ON A THEOREM OF S. KOSHITANI
KAORU MOTOSE

Throughout G will represent a p-group of order »", and K a field
of characteristic p. The nilpotency index of the radical J(KG) of the
group ring KG will be denoted by #G).

Recently, S. Koshitani [3, 4] proved that #(G) takes the secondarily
heighest value p"~'-+p—1 if and only if G contains an element of order
p~'. His proof was completed by determining K-bases of J(KG)' (=1,
2, --). One of the purposes of this paper is to present an alternative
proof to the same by making use of Jennings’ M-series (see [2, p. 182])

MI = Gy M = < I:M-l) G]) M&Ip) >

where (¢t/p) is the least integer which is not smaller than #/p. In fact,
we can compute #(G) by Jennings' formula

(1) HG) = (X, td)(p—1)+1

where p% = | M,/M...| (see [2, Theorems 3.7 and 5. 5]).
Furthermore, we shall present several results concerning #(G).

1. Koshitani’s theorem. If H is an abelian subgroup of G, ¢
a central element of order p, and < H, ¢ > is normal, then both
H?(={h"|he H}) and { H", ¢ > arenormal. The following theorem
is fundamental in the subsequent study.

Theorem 1. Assume that there exist an abelian subgroup H of
exponent p* and a central element ¢ of order p such that KH ¢ is
normal and G| HP, ¢ > is elementary. We set p" = [G: H] and

p',“ — l le/le+I ] .
(a) If G/H" is elementary, then

(2) HG) = (b+ XiZiep) (p — 1) + L
(b) If G/H? is not elementary but of exponent p, then
(3) G = (b+1+Xikiep)(@—1) -1
(c) If the exponent of G/H? is larger than p, then
(4) (@) =@®+p—1+TiZeap)(p—1D+1L
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Proof. Noting that G' € { H? ¢ >, one can easily see

(5)

(a) From the assumption, we see G’ C H? and G* = H’.

[KH”, ¢>, G]=[H", G1C H"

1

(t=1).
By the

last and (5), we obtain the M-series;

M, =M, = =M, = H"
Mp+1 == desere = M,,z = H,;z
M2, = eeenr = Mp-1 = ot 1
M,S'—I_H = 1 .

Hence, (2) follows from (1) .
(b) Since G/< HP? ¢ is elementary, we obtain H*C { G', H*>

CJCH? ¢>.
exponent p,
G" = H?,

Incase p#2:

Incase p=2:

Now, recalling that G/H? is not elementary but of
one will easily see that < G', H* > = { H?, ¢ > and
Hence, by (5) and the last, we obtain the M-series;

M,= e =M, =H"
My = e = My = H”
]I,{[ps—zﬂ = = Mps-l = H’s_l
Mps—l+] _ 1

MZ = < HZ’ c >

M3 '—'M4 = IJd

M= oo =M, = H"
My-t,= o = Myt = H*™
M“‘IH =1

Since | G/ <H" ¢>|=p"*"" by
Po=|G/H?| = |G| LH" ¢>|-|<H" ¢>H|,
in either cases (3) follows from (1) .

(c¢) By GS <K H?, ¢ >=< G*> and (5), we obtain the M-series ;

=MP=<HP: C>

......
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ﬂllls—zﬂ = eee = Mp“l = H?
Mp8—1+1 = 1.

Thus, (4) follows from (1).

In Theorem 1, if H= <{ h > is a cyclic group of order »°then
c.=1 forall £, andso (3, cp") (p —1)=p" — 1. Hence, we readily
obtain the next corollary which will play an important role in our alterna-
tive proof of Koshitani’s theorem and whose first assertion generalizes
a result of R. Holvoet [1, Stelling 3] (see also the proof of 3)=— 1) in

Theorem 4),

Corollary 2. Assume that there exist a central element ¢ = G of
order p and an element h € G of order p° such that  h, ¢ > is normal
and G/ K, ¢ > is elementary.

(@) If G/ < k> iselementary, then HG) = p' + (r—s) (p — 1).

(b) If G| < h® > is not elementary but of exponent p, then t(G)=p°
+r—s+1)(p—1).

(c) If the exponent of G/ < h*> is larger than p, then t(G)=p*+
(r—s+p—1D@( -1

Although the next lemma is familiar more or less, for the sake of
completeness, we shall give here the proof.

Lemma 3. Let q =2 and n>=>2 be positive integers, and r = 2., e
with positive integers e, =>e, > =>e, If 2l q¢t—m—1)=q"",
then )n=23, r=3,qg=2 or (2) n=2, e, =1 (and conversely).

Proof. Obviously, if x>=2 and y=>¢{>=2 then xy=x+y-+-t—2=>x-t+y.
Assume #>3. Then by the above remark
0=>q¢'—2tagi+n—1
St gt e g 230 it n—1
=gt =g —g2+(n—2)g+n—3
=(¢"—q) (g%7'—1)+(n—3) (g-+1) =0.

Thus, #n=3, e;=e;=1 and (¢"°—2) (¢g—1)=0, whence it follows g=2,
r=3. Finally, if =2 then ¢g—1=>(g""—¢q) (g2'—1), and so e;=1.

Now, we shall prove Koshitani's theorem.

Theorem 4. Assume that G is not cyclic. Then the following are
equivalent :
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1) HG)=p"+p—1
2) HG)>p
3) G contains an element of order p"~\

Proof. 1)=—>2): Trivial

3)=>1): Let k be an element of order p!. Then < &> is
normal. If G/ < kP> is cyclic, then there exists an element x such that
x”=h, and so G is cyclic. Thus, G/< h*> is elementary and #G)=
p~'+p—1 by Corollary 2 (a).

2)=>3): Assume that G is an abelian group of type (p%, p’2, -,
p%) (e, =>e,>--->e,). Then, by [5 Theorem], #(G)=> %, p%—(n—1)>
7', where r=2>%., &, and #>>2. By Lemma 3, this inequality holds
only for n=2, e,=r—1, e¢;,=1. Thus, G isof type (p"”), p), and so
G contains an element of order p"~'. Henceforth, we assume that G is
non-abelian (» =>3). We shall proceed by the induction on r. Every
non-abelian group of order p* contains an element of order p° provided
GHEM(p)=<a, b, c| a®=b"=c?’=1, aba=bc, a'ca =c, b 'ch=c¢c>
(p=3). However, #(M(p)) =4p—3<p® by Corollary 2 (b). Thus, for
r =3, 2)=>3). Now, assume r>>4. Let ¢ be a central element of
order p, and G=G/<¢>. Then G is not cyclic and #G)> p? (see
[6, Theorem 2.4]). Hence, by the induction hypothesis, there exists an
element % of order p? in G. Since G is not cyclic, G/< k*D> is
elementary (see 3)=>1)). Hence, there exists an element % such that
<h, ¢> isnormal and G/ <HK?, ¢ iselementary. If B =c’ (0<<f<<p)
then % is of order p"™'. While, if % is of order p"? then, by Corollary
2, HG)=p""+2(p—1) or p"*+3(p—1) or p" 2+ p*—1, and hence
#G) > p"~'. This contradiction completes our induction.

2. Further results. First, we shall characterize G with #HG) =
pr—l.

Theorem 5. If H(G)=p"""' then G is M(3) or an elementary abelian
group of order 8 (and conversely).

Proof. Casel G is abelian. Let G be of type (p9, p%, ---, p*)
(e:=e,>:-=¢,). Then n=>2, and p '=HG) =", p%—(rn—1) by [5,
Theorem]. Hence, by Lemma 3, G is of type (2, 2, 2).

Case II. G is non-abelian and =3, Since G is of exponent p by
Theorem 4, it follows G=M(p). However, p*=#(G)=4p—3 by Corollary
2 (). Thus p=3,

Case III. G is non-abelian and r =>4. Let G be an example of
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minimal order with #(G) = p"~' in this case, x € G a central element of
order p, and G= G/<{x>. Then #(G)=p""? by [6, Theorem 2.4].
If #G)>p""? then G contains an element % of order p’~? (Theorem 4),
and so there exists an element 2 & G of order p"™' or p»~? such that
G/ {x, k"> is elementary. Thus, by Corollary 2, p '=§G)=p"'+p—1
or p24+2(p—1) or p7 +3(p—1) or p”*+p*—1. This contradiction
means #(G) = p'> Next, we shall show that r=4. In fact, if »>5
then G is abelian and |G|=2° (Case I), which contradicts »>5. Hence
|G|=p* and HG)=p? sothat G=M(3) or an elementary abelian group
of order 8 (Case II). However, if G is the latter then #G)=5 or 6 by
Corollary 2 (see also Theorem 6). This contradicts #(G)=2°. While, if
G=<a, b, ¢|a®=0==1, a 'ba=bc, a'tca=c, b 'cb=¢ >, then [G, G]
C<x,¢>, GGFC x>, [{x ¢>, G1Sx>. Hence we see that
1£4M,C<x ¢, MiC x>, My=M;=M,= <MD, M, =1,
whence it follows 2<<d, <3, d,<2, d;<1, dy,=d;=0 and d¢<1. But
this yields a contradiction 3°= #(G) = (d, + 2d, + 3d; + 6d,)(3—1)+ 13’

Next, we shall show that the secondarily lowest value of #G) is
(r-+1) (p — 1)+1, which is given in the next

Theorem 6. If G is not elementary then the following ave equivalent :

1) =@+ -—-1)+1.

2) HG)<(r+2)(p —1)+1.

3) There exists a central element ¢ of order p such that G/ <¢>
is elementary. When this is the case, p=2 or the exponent of G is p.

Proof. 1)= 2) is trivial and 3) = 1) is clear by Corollary 2 (b), (c).

2)=>3): By formula (1), the condition 2) implies 2>3, (t—1)d.=
d, +2d,+ -+ (f—1)d, for some ¢ and hence d;=+--=d,=0, d,=0 or
1. d, =0 meansthat M, =1 and so G iselementary. Thus, d, =1
and d,=7—1, which means #G)=(r+1) (p—1)+1. Moreover, M, is
a central subgroup of order p. Let ¢ be a generator of M,. Then
G/ £ ¢ > is elementary. If the exponent of G is greater than p, by
Corollary 2 (¢), (r+p—1)(p—1)+1=HG)=(r+1) (p—1)+1 and so
p=2.

S. Koshitani computed also #(G) for G meta-cyclic. Here, we shall
do the same by making use of M-series.

Theorem 7. Let G be a meta-cyclic group with generators a, b such
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that < b > is a normal subgroup of order p" and a® = = b (0<k<n).
Then,
PprEPTT—1if r—an<k

t(G)——_{pvr—lc _l_p"_]_ z:f r—n2k.

Proof. If G is cyclic, then the assertion is trivial. Henceforth,
we assume that m=r—n>>1 and £>1. Noting that [, 5] is contained
in < 5°>, one can easily see that < {a*, p* >D?> = ( e, D>
and [a*, G]<[< a”, ¥ >, G1< < b >. Hence, we obtain the

M-=series of G;

Incase m<k: M,= = .- =M,= < a% b >
Myn= e =Mz= < a" >
Mp””_2+| = see = Mpm—l = < Qpr-l, bpm—-l >
Mym-1,,= e = Mpm= Chm >
Mpﬂ_2+1 = sscees = Mpn—l = < bpn—l >
Mp"“+1 =1

Incase m>=Fk: M,= = - =M,= < a®, >
Myy= o = M= < a?, B>
Mp""’—n == eeress = Mp"" = < a"k ! , bpk—] >
Myp-14, = =Mp"=<a”kl>
Mp,-_k_z” = eveees =Mp"""" = < ”r_k—1>
Myp—-1,=1

Now, from (1) one will easily obtain #G).

In [4] S. Koshitani has characterize G with #G) =4, 5, 6. The
next gives a characterization of G with #G) = 7.

Proposition 8. #(G) =7 if and only if G is one of the following
groups :

1) A cyclic group of order 7.

2) An elementary abelian group of order 3° or 2°.

3) An abelian group of type (2%, 2%)
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4) A non-elemeniary group of orvder 2° which contains a central in-
volution ¢ such that the factor group modulo < ¢ > is elementary.

5 <La, bla*=0b'=1, a'ba=0b">.

6) <a, b cla®=b=c'=1, a'ba=b, alca=bc, b'ch=c>.

Proof. By (1), 6=r(p —1) and p—1 is a divisor of 6. Thus the
order of G is 7 or 3" (r <3) or 2" (r < 6). The result follows from
Corollary 2, Theorems 4, 6 and the table of defining relations of groups
of order 2' (see e.g. W. Burnside’s text, Theory of Groups of Finite
Order).

Remark. If #G) is even then p=2, for p—1 is a divisor of #G)—1
by (1). Hence, Koshitani’s characterization of G with #G) =4, 6 is

easy by Corollary 2. If {G)=2"+1 then p= 241 (Fermat number).
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