NUMERICAL INVESTIGATION OF SOME EQUATIONS
INVOLVING EULER'S ¢-FUNCTION

MasaTAKA YORINAGA

Let ¢(#) denote Euler's ¢-function, i. e. the number of positive
integers not exceeding »# which are relatively prime to #. In his paper
[13, P. Erdos stated that : “It seems likely that there exists, for every
k, k consecutive integers #, n+ 1,-, # + k — 1 such that ¢(un) =
pn+1)= - -=¢n+k—1)."

The present note is a report on some results of numerical experiments
relevant to the above conjecture of Erdds.

In performance of computation we have used a computer HITAC 20 in
the Department of Mathematics, Okayama University.

1. The Equation ¢(x) = ¢(x + 1). Our problem is essentially to
solve the equation involving Euler’s ¢-function

(Ey) Plx) = d(x + 1).
Therefore, we have successively sought for solutions of this equation (£,)
on a computer,

In evaluation of values of the function ¢(n), we make use of the well-
known formula :

(1) dn) = (pi1—pi7") (p%— p2™") -+« (p2t — pi™)

where n=p{ips:- pit (e, =1, i=1, 2, ---, f) is the canonical prime factori-
zation of the integer .

In a stage of test computation, we have tried a few of algorithms of
evaluating values of ¢(»). But, in the magnitude of » which we are
now concerned with, it seems likely that using the formula (1) is more
economical than others. .

We have examined up to the limit x= 10928925 and we have obtained
146 solutions of the equation (E)).

As result, we have observed some interesting facts., Firstly, in the
interval we examined, x = 5186 is the only one solution of the equation
P(x) =P(x+1) = P(x+2), on which P, Erdés [1] have already pointed out
its existence in the interval x < 10°. Secondly, for %2 =4, there does
not exist any solution of the equation ¢(x)=¢(x+1)---=¢(x+k—1) in
our interval,
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Strange enough, each of the solutions we obtained is congruent to 2
or 3 in the modulus 6. This fact seems to give some hints on property or
structure of these solutions, but, to our regret, we have at present no
insight into them,

Our results are listed in the following Table L

Table I. List of Solutions of the Equation (E,)

x $(x) x o (x) x P (x)
1 1 57584 27840 686985 | 336960
3 2 57645 25920 840255 397440
15 8 64004 32000 914175 | 456960
104 48 65535 32768 936494 | 427680
164 80 73124 36000 952575 468480
194 96 105524 47520 983775 | 483840
255 128 107864 52992 1025504 | 504576
495 240 123824 60480 1091684 | 483840
584 288 131144 59904 1231424 | 604800
975 480 164175 79200 1259642 604800
2204 1008 184635 89280 1276904 583680
2625 1200 198315 96768 1390724 635040
2834 1296 214334 103680 1405845 642528
3255 1440 215775 97920 1574727 768000
3705 1728 256274 | 126720 1659585 | 826560
5186 2592 286995 | 142272 1759874 | 820800
5187 2592 307395 | 142560 1788254 | 816480
10604 4800 319275 | 151200 1925564 | 960000
11715 5600 347324 | 168000 2123583 © 1061760
13365 6480 388245 172800 2200694 1005984
18315 8640 397485 190080 2388044 1126400
22935 11040 407924 181440 2521694 1075200
25545 12480 415275 188160 2539004 1160640
32864 14976 454124 | 206400 2619705 | 1270080
38804 19008 491535 | 237600 2648204 | 1209600
39524 19200 524432 | 258048 2759925 | 1260000
46215 22464 525986 | 261360 2792144 | 1382400
48704 24320 546272 266112 2822715 1233792
49215 24576 568815 279936 2847584 1317888
49335 21120 589407 | 290304 3104744 | 1419264
56864 28416 679496 336960 3137355 1486080
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x b (x) x ¢(x) x o (x)
3170936 | 1572480 5198024 . 2376000 7303334 | 3459456
3240614 | 1481088 5205884 | 2341440 7378371 | 3538080
3289934 | 1572480 5466824 | 2280960 7823205 | 3749760
3653564 | 1822464 5577825 | 2704000 7939244 | 3953664
3693525 | 1742400 5683184 | 2585088 8018144 | 3991680
3794834 | 1814400 5710088 | 2808000 8111024 | 3841920
3877184 | 1870848 5781434 | 2724480 8338394 | 4032000
3988424 | 1780800 5861583 | 2903040 8380448 | 4173120
4002405 | 1915200 6235215 | 2782080 8385975 | 3974400
4034744 | 1710720 6245546 | 3071520 8448255 | 4147200
4163355 | 1903104 6312915 | 2878848 8698095 | 3893760
4328804 | 2096640 6315308 | 3024000 0512144 | 4741632
4447064 | 1981440 6372794 | 2851200 9718904 | 4440576
4498935 | 2056320 6444615 | 3193344 10282515 | 5132160
4626195 | 2114784 6475455 | 2903040 10601535 | 4688640
4695704 | 2146176 6986888 | 3483648 10798725 | 4847040
5003744 | 2848320 7033256 | 3421440 10928925 | 4976640
5110664 | 2336256 7098104 | 3244800

2. The Equation ¢(x)=¢(x+2). Next, we investigate the equation
(E») B(x) = o (x + 2).

If two positeve integers p and 2p — 1 are both prime numbers, then
the integer x = 4p — 2 is a solution of this equation (Z,). Indeed, it
holds that $(2(2p—1))=¢(4p)=2(p—1). Now, we call a solution of this
type a solution of the first kind and we call a solution which is not of the
first kind, a solution of the second kind.

If x is a solution of the first kind, then, evidently, we always have
x=2(mod 4). On the other hand, when x is a solution of the second
kind, x can take each of four possible values in the modulus 4.

For example,

$(4) = $(6) = 2 and 4=0 (mod 4),

$(6497) = $(6499) = 6336 and 6497 =1 (mod 4),
$(70) = $(72) = 24 and 70 =2 (mod 4),

(7)) =¢9) =6 and 7=3 (mod 4).

In this sense, solutions of the second kind have some irregularity. And
as to the existence of a squence of alternately consecutive integers #,
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n+2, n+4, - such that ¢(n) = d(n + 2) =dp(n+4)=---, the example
d(8) = $(10) = $(12) = 4 is the unique one in the interval we examined.

By a procedure similar to that in treating the equation (E,), we have
examined up to the limit x < 4.10°. Most of the solutions we obtained
are of the first kind and solutions of the second kind are relatively not so
many as those of the first kind.

According to a conjecture of G. H. Hardy and J. E. Littlewood [2],
the distribution of prime pairs (p, 2p — 1) is asymptotically of the order
of n/log’n for p < n.

More precisely, if P(n) is the number of prime pairs (p, 2p — 1)
such that p < #, then

n
(2) P(n) zczlog—gn,

where C, = 1>I2 (1 —1/(p — 1)) =0.6601618 --- is the twin-prime constant
D

[3]. Here, the coefficient in the expression (2) is slightly different from
the one in the original paper of G. H. Hardy and J. E. Littlewood. As to
this matter, we shall state some conclusion with numerical experiments in
the next section. Therefore, we may expect that the distribution of
solutions of the equation (E,) is nearly of the same order as the number of
prime pairs (p, 2p — 1).

Namely, if @Q(n) is the number of solutions x of the equation (E,)
such that x < #u, then

n/4

log*(n/4)
G =n

2 login °

Q(n) ~ 2C,

Table II. Distribution of Solutions of the Equation (E,)

Limit Number of Solutions 2c, 1 /4

, e

n 1st kind | 2nd kind total log*(n/4)
10° 12 11 23 10.8
10* 59 25 84 53.9
10° 376 58 434 321.9
108 2449 139 2588 2136.6
2.10° 4299 182 4481 3833.8
3.10°¢ 6050 220 6270 5411-1
4.10° 7750 248 7998 6917.5
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We may say that the above Table II by our experiments supports
reasonably our expectation.

3. Conjecture of Hardy-Littlewood. In their paper [2], G. H.
Hardy and J. E. Littlewood stated the

Conjecture D. If (e, b) =1 and P(n) is the number of pairs of
solution of

ap —bg==F

such that p <n, then

Pn)=o (——ﬁ )

log®n

unless (b, a)y=1, (k, b)=1 and just one of k, a, b is even. But if these
conditions are satisfied then

(3) P(n)~zcz n H(r—l)’

a logn r—2

where r is an odd prime factor of k, a and b.

In a stage of our experments, we have become aware of the facts that
the predictive values by use of the expression (3) discord with our computa-
tional results. So, we have examined the distribution of prime pairs (p, g)
such that gp — bg =1, p < n for values of ¢ and 5 up to the limit
n <107,

Based ‘on our experiments, we wish to propose a correction of the
expression (3) as follows :

2C, =» r—1\__

(4) Pn) ~ %€ 1og2n”(r-z)=M<”)'

The results of our experiments are tabulated in the following Table
III. In the case @ <(b, the predictive values M(n) by (4) do not agree
with actual values P(x), yet giving approximations sufficiently good enough.
This discrepancy is, probably, due to the magnitude of the limit » which
is not quite large. However, we believe that the Table III gives a
numerical verification for the expression (4).
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Table III. Distribution of Prime Pairs (p, q) such that
ap — bg = 1 in the Limit n = 10’
a b P(w) M(n) M(n)] P(n)
2 1 56157 50822.2 0.90500
4 1 53917 50822.2 0.94260
6 1 105068 101644.3 0.96741
8 1 51403 50822.2 0.98870
10 1 67731 67763.0 1.00047
12 1 100620 101644.3 1.01018
14 1 59814 60986.6 1.01960
16 1 49635 50822.2 1.02392
18 1 08344 101644.3 1.03356
3 2 57043 50822.2 0.89094
5 2 36687 33881.4 0.92352
7 2 32410 30493.3 0.94086
9 2 53230 50822.2 0.95477
11 2 29318 28234.5 0.96304
13 2 28448 27721.2 0.97445
15 2 68776 67763.0 0.98527
17 2 27309 27105.2 0.99254
4 3 38438 33881.4 0.88145
8 3 36798 33881.4 0.92074
10 3 48236 45175.3 0.93655
14 3 42697 40657.7 0.95224
16 3 35019 33881.4 0.96751
5 4 19120 16940.7 0.88602
7 4 17053 15246.6 0.89407
9 4 27749 25411.1 0.91575
11 4 15212 14117.3 0.92804
13 4 14762 13860.6 0.93894
15 4 35777 33881.4 0.94701
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a b P(n) M(n) M (»)] P(n)
1 2 30657 25411.1 0.82888
1 4 16197 12705.5 0.78444
1 6 22279 16940.7 0.76039
1 8 8562 6352.8 0.74197
1 10 9268 6776.3 0.73115
1 12 11791 8470.4 0.71837
1 14 6109 4356.2 0.71308
1 16 4523 3176.4 0.70227
1 18 8117 5646.9 0.69569
2 3 40296 33881.4 0.84081
2 5 16691 13552.6 0.81197
2 7 10969 8712.4 0.79427
2 9 14590 11293.8 0.77408
2 11 6593 5133.5 0.77864
2 13 5613 4264.8 0.75981
2 15 } 12059 9035.1 0.74924
2 17 4404 3188.8 0.72408
3 4 29887 25411.1 0.85024
3 8 15677 12705.5 0.81046
3 10 17111 13552.6 0.79204
3 14 11182 8712.4 0.77914
3 16 8412 6352.8 0.75520
4 5 15901 13552.6 0.85231
4 7 10436 8712.4 0.83484
4 9 13879 11293.8 0.81373
4 11 6319 5133.5 0.81240
4 13 5385 4264.8 0.79198
4 15 11475 9035.1 0.78737
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