prime.

We require also the following which is included in a more general
theorem [1, Theorem 2. 7 (b)] :

Lemma 3. If AG is RSP but not SP then AG is a prime ring.

It is known (see [2]) that a ring R is SP if and only if there exists
an integer N such that R contains no strictly decreasing sequence of N
principal left (right) ideals. This characterization of SP rings will be used
in the proof of the next lemma.

Lemma 4. If a ring R is a direct summand of an SP ving S as a
right R-module, then R is also SP.

Proof. Since SINR=1I for each left ideal 7 of R, the assertion is
immediate by the above.

Lemma 5. If AG is RSP but not SP and H is a non-trivial normal
subgroup of G, then AH is also RSP but not SP.

Proof. Since A(G/H)=AG/wH is SP, we have |G:H|<Cco (see
the introduction). Since AG is prime (Lemma 3), AH is also prime
(Lemma 2) and every non-zero ideal of AH contains a non-zero G-invarinant
ideal (Lemma 1). Thus in order to show that AH is RSP, it is enough to
prove that AH/I is SP for every non-zero G-invariant ideal I of AH.
Obviously, AGI is an ideal of AG and AG/AGI is SP. To be easily
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seen, (AH+AGI)]AGI is a direct summand of AG/AGI as a right
(AH+ AGI)/ AGImodule. Noting that AH is a direct summand of
AG as a right AH-module, it follows that AH/I=AH/(AGIN AH)=
(AH+ AGI)/ AGI is SP (Lemma 4). Finally, since |G: H|<Ccc and G is
infinite, H must be infinite and AG is not SP.

Proof of Theorem 1. Obviously A is SP and G is infinite. Suppose
A contains a non-zero proper ideal I Then (A4/I)G=AG/IG is SP and
G is finite, a contradiction. Hence, A is simple. Now, let H be a non-
trivial subnormal subgroup of G:H=H,<H,,<'-<H,<Hy,=G. By
repeated use of Lemma 5, we see that each AH,; is RSP but not SP. Since
A(H,_,/|H)=AH, ,/wH, is SP, it follows |H; ,: H;|<c. Hence |G: H|
< oo,

Remark 1. In view of Theorem 1, it seems worthwhile to note that
if AG is RSP but not SP and G is non-trivial then G contains no non-
trivial finite subnormal subgroup and that AH is RSP but not SP for every
non-trivial subnormal subgroup H of G.

Corollary 1. Let H be a non-trivial subnovmal subgroup of G. If
AG is RSP but not SP then either C;(H)=1 or 1(G)5=1.

Proof. If there exists x551 in Co(H) then |G: Colx) | <|G: H| <Coo
by Theorem 1, and therefore x=4(G).

2. In this section, we shall prove our principal theorem that is stated
as folows :

Theorem 2. Let A be arving, and G a non-trivial group. Then the
following statements are equivalent :

1) AG is RA but not SP and G contains a non-trivial solvable sub-
normal subgroup.

2) AG is RSP but not SP and G contains a non-trivial solvable sub-
normal subgroup.

3) AG is RSP but not SP and the f. c. subgroup of G is non-trivial.

4) A is (Artinian) simple and G is either an infinite cyclic group or
an infinite dihedral group.

Proof. 1)=2). This is trivial.
2)=>3). If H is a non-trivial solvable subnormal subgroup of G then
H contains a non-trivial subnormal abelian subgroup L, which is obviously
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a non-trivial subnormal subgroup of G. Hence, for each &L, |G: Colx)]
<{|G:L|<<eo by Theorem 1.

3)=>4). First, A is simple by Theorem 1. Now, by Lemma 3, AG
is prime, so that J(G)71 is torsion free abelian. Since AJ(G) is RSP
but not SP (Lemma 5), every non-trivial subgroup of 4(G) is of finite
index (Theorem 1). Thus, J(G) is finitely generated, and hence infinite
cyclic: #(G)=<a>. For each x&C:ia), |G: Co(x)|<[G: L ad | <o,
namely, Cs(a)=< a>. Here, we assume that G~ {a> and d&a .
Then 8C.(a)=b< a> is the set of elements inducing the only one non-
trivial automorphism of < e > (a—a%). Thus, G=<a> Ub<a> and
b~'ab=a"'. Noting that b’ < a’>, we can see b*=b"'b*b=>b"? whence
it follows b’=1. We get therefore G= {a, b|b*=1, b~ 'ab=a"'>.

4)=—1). Since G is either an infinite cyclic group or an infinite
dihedral group, G contains a non-trivial normal abelian subgroup and AG
is not SP. It remains therefore to prove that AG is RA. Now, let A=D,
with some division ring D. Since AG=(DG)., AG is RA if and only if
sois DG. Thus, from the beginning, we may assume that A is a division
ring.

Case 1: G is an infinite cyclic group < x >. Obviously, AG=A[x]
+A[x7'] where A[x] and A[x"'] are polynomial rings over A in the
indeterminates x and x~' respectively. Given a non-zero ideal I of AG,
L=INA[x] and L=INA[x"'] are non-zero ideals of A[x] and A[x7']
respectively. Since every non-zero ideal of A[x] is a principal left (or
right) ideal with a monic generator, A[x]/I, and A[x~']/I, are finite
dimensional over A. Since (r,+ 1, 7.+ L)i— r,-+7,-+ I defines an A-homo-
morphism of A[x]/L, @ A[x~]/L onto AG/I, AG/I is also finite dimen-
sional over A, and hence Artinian.

Case 2: G is an infinite dihedral group <a, b|6*=1, b~ 'ab=a"'>.
Setting H= < a >, we have AG=AH+ AHb. Let I be a non-zero ideal
of AG, and r=r,+7r,b a non-zero elementof I If ;=0 then 0%r,=
rb'eAHNI, and if ;50 then 0%%rd®—a 'ra=r,a*—r,€ AHN I Hence
J=AHNI is a non-zero ideal of AH. Since H is infinite cyclic, AH/J
is finite dimensional over A (see Case 1). Now, (r,+], ro+)—ri+7b+1
defines an A-homomorphism of AH/JD AH/J onto AG/I Consequently,
AG/I is finite dimensional over A, and Artinian.

3. It was communicated to us by D. S. Passman that the group algebra
KSy is not RSP where K is a field and Sy is the group of restricted
permutations on an infinite set X. Thus the converse of Theorem 1 is
false. However we have the following theorem in this direction.
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Theorem 3. Let A be an SP-ring, and G an infiinite group in which
every non-trivial normal subgroup is of finite index. If 1= {geG|1—g
1} is non-trivial for every non-zero ideal I of AG, then AG is RSP
but not SP.

Proof. Obviously, AG is not SP. Given a non-zero ideal I of AG,
we set H=0I Since H is a non-trivial normal subgroup of G, G/H is
a finite group. Hence, AG/wH=A(G/H) is SP. Recalling that «HC],
it follows that AG/I is SP.

Remark 2. Needless to say, the condition that £7 is non-trivial for
every non-zero ideal I of AG is not very satisfactory. Nevertheless we
have some instances where this holds. Let K be a field, ¢ a prime
number different from the characteristic of K, and G an infinite group in
which every non-trivial normal subgroup is of finite index. Suppose for
any finite number of distinct elements x,=1, x,, :--, x,EG there exist
elements y,, ¥, ‘', ¥.EG such that {7 lyxls, 7=0, 1, -, > is an
elementary abelian group of order precisely q(’””z. Then Steps I and II in
the proof of Bonvallet-Hartley-Passman-Smith Theorem [7, Chap. 9, Sec.
47 (cf. also [3]) exactly prove that €7 is non-trivial for every non-zero
ideal I of KG. Moreover, in [7, Chap. 9, Sec. 4], it has been proved
that algebraically closed groups and universal groups possess the property
cited above,

Remark 3. Suppose the group algebra KG of the group G over the
field K is RSP but not SP. We discuss the semisimplicity problem for
KG.

Case 1: K is of characteristic 0. If J(KG)%0 then KG is semi-
local, sothat G is finite by [5], a contradiction. This means J(KG)=0.

Case 2: K is of characteristic p>>0. By the proof of [6, Theorem
9. 3], it is not difficult to prove that KG/N*KG is SP if and only if G is
locally finite and |G: O.(G)|<<Cec. (For more details, see [6].) Thus,
either N*KG=0 or G is locally finite with |G: O,(G)|<Coo.

Lastly we would like to thank the referee for helpful suggestions.
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