TWO COMMUTATIVITY THEOREMS FOR RINGS

YASUYUKI HIRANO and HISAO TOMINAGA

Throughout R will represent a ring (with or without 1), N_0 the set of all nilpotent elements of R, N the prime radical of R, and J the Jacobson radical of R. Given subsets S, T of R, we set $V_S(T) = \{s \in S | st = ts \text{ for all } t \in T\}$ and $V_S^-(T) = \{s \in S | st = -ts \text{ for all } t \in T\}$. We denote by C the center of R, and by C' the set of all $x \in R$ such that for each $y \in R$ there holds [x, y - yy'] = 0 with some y' in the subring [y] generated by y. In [1], C' is called the *cohypercenter* of R.

In this paper, we consider the following conditions:

- A) For each $x \in R$ there exists a positive integer n such that $x-x^{n+1} \in N_0$.
- A') For each $x \in R$ there exist positive integers m and n such that $x^m x^{m+n} \in N_0$.
- A") For each $x \in R$ there exist a positive integer n and an element $x' \in [x]$ such that x'' = x''x'.
- A"') For each $x \in R$ there exists an element $x' \in [x]$ such that $x-xx' \in N_0$.
 - B) $x-y \in N_0$ and $y-z \in N_0$ $(x, y, z \in R)$ imply $x^2=z^2$ or xy=yx.
- B') $x-y \in N_0$ $(x, y \in R)$ implies that $x^2=y^2$ or both x and y are contained in $V_R(N_0)$.
- B") Either R is commutative or $R = V_R^-(N_0)$ and $u^2 = 0$ for all $u \in N_0$.
- C) For each $x, y \in R$ there exist $x' \in [x]$ and $y' \in [y]$ such that [x-xx', y-yy'] = 0.
- C') For each $x, y \in R$ there exists some $x' \in [x]$ such that x xx' is in $V_{N_n}(y)$.

Recently, in [1, Theorem 3], M. Chacron proved that if R satisfies the condition C) then both R/N and N are commutative. The proof depends heavily on another (perhaps more difficult) result in [1] that the cohypercenter of a semi-prime ring coincides with its center. In §1 of this paper, we shall give a somewhat direct and economical proof to the above theorem. And in §2, we shall deal with the commutativity theorem of S. Ligh and J. Luh (cf. [3]) and D. L. Outcalt and A. Yaqub [4] without assuming the existence of 1.

1. The next has been shown in [1, Remarks 12 and 14]. However, for the sake of completeness, we shall give the proof.

Lemma 1. If C) is satisfied then C' is a commutative subring of R containing N_0 .

Proof. Let $x \in N_0$, and $y \in R$. There exist $x_1' \in [x]$ and $y_1' \in [y]$ such that $[x-xx_1', y-yy_1']=0$. To be easily seen, there exist $x_2' \in [xx_1']$ and $y_2' \in [y]$ such that $[x-xx_1'x_2', y-yy_2']=0$. Repeating the same procedure, we obtain eventually $0=[x-xx_1'x_2'\cdots x_k', y-yy_k']=[x, y-yy_k']$ for some k, which proves $N_0 \subseteq C'$. Next, for any $a, b \in C'$ we consider the subring S generated by $\{a, b\}$. Given $x \in S$, one will easily see that there exist some $x' \in [x]$ such that [a, x-xx']=0=[b, x-xx'], namely, $x-xx' \in V_S(S)$. Then, by [2, Theorem 19], S is a commutative ring contained in C'. This proves that C' is a commutative subring of R.

Corollary 1. Assume that R satisfies the condition C). If R is either a division ring or a radical ring without non-zero zero-divisors, then R is commutative.

Proof. If z is a quasi-regular element of R with the quasi-inverse z^* then y-yz and $y-yz^*$ will be written formally as y(1-z) and $y(1-z)^{-1}$ respectively. Obviously, the map defined by $y\mapsto (1-z)y(1-z)^{-1}$ ($y\in R$) is an automorphism of R. Now, let a and x be elements of R such that $a\notin C[x]$ and $x\notin C[a]$. First we shall show that there exist a', $a'_0\in [a]$ such that

(1)
$$[(1-x)(a-aa')(1-x)^{-1}, a-aa'_0] = 0,$$

$$[(1-ax)(a-aa')(1-ax)^{-1}, a-aa'_0] = 0.$$

In any rate, $[(1-x)(a-aa'')(1-x)^{-1}, a-aa'']=0$ for some $a'', a''_0 \in [a]$. Then $[(1-ax)\{(a-aa'')(1-b')\}(1-ax)^{-1}, (a-aa'')(1-b'_0)]=0$ for some $b' \in [a-aa'']$ and $b'_0 \in [a-aa'']$. Evidently, setting a'=a''+b'-a''b' and $a'_0=a''_0+b'_0-a''_0b'_0$, we obtain (1). For the brevity, we set $\alpha=a-aa'$, $\alpha_0=a-aa'_0$, $\beta=(1-x)\alpha(1-x)^{-1}$, and $\beta'=(1-ax)\alpha(1-ax)^{-1}$. Then (1) becomes $[\beta,\alpha_0]=0=[\beta',\alpha_0]$, and we have

$$(2) \qquad (1-x)\alpha = \beta(1-x),$$

$$(3) \qquad (1-ax)\alpha = \beta'(1-ax).$$

Now, subtracting (3) from (2) multiplied by a, we get

(4)
$$(a-1)\alpha = (\beta'a - a\beta)x + a\beta - \beta'.$$

This deduces $(\beta' a - a\beta) x = (a-1)\alpha - a\beta + \beta' \in V_R(\alpha_0)$, so that $(\beta' a - a\beta)$

 $[x, \alpha_0] = 0$. If $[x, \alpha_0] \neq 0$, then $a\beta = \beta'a$, and by (4) it follows $\alpha(a-1) = a\beta - \beta' = \beta'(a-1)$, that is, $\alpha = \beta'$. Going back to (3), we get $(1-ax)\alpha = \alpha(1-ax)$, namely, $a[x, \alpha] = 0$. Hence, $[x, \alpha] = 0$. We have therefore seen that every element of R is in C', whence it follows the commutativity of R by Lemma 1.

Lemma 2. If R is a semi-prime ring satisfying C) then R is commutative.

Proof. Without loss of generality, we may assume R is prime.

Case I: R is semi-primitive. We may assume further R is primitive. Every homomorphic image of a subring of R inherits the condition C). Since matrix rings over division rings of degree >1 contains non-commutative nilpotent elements, by Lemma 1 a routine argument enables us to see that R is a division ring, so R is commutative by Corollary 1.

Case II: R is not semi-primitive. If $J\neq 0$ is shown to be commutative, then one will easily see that $V_R(J)\subseteq C$, so that R=C. Therefore, we assume henceforth R=J. Suppose R contains a non-zero element a with $a^2=0$. Then for each $y\in aR$ there exists some $y'\in [y]$ such that 0=[a,y-yy']=yy'a-ya. Hence, we have $y^2=y^2y'$. This implies evidently $y^2=0$. Combining this with 0=yy'a-ya, we readily obtain ya=0, namely, aRa=0. This contradiction shows that R is a reduced ring. Thus, R is a ring without non-zero zero-divisors, and so commutative by Corollary 1.

Now, as a combination of Lemmas 1 and 2, we readily obtain

Theorem 1 ([1, Theorem 3]). If R satisfies the condition C) then both R/N and N are commutative.

- 2. Evidently, in A''), $x^n = x^n x'$ may be replaced by $x^n = x^{n+1} x'$. Similarly, in A''') (resp. C')), $x xx' \in N_0$ (resp. $x xx' \in V_{N_0}(y)$) may be replaced by $x x^2 x' \in N_0$ (resp. $x x^2 x' \in V_{N_0}(y)$).
- **Lemma 3.** (1) If B) is satisfied then N_0 is an ideal and $x^2 \in V_R(N_0)$ for all $x \in R$, especially, every idempotent of R is central.
 - (2) If N_0 is an ideal then the conditions A) A''') are equivalent.
 - (3) B" implies B', and B' implies B).
- (4) If for each $x, y \in R$ there exists some $z \in R$ such that $[x-x^2z, y] = 0$ then $N_0 \subseteq C$.

- *Proof.* (1) is contained in [3, Lemma 1], and (3) is easy.
- (2) Obviously, $A \Longrightarrow A' \Longrightarrow A''$. For any $x' \in [x]$ we have $(x xx')^n = (x^n x^n x') (x^n x^n x')x''$ with some $x'' \in [x]$, which proves $A'' \Longrightarrow A'''$. Finally, $A''' \Longrightarrow A$ by [5, Corollary 3.5].
- (4) Let $x^n = 0$ (n > 1). We proceed by the induction with respect to n. Given $y \in R$, there exists z with $[x-x^2z, y] = 0$. Since x^2 is central by $(x^2)^{n-1} = 0$, it follows $(x^2z)^{n-1} = 0$, so that x^2z is central. Hence, $[x, y] = [x^2z, y] = 0$.
- **Lemma 4.** (1) If B) is satisfied then N_0 is either commutative or anti-commutative with $u^2 = 0$ for all $u \in N_0$.
- (2) If A) and B) are satisfied and R is left (or right) s-unital then N_0 is commutative.
- (3) If A) and B) are satisfied and N_0 is commutative then R is commutative.
- **Proof.** (1) By Lemma 3 (1), N_0 is an ideal of R and $z^2 \in V_R(N_0)$ for all $z \in R$. Suppose there exist x, $y \in N_0$ such that $xy \neq yx$. Since $x+y \equiv x \equiv 0 \pmod{N_0}$ and $(x+y)x \neq x(x+y)$, B) implies $0 = (x+y)^2 = x^2$, and similarly $0 = (x+y)^2 = y^2$. From these it follows xy = -yx. Now, by making use of Brauer's trick, one will easily see that N_0 is anti-commutative. If v is an arbitrary element of the center of N_0 , then xv = vx = -xv. Hence, we obtain $v^2 = (x+v)^2 2xv x^2 = 0$.
- (2) Suppose there exist $x, y \in N_0$ such that $xy \neq yx$. Then, by (1), N_0 is an anti-commutative ideal and $u^2 = 0$ for all $u \in N_0$. By [6, Theorem 1], there exists an element c such that cx = x and cy = y. Choose an element $d \in [c]$ such that $c^n = c^{n+1}d$ for some positive integer n (Lemma 3 (2)). Then $e = c^n d^n$ is a central idempotent with $ec^n = c^n$ (Lemma 3 (1)). Hence, $ex = ec^n x = x$ and ey = y. Noting that $e + x + y \equiv e + x \pmod{N_0}$, B) implies then $(e + x + y)^2 = (e + x)^2$, whence it follows 2(x + y) = 2x, namely, 2y = 0. This forces a contradiction xy = -yx = yx.
- (3) Let x, y be arbitrary elements of R, and $S = [x, y, N_0]$. Then, by [5, Theorem 3.4], $\overline{S} = S/N_0 = S_1/N_0 \oplus \cdots \oplus S_m/N_0$, where each S_i/N_0 is a finite field. As is well-known, the identity of \overline{S} can be lifted to an idempotent e of S, which is central by Lemma 3 (1). Suppose there exist $s \in S$ and $t \in N_0$ such that $st \neq ts$. Then there exists some $s_j \in S_j$ such that $s_j t \neq ts_j$. We set $es_j = s_j + u$ with some $u \in N_0$. By Lemma 3 (1) and the assumption, one will easily see that $2s_j = (e + s_j)^2 e s_j^2 2u \in V_R(N_0)$. Hence, there holds $2(s_j t ts_j) = 0$. If the characteristic p of S_j/N_0 is different from 2 then the last together with $p(s_j t ts_j) = (ps_j)t s_j + t$

 $t(ps_j)=0$ deduces a contradiction $s_jt-ts_j=0$. While, if $S_j/N_0=\mathrm{GF}(2^k)$ then $0=(s_j^{2^k}-s_j)t-t(s_j^{2^k}-s_j)=ts_j-s_jt$ by $s_j^2t=ts_j^2$, which is a contradiction. Thus, we have seen that N_0 is contained in the center of S. Consequently, S is commutative by [2, Theorem 19], which means that R is commutative.

Now, we are ready to prove the principal theorem of this section.

Theorem 2. The following statements are equivalent:

- 1) A) and B) are satisfied.
- 1') A') and B) are satisfied.
- 1") A") and B) are satisfied.
- 1"') A"') and B) are satisfied.
 - 2) A) and B') are satisfied.
- 2') A') and B') are satisfied.
- 2") A") and B') are satisfied.
- 2"") A"") and B') are satisfied.
 - 3) A) and B") are satisfied.
- 3') A') and B") are satisfied.
- 3") A") and B") are satisfied.
- 3"') A"') and B") are satisfied.

Proof. By Lemma 1 (3), $B'') \Longrightarrow B' \Longrightarrow B$). Hence, by Lemma 3 (1) and (2), 1)-1''', 2)-2''') and 3)-3''') are respectively equivalent and $3)\Longrightarrow 2)\Longrightarrow 1$). It remains therefore to prove $1)\Longrightarrow 3$). Suppose R is not commutative. By Lemma 4 (1) and (3), N_0 is anti-commutative and $u^2=0$ for all $u\in N_0$. If $xv\ne vx$ for some $x\in R$ and $v\in N_0$, then B) implies $(x+v)^2=x^2$, whence it follows xv=-vx. Now, by making use of Brauer's trick, one can easily see that $R=V_R(N_0)$ or $V_R(N_0)$. Since $R=V_R(N_0)$ yields the commutativity of R by [2, Theorem 19], R must be $V_R(N_0)$.

The next includes [3, Theorem 2] as well as [4, Theorem 2].

Corollary 2. If R is left (or right) s-unital, then the follwing statements are equivalent:

- 1) A) and B) are satisfied.
- 1') A') and B) are satisfied.
- 1") A") and B) are satisfied.
- 1"') A"') and B) are satisfied.
 - 2) A) and B') are satisfied.

- 2') A') and B') are satisfied.
- 2") A") and B') are satisfied.
- 2"') A"') and B') are satisfied.
 - 3) R is a commutative ring satisfying A).
- 3') R is a commutative ring satisfying A').
- 3'') R is a commutative ring satisfying A'').
- 3''') R is a commutative ring satisfying A''').
 - 4) C') is satisfied.

Proof. 4) implies 3"') by Lemma 3 (4) and [2, Theorem 19], and 1) implies 3) by Lemma 4 (2). Hence, the corollary is evident by Theorem 2.

Remark. Let R be the module $Z \oplus Z \oplus Z$. If we define the multiplication by $(a_1, a_2, a_3)(b_1, b_2, b_3) = (0, 0, a_1b_2 - a_2b_1)$, then R is an anticommutative, non-commutative ring and the square of each element is 0.

REFERENCES

- [1] M. CHACRON: A commutativity theorem for rings, Proc. Amer. Math. Soc. 59 (1976), 211-216.
- [2] I.N. HERSTEIN: The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864-871.
- [3] Y. HIRANO and H. TOMINAGA: Two theorems on left s-unital rings, Math. J. Okayama Univ. 19 (1977), 97—100.
- [4] D. L. OUTCALT and A. YAQUB: Commutativity and structure theorems for rings with polynomial constraints, Math. Japonica (to appear).
- [5] P.N. STEWART: Semi-simple radical classes, Pacific J. Math. 32 (1970), 249-254.
- [6] H. TOMINAGA: On 8-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received October 31, 1977)