ON A THEOREM OF S. KOSHITANI

KAORU MOTOSE

Throughout G will represent a p-group of order p^r , and K a field of characteristic p. The nilpotency index of the radical J(KG) of the group ring KG will be denoted by t(G).

Recently, S. Koshitani [3, 4] proved that t(G) takes the secondarily heighest value $p^{r-1} + p - 1$ if and only if G contains an element of order p^{r-1} . His proof was completed by determining K-bases of $J(KG)^{\ell}$ $(t = 1, 2, \cdots)$. One of the purposes of this paper is to present an alternative proof to the same by making use of Jennings' M-series (see [2, p. 182])

$$M_1 = G$$
, $M_t = \langle [M_{t-1}, G], M_{(t,t)}^p \rangle$

where (t/p) is the least integer which is not smaller than t/p. In fact, we can compute t(G) by Jennings' formula

$$t(G) = (\sum_{i} td_{i})(p-1) + 1$$

where $p^{a_t} = |M_t/M_{t+1}|$ (see [2, Theorems 3. 7 and 5. 5]). Furthermore, we shall present several results concerning t(G).

1. Koshitani's theorem. If H is an abelian subgroup of G, c a central element of order p, and $\langle H, c \rangle$ is normal, then both $H^p(=\{h^p|h\in H\})$ and $\langle H^p, c \rangle$ are normal. The following theorem is fundamental in the subsequent study.

Theorem 1. Assume that there exist an abelian subgroup H of exponent p^s and a central element c of order p such that $c \in H$, $c \in H$ is normal and $G \in H^p$, $c \in H^p$. We set $p^b \in [G:H]$ and $p^{r_i} = |H^{p_i}/H^{p_i+1}|$.

(a) If G'H'' is elementary, then

(2)
$$t(G) = (b + \sum_{t=0}^{s-1} c_t p^t) (p-1) + 1.$$

(b) If G/H^p is not elementary but of exponent p, then

(3)
$$t(G) = (b+1+\sum_{i=0}^{s-1} c_i p^i) (p-1)+1.$$

(c) If the exponent of G/H^p is larger than p, then

$$t(G) = (b + p - 1 + \sum_{i=0}^{s-1} c_i p^i) (p-1) + 1.$$

60 K. MOTOSE

Proof. Noting that $G' \subseteq \langle H^p, c \rangle$, one can easily see

(5)
$$[\langle H^{p^t}, c \rangle, G] = [H^{p^t}, G] \subseteq H^{p^{t+1}} \quad (t \ge 1).$$

(a) From the assumption, we see $G' \subseteq H^p$ and $G^p = H^p$. By the last and (5), we obtain the M-series;

$$M_2 = M_3 = \cdots = M_p = H^p$$
 $M_{p+1} = \cdots = M_{p^2} = H^{p^2}$
 $\cdots \cdots$
 $M_{p^{s-2}+1} = \cdots = M_{p^{s-1}} = H^{p^{s-1}}$
 $M_{p^{s-1}+1} = 1$.

Hence, (2) follows from (1).

(b) Since $G/\langle H^p, c \rangle$ is elementary, we obtain $H^p \subseteq \langle G', H^p \rangle \subseteq \langle H^p, c \rangle$. Now, recalling that G/H^p is not elementary but of exponent p, one will easily see that $\langle G', H^p \rangle = \langle H^p, c \rangle$ and $G^p = H^p$. Hence, by (5) and the last, we obtain the M-series;

In case
$$p \neq 2$$
: $M_2 = \langle H^p, c \rangle$
 $M_3 = \cdots = M_p = H^p$
 $M_{p+1} = \cdots = M_{p^2} = H^{p^2}$
 \cdots
 $M_{p^{s-2}+1} = \cdots = M_{p^{s-1}} = H^{p^{s-1}}$
 $M_p^{s-1}+1 = 1$.

In case $p = 2$: $M_2 = \langle H^2, c \rangle$
 $M_3 = M_4 = H^4$
 $M_5 = \cdots = M_8 = H^8$
 \cdots
 $M_2^{s-2}+1 = \cdots = M_2^{s-1} = H^{2^{s-1}}$
 $M_2^{s-1}+1 = 1$.

Since $|G/\langle H^p, c \rangle| = p^{b+c_0-1}$ by $p^{b+c_0} = |G/H^p| = |G/\langle H^p, c \rangle| \cdot |\langle H^p, c \rangle H^p|$, in either cases (3) follows from (1).

(c) By
$$G'\subseteq \langle H^p, c \rangle = \langle G^p \rangle$$
 and (5), we obtain the *M*-series; $M_2 = \cdots = M_p = \langle H^p, c \rangle$ $M_{p+1} = \cdots = M_{p^2} = H^{p^2}$

.

$$M_{p^{s-2}+1} = \cdots = M_{p^{s-1}} = H^{p^{s-1}}$$

 $M_{p^{s-1}+1} = 1$.

Thus, (4) follows from (1).

In Theorem 1, if $H = \langle h \rangle$ is a cyclic group of order p^s then $c_t = 1$ for all t, and so $(\sum_t c_t p^t)(p-1) = p^s - 1$. Hence, we readily obtain the next corollary which will play an important role in our alternative proof of Koshitani's theorem and whose first assertion generalizes a result of R. Holvoet [1, Stelling 3] (see also the proof of 3) \Longrightarrow 1) in Theorem 4).

Corollary 2. Assume that there exist a central element $c \in G$ of order p and an element $h \in G$ of order p^s such that $\langle h, c \rangle$ is normal and $G/\langle h^p, c \rangle$ is elementary.

- (a) If $G/\langle h^p \rangle$ is elementary, then $t(G) = p^s + (r-s)(p-1)$.
- (b) If $G/\langle h^p \rangle$ is not elementary but of exponent p, then $t(G) = p^s + (r-s+1)(p-1)$.
- (c) If the exponent of $G/\langle h^p \rangle$ is larger than p, then $t(G) = p^e + (r-s+p-1)(p-1)$.

Although the next lemma is familiar more or less, for the sake of completeness, we shall give here the proof.

Lemma 3. Let $q \ge 2$ and $n \ge 2$ be positive integers, and $r = \sum_{i=1}^{n} e_i$ with positive integers $e_1 \ge e_2 \ge \cdots \ge e_n$. If $\sum_{i=1}^{n} q^{e_i} - (n-1) \ge q^{r-1}$, then (1) n = 3, r = 3, q = 2 or (2) n = 2, $e_2 = 1$ (and conversely).

Proof. Obviously, if $x \ge 2$ and $y \ge t \ge 2$ then $xy \ge x + y + t - 2 \ge x + y$. Assume $n \ge 3$. Then by the above remark

$$0 \ge q^{r-1} - \sum_{i=1}^{n} q^{e_i} + n - 1$$

$$\ge q^{e_1 + e_2 - 1} + q^{e_3 + \dots + e_n} + q^{n-2} - 2 - \sum_{i=1}^{n} q^{e_i} + n - 1$$

$$\ge q^{r_1 + e_2 - 1} - q^{e_1} - q^{e_2} + (n - 2)q + n - 3$$

$$= (q^{e_1} - q) (q^{e_2 - 1} - 1) + (n - 3) (q + 1) \ge 0.$$

Thus, n=3, $e_2=e_3=1$ and $(q^{r-2}-2)(q-1)=0$, whence it follows q=2, r=3. Finally, if n=2 then $q-1 \ge (q^{e_1}-q)(q^{e_2-1}-1)$, and so $e_2=1$.

Now, we shall prove Koshitani's theorem.

Theorem 4. Assume that G is not cyclic. Then the following are equivalent:

62 K. MOTOSE

- 1) $t(G) = p^{r-1} + p 1$.
- 2) $t(G) > p^{r-1}$.
- 3) G contains an element of order p^{r-1} .

Proof. 1) \Longrightarrow 2): Trivial.

3) \Longrightarrow 1): Let h be an element of order p^{r-1} . Then $\langle h \rangle$ is normal. If $G/\langle h^p \rangle$ is cyclic, then there exists an element x such that $x^p = h$, and so G is cyclic. Thus, $G/\langle h^p \rangle$ is elementary and $t(G) = p^{r-1} + p - 1$ by Corollary 2 (a).

2) \Longrightarrow 3): Assume that G is an abelian group of type $(p^{e_1}, p^{e_2}, \cdots, p^{e_n})$ p^{e_n}) $(e_1 \ge e_2 \ge \cdots \ge e_n)$. Then, by [5, Theorem], $t(G) = \sum_{k=1}^{n} p^{e_k} - (n-1) > 1$ p^{r-1} , where $r = \sum_{k=1}^{n} e_k$, and $n \ge 2$. By Lemma 3, this inequality holds only for n=2, $e_1=r-1$, $e_2=1$. Thus, G is of type (p^{r-1}, p) , and so G contains an element of order p^{r-1} . Henceforth, we assume that G is non-abelian $(r \ge 3)$. We shall proceed by the induction on r. Every non-abelian group of order p^3 contains an element of order p^2 , provided $G \neq M(p) = \langle a, b, c | a^p = b^p = c^p = 1, a^{-1}ba = bc, a^{-1}ca = c, b^{-1}cb = c \rangle$ $(p \ge 3)$. However, $t(M(p)) = 4p - 3 \le p^2$ by Corollary 2 (b). Thus, for $r=3, 2) \Longrightarrow 3$). Now, assume $r \ge 4$. Let c be a central element of order p, and $\overline{G} = G/\langle c \rangle$. Then \overline{G} is not cyclic and $t(\overline{G}) > p^{\gamma-2}$ (see [6, Theorem 2.4]). Hence, by the induction hypothesis, there exists an element \overline{h} of order p^{r-2} in \overline{G} . Since \overline{G} is not cyclic, $\overline{G}/\langle \overline{h}^p \rangle$ is elementary (see 3) \Longrightarrow 1)). Hence, there exists an element h such that $\langle h, c \rangle$ is normal and $G/\langle h^p, c \rangle$ is elementary. If $h^{p^{r-2}} = c^f (0 < f < p)$ then h is of order p^{r-1} . While, if h is of order p^{r-2} then, by Corollary 2, $t(G) = p^{r-2} + 2(p-1)$ or $p^{r-2} + 3(p-1)$ or $p^{r-2} + p^2 - 1$, and hence $t(G) > p^{r-1}$. This contradiction completes our induction.

2. Further results. First, we shall characterize G with $t(G) = p^{r-1}$.

Theorem 5. If $t(G) = p^{r-1}$ then G is M(3) or an elementary abelian group of order 8 (and conversely).

Proof. Case I. G is abelian. Let G be of type $(p^{e_1}, p^{e_2}, \dots, p^{e_n})$ $(e_1 \ge e_2 \ge \dots \ge e_n)$. Then $n \ge 2$, and $p^{r-1} = t(G) = \sum_{i=1}^n p^{e_i} - (n-1)$ by [5, Theorem]. Hence, by Lemma 3, G is of type (2, 2, 2).

Case II. G is non-abelian and r=3. Since G is of exponent p by Theorem 4, it follows G=M(p). However, $p^2=t(G)=4p-3$ by Corollary 2 (b). Thus p=3.

Case III. G is non-abelian and $r \ge 4$. Let G be an example of

minimal order with $t(G) = p^{r-1}$ in this case, $x \in G$ a central element of order p, and $\overline{G} = G/\langle x \rangle$. Then $t(\overline{G}) \geq p^{r-2}$ by [6, Theorem 2.4]. If $t(\overline{G}) > p^{r-2}$, then \overline{G} contains an element \overline{h} of order p^{r-2} (Theorem 4), and so there exists an element $h \in G$ of order p^{r-1} or p^{r-2} such that $G/\langle x, h^p \rangle$ is elementary. Thus, by Corollary 2, $p^{r-1}=t(G)=p^{r-1}+p-1$ or $p^{r-2}+2(p-1)$ or $p^{r-2}+3(p-1)$ or $p^{r-2}+p^2-1$. This contradiction means $t(\overline{G}) = p^{r-2}$. Next, we shall show that r=4. In fact, if $r \ge 5$ then \overline{G} is abelian and $|\overline{G}| = 2^3$ (Case I), which contradicts $r \ge 5$. Hence $|\overline{G}| = p^3$ and $t(\overline{G}) = p^2$, so that $\overline{G} = M(3)$ or an elementary abelian group of order 8 (Case II). However, if G is the latter then t(G) = 5 or 6 by Corollary 2 (see also Theorem 6). This contradicts $t(G) = 2^3$. While, if $\overline{G} = \langle a, \overline{b}, \overline{c} | \overline{a}^3 = \overline{b}^3 = \overline{c}^3 = 1, \ a^{-1}\overline{b}\overline{a} = \overline{b}\overline{c}, \ \overline{a}^{-1}\overline{c}\overline{a} = \overline{c}, \ \overline{b}^{-1}\overline{c}\overline{b} = \overline{c} \rangle, \text{ then } [G, G]$ $\subseteq \langle x, c \rangle$, $G^3 \subseteq \langle x \rangle$, $[\langle x, c \rangle, G] \subseteq \langle x \rangle$. Hence we see that $1 \neq M_2 \subseteq \langle x, c \rangle, M_3 \subseteq \langle x \rangle, M_4 = M_5 = M_6 = \langle M_2^3 \rangle, M_7 = 1,$ whence it follows $2 \le d_1 \le 3$, $d_2 \le 2$, $d_3 \le 1$, $d_4 = d_5 = 0$ and $d_6 \le 1$. But

this yields a contradiction $3^3 = t(G) = (d_1 + 2d_2 + 3d_3 + 6d_6)(3-1) + 1 < 3^3$.

Next, we shall show that the secondarily lowest value of t(G) is (r+1)(p-1)+1, which is given in the next

Theorem 6. If G is not elementary then the following are equivalent:

- 1) t(G) = (r+1)(p-1)+1.
- 2) t(G) < (r+2)(p-1)+1.
- 3) There exists a central element $\,c\,$ of order $\,p\,$ such that $\,G/< c>$ When this is the case, p=2 or the exponent of G is p. is elementary.

Proof. 1) \Longrightarrow 2) is trivial and 3) \Longrightarrow 1) is clear by Corollary 2 (b), (c). 2) \Longrightarrow 3): By formula (1), the condition 2) implies $2 > \sum_{i} (t-1) d_{i} =$ $d_2+2d_3+\cdots+(t-1)d_t$ for some t and hence $d_3=\cdots=d_t=0$, $d_2=0$ or $d_2=0$ means that $M_2=1$ and so G is elementary. Thus, $d_2=1$ and $d_1 = r - 1$, which means t(G) = (r+1)(p-1) + 1. Moreover, M_2 is a central subgroup of order p. Let c be a generator of M_2 . Then $G/\langle c\rangle$ is elementary. If the exponent of G is greater than p, by Corollary 2 (c), (r+p-1)(p-1)+1=t(G)=(r+1)(p-1)+1 and so p=2.

S. Koshitani computed also t(G) for G meta-cyclic. Here, we shall do the same by making use of M-series.

Theorem 7. Let G be a meta-cyclic group with generators a, b such

64 K. MOTOSE

that $\langle b \rangle$ is a normal subgroup of order p^n and $a^{p^{r-n}} = b^{p^k}$ $(0 \leq k \leq n)$. Then,

$$t(G) = \begin{cases} p^{n} + p^{r-n} - 1 & \text{if } r - n \leq k \\ p^{r-k} + p^{k} - 1 & \text{if } r - n \geq k. \end{cases}$$

Proof. If G is cyclic, then the assertion is trivial. Henceforth, we assume that $m=r-n\geq 1$ and $k\geq 1$. Noting that [a,b] is contained in $\langle b^p \rangle$, one can easily see that $\langle \langle a^{p^t}, b^{p^t} \rangle^p \rangle = \langle a^{p^{t+1}}, b^{p^{t+1}} \rangle$ and $[a^{p^t}, G] \leq [\langle a^{p^t}, b^{p^t} \rangle, G] \leq \langle b^{p^{t+1}} \rangle$. Hence, we obtain the M-series of G;

In case
$$m \leq k$$
: $M_2 = \cdots = M_p = \langle a^p, b^p \rangle$
 $M_{p+1} = \cdots = M_{p^2} = \langle a^{p^2}, b^{p^2} \rangle$
 $\dots \dots$
 $M_{p^{m-2}+1} = \cdots = M_{p^{m-1}} = \langle a_{p^{m-1}}, b_{p^{m-1}} \rangle$
 $M_{p^{m-1}+1} = \cdots = M_{p^m} = \langle b_{p^m} \rangle$
 \dots
 $M_{p^{n-2}+1} = \dots = M_{p^{n-1}} = \langle b_{p^{n-1}} \rangle$
 $M_{p^{n-1}+1} = 1$.

In case $m \geq k$: $M_2 = \dots = M_p = \langle a^p, b^p \rangle$
 $M_{p+1} = \dots = M_{p^2} = \langle a^{p^2}, b^{p^2} \rangle$
 \dots
 $M_{p^{k-2}+1} = \dots = M_{p^k-1} = \langle a^{p^{k-1}}, b^{p^{k-1}} \rangle$
 $M_{p^{k-1}+1} = \dots = M_{p^k} = \langle a^{p^{k-1}}, b^{p^{k-1}} \rangle$
 \dots
 $M_{p^{r-k-2}+1} = \dots = M_{p^{r-k-1}} = \langle a^{p^{r-k-1}} \rangle$
 $M_{p^{r-k-1}+1} = 1$.

Now, from (1) one will easily obtain t(G).

In [4] S. Koshitani has characterize G with t(G) = 4, 5, 6. The next gives a characterization of G with t(G) = 7.

Proposition 8. t(G) = 7 if and only if G is one of the following groups:

- 1) A cyclic group of order 7.
- 2) An elementary abelian group of order 3³ or 2⁶.
- 3) An abelian group of type $(2^2, 2^2)$

- 4) A non-elementary group of order 2^5 which contains a central involution c such that the factor group modulo $\langle c \rangle$ is elementary.
 - 5) $\langle a, b | a^4 = b^4 = 1, a^{-1}ba = b^3 \rangle$.
 - 6) $\langle a, b, c | a^2 = b^2 = c^4 = 1, a^{-1}ba = b, a^{-1}ca = bc, b^{-1}cb = c \rangle$.

Proof. By (1), $6 \ge r(p-1)$ and p-1 is a divisor of 6. Thus the order of G is 7 or 3^r $(r \le 3)$ or 2^r $(r \le 6)$. The result follows from Corollary 2, Theorems 4, 6 and the table of defining relations of groups of order 2^4 (see e.g. W. Burnside's text, Theory of Groups of Finite Order).

Remark. If t(G) is even then p=2, for p-1 is a divisor of t(G)-1 by (1). Hence, Koshitani's characterization of G with t(G)=4, 6 is easy by Corollary 2. If $t(G)=2^n+1$ then $p=2^{2^k}+1$ (Fermat number).

REFERENCES

- [1] R. HOLVOET: De groepalgebra van een eindige p-groep over een veld met karakteristiek p, Simon Stevin 42 (1969), 157—170.
- [2] S. A. Jennings: The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175—185.
- [3] S. Koshitani: On the nilpotency indices of the radicals of modular group rings, Proc. 10th Symposium on Ring Theory (Shinshu Univ., Aug. 18—20, 1977), 1978.
- [4] S. Koshitani: On the nilpotency indices of the radicals of group algebras of p-groups which have cyclic subgroups of index p, Tsukuba J. Math. 1 (1977), 137—148.
- [5] K. Motose: On C. Loncour's results, Proc. Japan Acad. 52 (1974) 570-571.
- [6] D. A. R. WALLACE: Lower bounds for the radical of the group algebra of a finite p-soluble group, Proc. Edinburgh Math. Soc. 16 (1968), 127—134.

DEPARTMENT OF MATHEMATICS
SHINSHU UNIVERSITY

(Received October 31, 1977)