TWO COMMUTATIVITY THEOREMS FOR RINGS

YASUYUKI HIRANO and Hisao TOMINAGA

Throughout R will represent a ring (with or without 1), N, the set
of all nilpotent elements of R, N the prime radical of R, and J the
Jacobson radical of R. Given subsets S, T of R, we set Vi(T) =
{s&S|st=ts forall t€T} and Vi(T)={s< S|st=—1ts forall tE T}.
We denote by C the center of R, and by C' the set of all xR such
that for each y R there holds [x, y—yy']=0 with some ' in the sub-
ring [ y] generated by y. In [1], C' is called the cohypercenter of R.

In this paper, we consider the following conditions :

A) For each x=R there exists a positive integer # such that
x—x""eN,.

A’) For each xR there exist positive integers m and # such that
2" — 2" EN,.

A") For each x ER there exist a positive integer » and an element
x'e[x] such that x"=x"x'.

A'"Y For each x=R there exists an element x'[x] such that
x—xx' EN,.

B) x—yEN, and y—2zEN, (¢, y, 2ER) imply x*=2° or xy=yx.

B") x—yEN, (x,yER) implies that x’=y* or both x and y are
contained in Vi(N,).

B') Either R is commutative or R=V;(N,) and #*=0 for all
uENo.

C) For each x, yER there exist x'&[x] and y'E[y] such that
[x—zxx', y—yy']1=0.

C') For each x,y=ER there exists some x'&[x] such that x—xx'
isin Vy(y).

Recently, in [1, Theorem 3], M. Chacron proved that if R satisfies
the condition C) then both R/N and N are commutative. The proof
depends heavily on another (perhaps more difficult) result in [1] that the
cohypercenter of a semi-prime ring coincides with its center. In §1 of this
paper, we shall give a somewhat direct and economical proof to the above
theorem. And in §2, we shall deal with the commutativity theorem of S.
Ligh and J, Luh (cf. [3]) and D.L. Outcalt and A. Yaqub [4] without
assuming the existence of 1.
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1. The next has been shown in [1, Remarks 12 and 14]. However,
for the sake of completeness, we shall give the proof.

Lemma 1. If C) is satisfied then C' is a commutative subring of R
containing N,.

Proof. Let x€N,, and y=R  There exist x;&[x] and y,&[y]
such that [x—xx;, y—yy:]=0. To be easily seen, there exist x;& [xx]]
and y,&[y] such that [x—xx/x;, y—yy:]=0. Repeating the same
procedure, we obtain eventually 0= [x—xxix:- %1, y—yyel=[% y—yve]
for some %k, which proves N,EC'. Next, for any ¢, b=C' we consider
the subring S generated by {a, b}. Given xS, one will easily see that
there exist some x'&[«x] such that [a, x— xx"]=0=[b, x—xx'], namely,
x—xx'€Vs(S). Then, by [2, Theorem 19], S is a commutative ring
contained in C’. This proves that C’' is a commutative subring of R.

Corollary 1. Assume that R satisfies the condition C). If R is
either a division ring or a radical ring without non-zero zero-divisors, then
R is commutative.

Proof. 1If z is a quasi-regular element of R with the quasi-inverse
z* then y—yz and y—yz* will be written formally as y(1—2z) and
y(1—2z)! respectively. Obviously, the map defined by y—(1—2)y(1—2z2)~"
(y=R) is an automorphism of R. Now, let ¢ and x be elements of R
such that ¢2C[x] and x&ZC[a]. First we shall show that there exist
a', ai[a] such that
a [A—2x)(a—aad)(1—x)"!, a—aay] =0,
) [(1—ax)(e—aa’)(1—ax)™, a—aa;]=0.
In any rate, [(1—x)(a—aa’)(1—x)"',a—aa, ]=0 for some a",a, €[al.
Then [(1—eax){(a—aa’)(1—0)} (1—ax)™!, (a—aa)(1—b)]=0 for some
v=[a—aa"] and b,=[a—aa,]. Evidently, setting o'=a"'+¥& —a''b' and
ay=a, +by—a; b, we obtain (1). For the brevity, we set a=a—ad’,
av=a—aa;, PB=1—x)a(l—x)", and F'=({1—ax)a(l—ax)". Then (1)
becomes [f, ao]=0=[#'; o], and we have

(2) (1—x)a=p8(1—x),

3) (1—ax)a=p(1—ax).

Now, subtracting (3) from (2) multiplied by ¢, we get
(4) (a—Na=(fa—aB) x+ap—p"

This deduces (B'a—af)x=(@—1)a—aB+ ' € Vz(a,), so that (B'a—afd)
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[x, ag]=0. If [x, @,]5~0, then g8=p'a, and by (4) it follows ale—1)=
af—pB'=8'(a—1), that is, a=p". Going back to (3), we get (1—ax)a
=a(l—ax), namely, a[x, «]=0. Hence, [x,a]=0. We have therefore
seen that every element of R is in (', whence it follows the commutativity
of R by Lemma 1.

Lemma 2. If R is a semi-prime ring satisfying C) then R is com-
mutative.

Proof. Without loss of generality, we may assume R is prime.

Case I: R is semi-primitive. We may assume further R is primitive.
Every homomorphic image of a subring of R inherits the condition C).
Since matrix rings over division rings of degree =1 contains non-commuta-
~ tive nilpotent elements, by Lemma 1 a routine argument enables us to see
that R is a division ring, so R is commutative by Corollary 1.

Case II: R is not semi-primitive. If J=~0 is shown to be com-
mutative, then one will easily see that Vi(/)SC, so that R=C. There-
fore, we assume henceforth R=/. Suppose R contains a non-zero element
a with ¢*=0, Then for each yEaR there exists some y'=[y] such
that 0=[a, y—yy'1=yy'a—ya. Hence, we have y*=y?%'. This implies
evidently y*=0. Combining this with 0= yy'a—ya, we readily obtain
ya=0, namely, @¢Ra=0. This contradiction shows that R is a reduced
ring. Thus, R is a ring without non-zero zero-divisors, and so commutative
by Corollary 1.

Now, as a combination of Lemmas 1 and 2, we readily obtain

Theorem 1 ([1, Theorem 3]). If R satisfies the condition C) then
both R/N and N are commutative.

2. Evidently, in A"), x"=2x"x' may be replaced by x"=x"*lx/,
Similarly, in A"') (resp. C')), x—xx'EN, (resp. x—zxx'E Vy()) may be
replaced by x—x2'EN, (resp. x—2°x'E Vy (»)).

Lemma 3. (1) If B) is satisfied then N, is an ideal and x*S Vi(N,)
for all x=R, especially, every idempotent of R is central.

(2) If N, is an ideal then the conditions A)— A'") are equivalent.

(3) B'") implies B'), and B') implies B).

(4) If for each x,yER there exists some zER such that [x—x°2, y]
=0 then N,CC.
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Proof. (1) is contained in [3, Lemma 1], and (3) is easy.

(2) Obviously, A)=>A")=—=A"). For any %' [x] we have (x—xx')"
=(x"—x"x")—(x"—x"x")x" with some x" € [x], which proves A")=>A""),
Finally, A"")=>A) by [5, Corollary 3. 5].

(4) Let x"=0(n>1). We proceed by the induction with respect to
n. Given yER, there exists z with [x—x’z, y]=0. Since x* is central
by («®)"'=0, it follows (x®2)"'=0, so that x?z is central. Hence,
[x, y]=[x%2,3]=0.

Lemma 4, (1) If B) is satisfied then N, is either commutative or
anti-commutative with u*=0 for all uEN,.

(2) If A) and B) are satisfied and R is left (or right) s-unital then
N, is commutative.

(3) If A) and B) are satisfied and N, is commutative then R is com-
mutative.

Proof. (1) By Lemma 3 (1), N, is an ideal of R and 2z’ Vi(N,)
for all z&R. Suppose there exist x, y=N, such that xy=~yx. Since
x+y=2x=0 (mod N,) and (x+y)x7*zx(x+y), B) implies 0=(x+y)*=42
and similarly 0=(x+y)’=3% From these it follows xy=—yx. Now, by
making use of Brauer’s trick, one will easily see that N, is anti-com-
mutative. If » is an arbitrary element of the center of N;, then xv=vx
= —zxv. Hence, we obtain v*=(x+v)*—2xv—2*=0,

(2) Suppose there exist x, yEN, such that xys~yx. Then, by (1), N,
is an anti-commutative ideal and #’= 0 for all #N,. By [6, Theorem 1],
there exists an element ¢ such that cx=x and cy=y. Choose an element
d<=[c] such that c"=c"*'d for some positive integer » (Lemma 3 (2)).
Then e=c"d" is a central idempotent with ec”=c" (Lemma 3 (1)). Hence,
ex=ec"x=x and ey=y. Noting that e+x+y=e¢+x (mod N;), B) implies
then (e+x+y)’=(e+x)?, whence it follows 2(x+y)=2x, namely, 2y=0.
This forces a contradiction xy= —yx=yx.

(3) Let x, y be arbitrary elements of R, and S=[x,y, N,]. Then,
by (5, Theorem 3.4], S=S/N,=S/N,P---PS./N,, where each S;/N,
is a finite field. As is well-known, the identity of S can be lifted to an
idempotent e of S, which is central by Lemma 3 (1). Suppose there
exist s€S and #=N, such that st~fs. Then there exists some s;ES,
such that s,t<~¢s;, We set es;=s;+u with some #EN,. By Lemma 3 (1)
and the assumption, one will easily see that 2s,=(e+s)*—e—sj—2uec
Vz(N,). Hence, there holds 2(sf—1s,)=0. If the characteristic p of
S,/ N, is different from 2 then the last together with p(s;#—is,)=(ps)t—
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t(ps;)=0 deduces a contradiction sg—#s;=0. While, if S;/N,=GF (2"
then 0=(s§k— sj)t——t(sik—s,)=tsj—th by sit=f#s?, which is a contradic-
tion. Thus, we have seen that N, is contained in the center of S. Con-
sequently, S is commutative by [2, Theorem 19], which means that R
is commutative.

Now, we are ready to prove the principal theorem of this section.

Theorem 2. The following statements are equivalent :
1) A) and B) are satisfied.
1) A") and B) are satisfied.
1N A" and B) are satisfied.

1" A"') and B) are satisfied.
2) A) and B') are satisfied.
2"y A") and B') are satisfied.
2'Y  A!'") and B') are satisfied.

2"y A" and B') are satisfied.
3) A) and B") are satisfied.
3% A") and B") are satisfied.
3"y A") and B'") are satisfied.

3"y A" and B'") are satisfied.

Proof. By Lemma 1 (3), B")=B')=>B). Hence, by Lemma 3 (1)
and (2), 1)—1""), 2)—2'") and 3)—3"") are respectively equivalent and
3)=2)—>1). It remains therefore to prove 1)—>3). Suppose R is
not commutative. By Lemma 4 (1) and (3), N, is anti-commutative and
u?=0 for all ueN, If xvs“vx for some xR and vEN, then B)
implies (x+v)’=x% whence it follows xv=—vx. Now, by making use
of Brauer'’s trick, one can easily see that R= Vx(N,) or Vi(N,). Since
R=Vi(N,) yields the commutativity of R by [2, Theorem 19], R must
be Vz(N,).

The next includes [3, Theorem 2] as well as [4, Theorem 2].

Corollary 2. If R is left (or right) s-unital, then the follwing state-
ments are equivalent :
1) A) and B) are satisfied.
1) A’) and B) are satisfied.
1"y A'") and B) are satisfied.
1"y A" and B) are satisfied.
2) A) and B') are satisfied.
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2"y A") and B') are satisfied.
2"y A') and B') are satisfied.
2"y -A") and B') are satisfied.
3) R is a commutative ring satisfying A).
3" R is a commutative ving satisfying A').
3"y R is a commulative ving satisfying A").
3"y R is @ commutative ring satisfying A'"),
4) C') is satisfied.

Proof. 4) imblies 3"”) by Lemma 3 (4) and [2, Theorem 19], and 1)

implies 3) by Lemma 4 (2). Hence, the corollary is evident by Theorem 2.

Remark. Let R be the module ZPZPZ, If we define the multi-

plicatioﬂ by (al, Q,, as)(bl, bz, b3) = (O, O, albg‘—azbl), then R is an anti-
commutative, non-commutative ring and the square of each element is 0.
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