SIMPLY CONNECTED SMOOTH 4-MANIFOLDS WHICH
ADMIT NONTRIVIAL SMOOTH S' ACTIONS

ToMmoyosHr YOSHIDA

1. Introduction

In this paper, we study the diffeomorphism types of the closed simply
connected 4-dimensional smooth manifolds which admit non-trivial smooth
circle group actions.

Let S' denote the circle group, the multiplicative group consisting
of the complex numbers with absolute value 1. Let CP? be the complex
projective plane with the usual orientation which gives [+ 1] as the
intersection form on H,(CP?: Z), and let — CP? be CP? with the
opposite orientation.

Our main result is the following,

Theorem. Let M be an oriented simply connected closed smooth
4-manifold. If M has a non-trivial smooth S* action, then M is orienta-
tion preservingly diffeomorphic to the connected sum

St E E(CPY) 4 m(—CP? & n(S* %X S?)

for some integers k, m and n=0, where Y.* denotes a homotopy 4-sphere
and S? is the 2-sphere.

Remark: In [6], P.Orlik and F. Raymond proved that if the 2-torus
T*=8'"x 8" acts effectively on a closed simply connected 4-manifold M,
then M is an equivariant connected sum of the copies of CP? — CP?
S2x S? and CP? ¢ (— CP? with some effective T? actions. The
decomposition in the above Theorem is not equivariant in general.

§2 ~ § 5 will be devoted to the proof of the above Theorem. In § 6,
some S! actions on the 4-sphere S* and the connected sum k CP? %
m (— CP? £ n(S* X S?) will be given together with some other comments.

Throughout this paper, S' manifolds mean smooth S' manifolds,
and two S' manifolds M and M' are called equivalent if they are
equivariantly diffeomorphic to each other.

2. Preliminary lemmas and definitions
Let M be a simply connected 4-dimensional closed S! manifold.
We always assume that the S' action is effective and M is endowed
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with some invariant Riemannian metric. For a point x € M, the sub-
group of S! defined by G,= {g& S' | gx=x«} is called the isotropy group
at x, where g x denotes the point in M obtained by transforming x by
g. Let Z, denote the subgroup of S' of order m =2. Put

F={xeM| G =S§
F(Z)={xeM)| G.D Z,} and
Mﬂ = M_ (UmF(Zm)) .

F is the fixed point set and F C F(Z,) for each m = 2.

Let M* be the orbit space of M and let =: M—> M* be the
" prolection. Put My = n(M,). Then = | M,: M,—> M) is a principal
S! bundle and M} has a natural smooth structure.

Lemma 2.1. M* is a simply connected topological 3-manifold and
the connected components of its boundary 0 M* (possibly empty) correspond
in one-one way with the 2-dimensional connected components of F by =.

Proof. Since M is simply connected and =, : = (M) —> 7,(M*) is
onto ([2] p.91), M* is simply connected. By the differentiable slice
theorem ([2] p. 171), at each x & M, there is a slice S. which is
diffeomorphic to the 3-disc D® or the 4disc D' according as G, is finite
or not. This means that G, acts on S, linearly and the twisted product
space S!'X 4,5, with the S' action defined by glg,, #]1=1[gg., #] (g, g
= S! and # € S,) is equivariantly diffeomorphic to an invariant closed
neighborhood of the orbit S'x. Then the orbit space S./G. is homeomor-
phic to a closed neighborhood of 7(x). Now it is easy to see that the orbit
space S./G. is homeomorphic to the 3-disc D* and the 2-dimensional
fixed point set projects to the boundary by =. q.e.d.

Each connected component of F and F(Z,) is an orientable surface
or a point.

Lemma 2.2. (1) Each 2-dimensional connected component of F is
S?2. (2) Each 2-dimensional connected component of F(Z,) is S® for each
m=2.

Proof. (1) By Lemma 2. 1 and the Poincare duality, H,(M*: Z)=0.
and H, (M* FM*: Z)=H' (M*:Z)=0. Hence H,(0M*: Z)=0 by
the homology exact sequence of the pair (M*, dM*). Again by Lemma
2.1, each connected 2-dimensional component of F is identified with one
of the 2-dimensional connected components of 9M™*, and this proves (1).
(2) Let p be a prime number =2 dividing m. Since Z, acts trivially
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on H*(M: Z,) and H*”(M: Z)=0 (here Z,=Z/pZ), by a theorem
of A. Borel ([1] XII), the following equalities hold

dim ,,H*(M: Z,) = dim ,H*(F(Z,): Z,) and

dim QH*(M: Q) = dim gH*(F: Q),
where @ is the field of the rational numbers and dim, means the dimen-
sion of the vector space over k, k= Z, or Q. Now let £ be a 2-dimen-
sional connected component of F(Z,) (C F(Z,) which is not contained
in F. Then E is an orientable surface on which S' acts non-trivially,
hence it is S® or 7 (the 2-torus). Since H*(M: Z) and H*(F(Z,): Z)
are torsion free, the above equalities imply that dimgH(F(Z,): @) = -
dimgH(F: Q). If E is T? then this equality does not hold since any

non-trivial S' action on 7? has no fixed point. This proves (2) by (1).
q.e.d.

Remark : The equality of A. Borel in the above proof implies that
F 1is not empty in our situation.
Now put for each integer m = 2,
F(m) = the disjoint union of the connected components
{E} of F(Z.,) on which S! acts non-trivially with G, = Z,
or S for each x = E.
Then by Lemma 2.2, F(m) is a disjoint union of 2-spheres and F(Z,) =
FU (U F(m"). By Lemma 2.1, M is a punctured homotopy 3-sphere
m|m’

or a homotopy 3-sphere and #(U F(m)) is a disjoint union of finite circles
and arcs in the interior of M.

3. Two processes of equivariant decompositions

Let M, and M, be oriented closed S' manifolds. Let p, and p,
be fixed points in M; and M, respectively. Suppose that there is a
closed disc D;in M, which is a closed invariant neighborhood of p.(i=1, 2)
and there is an orientation reversing equivariant diffeomorphism f: D,
—> D,. Then the equivariant connected sum of M; and M, at p; and
ps, My, 3 M, is defined as the S' manifold obtained from the disioint

union (M;— D) U (M, — 1032) by identifying each point xE8(M, — 131)
= 8D, with f(x)E8(M,— D,)=0D, (here D denotes the interiorof D,, i

=1, 2). The orientation of M, # M, is the one compatible with the
orientations of M; and M.

Now let M be a closed oriented 4-dimensional S' manifold. Under
suitable conditions, M can be be decomposed as an equivariant connected
sum such as M'E + CP? or M’ #(5* X S% or M'£ CP2{(— CP? as
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follows.

Case (I) M=~M'E + CP?

Let S be an invariant 2-sphere smoothly embedded in M. Let » be
the equivariant normal bundle of S in M. We identify the disc bundle
of v, D(»), with a closed invariant neighborhood of S in M. Suppose
that the self-intersection number of S, S$+ S, is = 1. Then the sphere
bundle of v, S(») = @D{v) is diffeomorphic to the 3-sphere S°®. Now any
smooth S' action on S*® is equivalent to some linear S' action on S*
([41(5]), hence it can be extended to the action on D' linearly. Let M’
be the S' manifold obtained from the disjoint union M — D(») U D* by
identifying 8 (M — D(»)) = 8(D(»)) and 8D* by an equivariant diffeomor-
phism of S*® andlet J be the S' manifold obtained from the disjoint
union D{v) U D* by identifying 6D{») and 8D*! by an equivariant
diffeomorphism of S® Since =, (Diff $*) = 0 ([3]), the diffeomorphism
classes of M and J are unique. We orient M’ (resp. J) by extending
the orientation of M — D{v) (resp. D(»)). Then M' and J have the
structures of oriented S' manifolds naturally. If S+ S=1 (resp. — 1),
then D(v) is the disc bundle of the Hopf bundle (resp. the conjugate bundle
of the Hopf bundle) over S?, and J is orientation preservingly diffeomor-
phic to CP? (resp. — CP?). Now it is clear that M is equivariantly
dffeomorphic to the equivariant connected sum M ¥ J= M % + CP.

Case (II) M=~M'#(S* X 8% or M'£ CP*# (— CP?%

Let S, and S, be two invariant 2-spheres smoothly embedded in M.
Let »; be the equivariant normal bundle of S; in M, and as before we
identify the disc bundle D(»;) with a closed invariant tubular neighbor-
hood of S; in M (i=1, 2). Suppose that S, and S, intersect mutually
and transversally at a fixed point p=S; N S,, and suppose that the self
intersection number of S;, S;- S;, isequalto 0. K= D(»))U D(v,) is
considered an invariant submanifold in M which is a closed invariant
neighborhood of S; U S,. K is a so called equivariant plumbing of
D(v;)) and D(v,) at p, and it has a natural smooth structure (by smooth-
ing the corner). H,(K: Z) is generated by the classes of S; and S,
with suitable orientations, and the intersection matrix of H,(K: Z) has

the form [g ;] (e = * 1), where a = S, S,, the self intersection num-
ber of S,. Hence the boundary @K is diffeomorpfic to S3. Therefore
the same process as in Case (I) can be applied. That is, the S* action
on §* can be extended to D* linearly and we obtain an S! manifold
M' (resp. K') from the disjoint union M — K U D* (resp. K U D*) by
identifying @ M — K (resp. 8K) and 8D* by an equivariant diffeomor-
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phism of S®. As in Case (I), the diffeomorphism classes of M’ and K'
are unique. We orient M’ and K' by extending the orientations of
M — K and K respectively. Clearly M is equivariantly diffeomorphic
to the equivariant connected sum, M'# K/. Now K’ is diffeomorphic
to S? X S? or CP* & (— CP? according as «= S, - S, is even or odd.
To see this, let D, be the disc bundle of the complex line bundle over S*
with <{c¢, [S*]> =a, where c is the first Chern class of this bundle
and [S?] is the fundamental class of S? and < , > denotes the Kronec-
ker pairing. Let B, be the double of D,. Then B, is a S* bundle over
S? such that each fibre is the double of each fibre of D.. B, is diffeomor-
phic to S2X S? or CP?# (— CP? according as « is even or odd since
7,(SO(3))=Z,. Let E be the zero section of D, and let F be a fibre of
the S? bundle B.. Then D, isthe normal disc bundle of £ in B, and
the normal disc bundle of F in B,, Dy is a trivial D? bundle. Now
D, U D, C B is a plumbing of these disc bundle and B—D, U D; is
diffeomorphic to the 4-disc D'. Hence D, U Dy is diffeomorphic to the
above K and B, is diffeomorphic to the above K'. Consequently M is
equivariantly diffeomorphic to the S' manifolds of the form M'% (S* X S?)
or Mg CP:% (— CP?.

4, Circular system

Definition 4. 1. A circular system of length k (=2) in a 4-dimensional
S! manifold M is a set consisting of isolated fixed points {p,, p,, -+, pu}
and invariant 2-spheres smoothly embedded in M, {S,, S,, ---, S}, such
that

1) S: intersects transversally at p.,; with S., 1=<i<k—1) and
S. intersects transversally at p; with S,

2) each S; is a connected component of F(m,) for some m; = 2
except at most one S; on which the S' action is free outside the fixed
point set, and

3) pi%~p;, and S, S, for 1=ij< k.

We write the circular system defined as above in the form L=p;S,p,S,

e pks‘_j, 1.
Lemma 4.2. If LZJ F(m) is not empty, then there is a circular system.
me2

Proof. Suppose that F(m) is not empty for some m =2. Let S
be a connected component of F(m). S has two fixed points in it, say p
and p'. Denote this situation by pSp’. If there is a 2-sphers S'(5 S)
C F(m') (m' = 2) containing p’ (resp. p) and p'' as the two fixed points,
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then we obtain a sequence pSp' S/p' (resp. p'"" S'pSp"). Note that m and
m' are mutually prime and S intersects transversally at p’ (resp. p) with
S’. It may be happen that p = p' (resp. p' = p”). Inthiscase SN S’
=pUp' and S intersects transversally at p and p’ with S’. Repeating
this process we obtain a sequence p,S;p,Sy +Pe-1S:_:pr such that p. == p,
S5 S, foreach 1<i<{j<k—1 and S,C F(m;) m;=2) and S,., inter-
sects transversally at p, with S,(2<i<k—1). Now suppose that this
sequence is maximal, that is, there is no other sequence strictly contain-
ing this sequence and having the above properties. Then the two cases
may happen, p, = p, or psF=p.. If p,=p. then the above sequence
is a circular system. Assume that p, 5 p.. Let D (resp. D) be an
invariant 2-disc smoothly embedded in M which intersects transeversally
at its center p, (resp.p.) with S (resp. S:_,). We assume that D and
D' are so small that DN D'=¢ and (DN D)VN (Un F(Z,)=p1 U ps.
S! acts on D—p, and D— p, freely, that is (D—p,) U (D — p) C M,
(§2). =n(D) and =n(D') in M* are two disioint arcs with one endpoint
7(p') and #(p,) respectively. Joining the another endpoints of their arcs
by a smooth curve in M{, we obtain an smoothly embedded arc 7 in M*
such that the endpoints of 7 are #(p,) U#(ps) and y-(z(p,) U w(p.)) C M.
Then S; = n~'(y) is an invariant 2-sphere smoothly embedded in M and
it intersects transversally at p, and p, with S; and S.-, respectively.
Hence we obtain a circular system p,Sp,--- Si—:p.Sip;. This proves the
Lemma. ' g.e.d.

Let L= 9,5,9,S;---p:Sip:, be a circular system in M. We choose
and fix an orientation o, of S;, and choose an orientation o, of S; so that
the intersection number of S,_; and S; at p, may be +1(2=:<%). Then
0, and o, determine the intersection number ¢(= + 1) of S, and S, at
p:. Note that ¢ does not depend on the choice of o,. The self intersec-
tion number S; - S;= «; is independent of o, (1<i<k). We write these
situations as L=L («;, a3, '+, aw; ¢). The rest of this section is devoted
to the proof of Lemma 4.5 given at the last of this section.

A smooth S' action on a smooth manifold induces a linear S! action
on the tangent space at a fixed point by derivation. We call this S!
action the tangent representation at the fixed point. Denote the standard
complex representation of S', S'= U(1) (the unitary group of degree 1),
by ¢ and denote its %-th tensor product by #*. Choose a suitable complex
structure on the tangent plane of S; at p; which gives the same orienta-
tion as o;, we may write the representation of S' on the tangent plane
at p; in the form £™ (3;= 1) (1<{<k) (note that S, C F(m.)). Put
n;=0m;(1=7{=< k). Then the tangent representation of S' on 7TM,
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is £ %1 G=1) or '+ £ (2<i<k) under a complex structure
on TM, which gives the same orientation with that of M on TM, and

contain the tangent plane of S, at p. with the above complex structure
as a complex subspace.

Lemma 4.3. The following relations hold, for k =3,
— ey + ayny — 1y, = 0
— i tan;,—n=0 QCZiZk—1)
— Ry ity — en; = 0
and for k= 2,
aymy — (e + 1y, = 0
ity — (¢ + 1), = 0.

Proof. Suppose that S' acts on the complex projective line CP!
by the equation gl[z,, z;1=1[2, g 2] ([20, 2,]E CP', meE Z). Let & be
an S' complex line bundle over the S' space CP' with < ¢,(£€), [CP']D>
=a € Z, where c,(§) is the first Chern class of £ and [CP!] is the
fundamental class. Let E(£) be the total space of £ and let p: E(§)
—> CP'! be the projection. Then the fibres p~'([1, 0]) and p ([0, 1])
are invariant by the S' action on E () and S!' acts on these fibres
linearly. Assume that the representations of S' on p~!([1, 0]) and
»71 ([0, 1]) are £ and "' respectively under the complex structures on
these fibres. Then the following equality holds,

(*) a,— ay = ma.

Proof of (*). Let ES'—> BS' be the universal S' bundle. Let
ES' X 4CP' be the twisted product space. ~We consider the equivariant
cohomology H*(ES' X ,CP': Z)([2] Chap VII). Let p: ES'X ,CP'—>
BS' be the projection, then this is a fibre bundle with fibre CP!. Since
H*(CP': Z)= H"(BS': Z)=0, the cohomology Serre spectral sequence
of this fibre bundle collapse, and CP' is totally non-homologoues to
zero in ES 1><SICP1. Let S° be the unit sphere in the complex plane,
S* = {(z0, 2)ECHC] |20|*+ |2,1*°=1}, and ¢: S* —> CP' (20, 2,)—>
[z, 2z;]) be the canonical projection. Let S' act on S® by the equation
g(2y, 2z1) = (2, g"2;). Then ¢ is an S' circle bundle over the S' space
CP', and g¢;: ES' X 48° —> ES' X 3 CP' is a circle bundle. Let
c(EH*(ES' X ,CP': Z)) be the first Chern class of this circle bundle.
Let u be the first Chern class of the universal bundle ES'—— BS'. Then
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c and p*(t) = u' generate H®(ES'X ,CP':Z). Let j,: BS'=BS'Xx
[1, 0] € ES* X 4,CP' and j,: BS' = BS' X [0, 1] C ES' X 4,CP" be the
inclusions. Then 7¥(c) and j*(c) are the first Chern classes of the
restrictions of ¢, to BS'X{1, 0] and BS'X[0, 1] respectively. Hence
j¥(c)=0 and jf (c) =mu in H? (BS': Z). Now consider the complex
line buncle pq: ES' X 4E() —> ES' X ,CP'. Let ci(ps) be the first
Chern class of p,. Then c¢,(ps) = rc + su’ for some integers » and s.
By the inclusion CP'(=eX CP')C ES'X ,CP' (e€ES"), c,(pe) corresponds
to the first Chern class of p. This implies that » =, and c,(ps) =ac
+ su’. The restrictions jf{(c,(ps)) and jf(c,(ps)) are the first Chern
classes of the restrictions of the bundle p; to BS' X [1,0] and BS! X
[0, 1] respectively. Hence j¥(ci(ps)) = au and jF(c,(ps)) = @, u. On
the other hand j (ac+su)=jF (c)+sif(w)=su and j}(ac+su’)=ji(c)-+
sif(u)=moau+su. From these equations, we obtain ¢,—a,=m«. q.e.d.

We proceed to the proof of Lemma 4.3. First suppose that 2= 3
and 2</<k—1. Let v, be the equivariant normal bundle of S, in M.
v can be considered as an S!' complex line bundle over S; such that the
complex struture and the orientation o; of S; give the same orientation
as that of M. Then the representations of S' at the fibres over p, and
pier are ¢ ' and £°*' respectively. Now let S' act on CP' by the
equation glzo, 2;]1=[z20, g"z,]. Let I={l(s)=[1—s, s]ECP! (0<s<1)}
be an arc in CP! joining [1, 0] and [0, 1]. Let % :!—— S, be a smooth
map such that #([1, 0]) = p, and k([0, 1]) = p:.; and the image Ak(l)
meets with each orbit in S; at exactly one point. Using the S actions,
we obtain an equivariant map %:CP'—> S, of degree 1 extending A.
The induced bundle %* v; is an S' complex line bundle over CP!, and
the representations of S! on the fibres over [1, 0] and [0, 1] are ¢ !
and £ respectively, and < cl(z* v;), [CPY] > =8, S,=q;, where

c, (i?* y;) is the first Chern class of %*v,. Hence i1 + 2o = am; by
(*). For ¢i=1, k(k=3) or k=2, allisthe same. q.e.d.

Now assume k2 = 3. Considering the relations in the above Lemma
4.3 as a linear equations of #,, #,, **, #, Wwe have an equation
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(s 4] —1 —E
—1 22 -1
0
-1 a3 —1
det . . . =0
0
.-
—¢& —1 (o %

here det denotes the determinant of the matrix.

Lemma 4.4 If k=3 and |a;| =2 for all 1< i<Fk, then a,=
= =q=2 e=1 or == '=a,=—2, e=(—1)"

Proof. We denote the above determinant by A (@, -=*, ax; e). Put

ah —1
—1 (07} —1
""1 ag —'1 O
B (a,, ceey apc) = det . ) .
O . . — 1
-1 (o Y
Then a simple calculation shows the following equation, A(x,, '+, @ ;e)

= Blay, ***, a)—B(ay, -+, ar-1)—2e. Now for a sequence of the integers

a, -, a (|a:|=2, i=1, -+, 7), we write the finite continued fractions as
—1 . +=L and ¥(a, -y a,)=a1+;1+---+_1,
r—1 a, a, a,
Then |b(ay, -, a.)| > |a-|—1, |b'(ay, -, a)| > la;)| —1 and if a.a._, <0,

then |b(ay, ---.a,)| >2 and if @,4,<0, then |¥ (@, -, )| >2. Now it
k k
is easy to see that B(ay, -, ay) = ]'Il ay, -, a)= H]b’(ar---, o).

ba,, -+, @) =a,+

Hence Bla, '+, aw) = blay, -, aw) 8'(as, ++-, ae-1) Blaz, *, ax-1). Hence
A(al, ety K 5) = (b(dl, sty ak) b'(aly e ab—l) - 1) B(“z; "y az;—:) —2e =

k—1
(b(al, "ty ak) b'(al, "t ak—l)_l) Hz b(dg, ey ar) — 2e, BY the above
observation, we see thatif |a;|=3 forsome 1<i<Fk or a;a;, <0
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for some 1<i<%k—1, then A(a;, --*, a:; €) cannot be 0. Hence

Alay, -+, ar; €) = 0 implies that a; = =a,=2 or a; ="+ =@, =—2.
Now B(2, -, 2)=7r+1 and B(—2, ---, — 2) =(— 1) (r + 1), so that
T \_ﬁr,“/
A@, -+, 2;e)=2—2¢ and A(—2, .-, —2;¢) =(—1)*2— 2e, The
k E

Lemma follows. q.e.d.

Now if =3 and a;=-*=ax=2, ¢ =1, then each solution of the
equations in Lemma 4.3, (n,, ---, #s), is a scalar multiple of (1, ---, 1),
and if a;=-"=a,=—2 and ¢=(—1)% then it is a scalar multiple of

1, =1, -, (—1)*, .- (—=1)**"). But by the definition of a circular system
and n(= ém,, 6= *x1,i=1,--- k), n and #n, are mutually prime for
each 1<i<k—1, and |n/|>1 except at most one #;. Therefore we
get the following.

Lemma 4.5. If L=L(ay, -, a.; €) (k=3) is a circular system in
a 4-dimensional S* manifold M, then some o is equalio 0 or * 1.

5. Proof of Theorem ILet M be an oriented simply connected
closed 4-dimensional S! manifold. First assume that there is a circular
system of length 2 =3 in M. Let L = L(a,, -+, as; &) be a circular
system of length =3 in M. By Lemma4.5, some a;= %=1 or 0
(1<i<k). If a= -+ 1 (resp. —1), then we can apply the process of
Case(I)in § 3 to S, and M is equivalent to M' # CP? (resp. M % —
CP? for some S!' manifold M'. If ¢;=0, then the process of Case(II)
in.§ 3 can be applied to S, and Si, (or S, and S;-;), and M is equi-
valent to M’ 4 (S2X S?) or M'# CP? 3 (— CP?). In each case the number of
the isolated fixed points in M’ is strictly smaller then that in M. If there
is a circular system of length k=3 in M’ then the same process can
be applied to M'. By the induction on the number of the isolated fixed
points, we obtain an equivariant decomposition of M such as M~ N £
ECP* % m(— CP?) # n(S? X S?), where N is an S' manifold such that
length of each circular system in N is 2 or the S' action on N is
semifree.

Asssume that N has a circular system of length 2. Let L(ay, a;; €)
= p,S:9,S:p: be a circular system in N. By Lemma 4.3, a;n,=(e+1)n,
and a,n,=(e-+1)n;, where #; and #n, are asin §4. Note that »; and
n; are mutually prime integers and |n;||#,| =2. It follows that if
e=—1, then a;=a,=0, and if e=+1, then a,==4, ap==*1, |n;| =1
and |n,| =2 or ay=+1, a,==+*4, |n;| =2 and |n,| =1
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Remark : An example of the circular system of the latter type
(e=+1) is the following ; Let S' act on CP? by the equation gl[z, 2,
z,]=[g7'20, gz1, 2,1 (gES', [2,, 21, 2,]ECP?). Put S,= {202, —2;=0},
S,={z,=0}, p,=[1, 0, 0] and p,=[0, 1, 0O].

Thus if e=-+1, then «; or a,==1, hence the process of Case (I)
in § 3 can be applied to S; or S,, and N is decomposed as N’ § + CP2
Again repeating this process, by the induction on the number of the
circular systems of the forms L=L(+4, =1; 1) and L(*+1, +=4; 1),
we obtain the following,

Lemma 5.1. M is equivarianty decomposed as M= N'#kCP*#
m(— CP?) § n(S* X S?), where N' isaclosed S' manifold such that every
circular system in N' has length 2 and has the form L(0, 0; —1) or the
S! action on N' is semifree.

Now to decompose N’, we will change the S' action on N’ into a
semifree S§! action if it is not semifree.

Lemma 5.2. Let N’ be such an S* manifold as in Lemma 5.1. Then
there is a semifree S' action on N'.

Proof. If the S' action on N’ is not semifree, then there is a
circular system of length 2, L=p,S:p,S,p; which has the form L(0, 0;
—1). Since S;- S,=0, the equivariant normal bundle »; of S; is trivial
(=1, 2). Let D(v;) and S(v;) be the disc bundle and the sphere bundle
of v, respectively. Then D(»,) is diffeomorphic to S? X D? and S(v,)
is diffeomorphic to S?xS!. We identify D(»;) with an invariant closed
neighborhood of S; in N'. Suppose that S;. & F(m;) ({ =1, 2). Then
m, and m, are mutually prime positive integers. Assume that m;>m,
for instance. The S' action restricted on S(v;) has two orbit types S'
and S'/Z., with two exceptional orbits S(v,) N S, (for the definition of
the orbit types and exceptional orbit, see [2] [4]). Let p: S'= SO(2)
—> SO(3) be the natural inclusion, where SO(2) and SO(3) are the
special orthogonal groups of degree 2 and 3 respectively. Then the
classification theorem of the 3-dimensional S' manifolds by P. Orlik and
F. Raymond implies that the S' manifold S(v,) is equivalent to S? X S*
endowed with the linear S' action defined by g(x, ¥) = (p (&) 'x, &%)
(g=S' and (x, y)ES? X S'), where g%y is the multiplication in S*([4]
p. 20). Now there are integers g and 7 such that m; = 2¢gm, + » and
—m,<<r<m, Let (S2XD? be S®X D*? endowed with the S' action

defined by g(x, ¥) = (p(g)'x, & v). Let f be the diffeomorphism from
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S?x S! to itself defined by f(x, y)= (p(3)*x, ») ((x, y) =S?x S'). Then
f is an equivariant diffeomorphism from (S?2x S')/=0(S*xD?*' to S*X S*
endowed with the above linear S' action which is equivalent to S(v)).
Hence f gives an equivariant diffeomorphism 7 from (S?2xSY) to S(v).
We obtain a new S' manifold N"' from the disjont union (N’ — D(»;)) U
(8% X D?' by identifying each p=38(S? X D*) with F(PYES(,)=0(N"—D(v,)).
Since 7;(SO(3))=Z, and the map y(£S')— p(»)*(=50(3)) is homoto-
pic to a constant, hence f is isotopic to the identity. Therefore N' is
diffeomorphic to N'. Thus we obtain a new S' action on N', such that
component of F(m,) of the old action is changed by a component of
F(|7]) (a component of F if »=0) of the new action, where |7 |<<m,<m,
(note that »=0 implies m, =1). Now repeating this process, we obtain
finally an S' actionon N' such that F(m) =  for all m =2, hence
it is semifree. q.e. d.

By Lemma 5. 1 and 5. 2, to complete the proof of Theorem it suffices
to decompose S' manifolds with semifree S' actions.

Let M be aclosed S! 4-manifold with semifree S' action.

First suppose that the fixed point set F contains a 2-sphere S, and
suppose that F— S, is not empty. Let F, be another component of F.
Let p(resp. q) be a point in F, (resp. S,). Let D(resp. D') be an
invariant 2-disc smoothly embedded in M with the center p (resp. g).
We assume that D’ intersects transversally with S, at ¢ and D intersects
transversally with F, at p if F, is 2-dimensional, and assume that D and
D' aresosmallthat (DU D)YNF=pUgq and DN D' = .

7(D) and =(D') are two arcs in M*. By the same way as in the
proof of Lemma 4.2, we obtain an arc ; in M* extending #(D) and
7(D') such that S = »"'(y) is an invariant 2-sphere smoothly embedded
in M and it intersects transversally with S, at ¢ and with F, at p if
F, is 2-dimensional. The representation of S' on the normal plane of S
at g is trivial and that on the normal plane of S at p is trivial or #*!
according as F, is a 2-sphere or a point. Since S' acts on S semifreely,
this implies that the self intersection number of S, S-S is equal to 0
or *+ 1 according as F, is a 2-sphere or a point by the same argument
as in the proof of Lemma 4. 3. If S-S = +1, then the process of Case(I)
in §3 can be applied to S and M is decomposed as M'# = CP% If
S+S=0, then that of Case (II)in § 3 can be applied to S and S,, and
M is decomposed as M’ % (S? X S?%) or M'$4 CP*% (— CP?). We note
that the number of the components of the fixed point set in M’ is strictly
smaller than that in M and the action on M’ is semifree in each case.
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Next suppose that F consists of isolated fixed points, F = {p;, ---, p}
(here k=2, as dimgH(F: Q) = dimgH(M: Q) =2). Assume that
k=3. In M*, asin the proof of Lemma 4. 2, we can choose arcs 7y, -,
7x—» such that the endpoints of y; are =n(p;) and #(p;.,) and the interior
of 7, is contained in M,* and S;==z"!(y;) is an invariant 2-sphere
smoothly embeeded in M, and S; intersects transversally with S;., at
pii=SNSu(i=1 -, k—2) and SSNS;=F if |i—j|=2 Let
D(v,) be the disc bundle of the equivariant normal bundle of S; in M.
Let K be the equivariant plumbing of D(v,), -, D(v:+_,) such that D(»,)
and D(v.;) are plumbed at p,.,(i=1, -, k—23) (a; o, in
the usual diagram). Then K is identified with a closed invariant neigh-
borhood of S; U - U Sk-; in M. Let D be an invariant closed 4-disc
with the center p. which is disjoint from X. Then =: M — KUD—>
(M — KUD) is a principal S' bundle. It can be seen that =(K) is the
3.disc and 87(K) = =(@K) is the 2-sphere S%. The S! bundles = :6D
——> n(0D) and = : dK—> =(0K) are equivalent to each other, hence
it follows that 8K = S3. This implies that the intersection form on
H,(K: Z) is unimodular. Choose an orientation o; of S; so that the
intersection number of S, and S.., at p; maybe —1(i=1, -, k — 2).
Then the intersection matrix is

(041 —1 3
—1 (24} -1 0
-1 ay —1
P
0 —1 oy

, where a;= S+ S; is the self intersection number of S:(f=1, ---, k— 2).
Hence using the notation in the proof of Lemma 4. 4, it follows that Bfa;,
«-s, az_:) = = 1, and by the argument in that place at least one «; is
equal to+ 1 or 0. Therefore as before, M can be decomposed into the
equivariant connected sum M'§ = CP? or M'%(S?X S?) or M'&CP*
(— CP?, where the number of the fixed points in M’ is strictly smaller
than that in M.

Summerizing the above argument, we conclude that M is decomposed
as M~M'4% B(CP?) £ m(— CP?) 4 n(S? X S*), where M' is a smifree S*
manifold and the fixed point set in M’ is only one 2-sphere or two isolated
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points. In each case dimgH (M': Q)=dimgH (F: @)=2 by the theorem
of A. Borel (§2), and this implies M' is a homotopy sphere, since it is
simply connected. This completes the proof of Theorem.

6. Some S! actions

In this section, we construct an S' action on S* and an S' action
on the connected sum ACP? £ m(— CP?) & n(S? X S?).

(1) An S' actionon S*

Let C+C be the complex plane with S! action defined by g(x, y) =
(gx, gy) for g= S* and (x, y)=C+C. The one-point compactification
of C+C, (C+C)Y=(C+C)U {0}, is S, and we extend the S' action
on C+ C to S* naturally. The orbit space (S)* is S° and g =
a(F(2))==((0 + C)°) is an arc in S* joining #((0, 0)) and =(cc). Let ¥
be an embedded arc in S*® joining the same points such that the circle
g U 7 is the trefoil knot in S* (Figure (*)).

G

(*) B C r
A0

=((0, 0))

We choose 7 so that =~ '(y) may be an invariant 2-sphere smoothly
embedded in S* intersecting transversally with F(2) = (0 + C)° at the
two fixed points. Since any embedded 2-sphere in S* has a trivial normal
bundle, the equivariant normal bundle of ©~!(y) in S* », is trivial and its
disc bundle D(») is diffeomorphic to S$% X D®  The restricted S' action
on its boundary S(v) =~ S?X §' is equivalent to the S' actionon S?X S!
defined by g(x, y)=(o(g)x, gy) (g€ S, (x, y)=S5*x S"). Let f be the
map from S? X S! to itself defined by f(x, y) = (o ()%, ») ((x, 3)
S2xSY. Let (S*xD?' be S?XD? with S! action defined by g{x, y)=
(o(g)°x, g y). Then f is equivariant diffeomorphism from 9(S? x D?)’
to S? X S' with the above S!' action which is equivalent to S(»). Hence
f induces an equivariant diffeomorphism ? from 8(S?* X D?)' to S(v).
Deleting from S* the open disc bundle D(») and then patching (S?x D?)!
along the boundary using ?, we obtain an S' manifold M. Since f is
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isotopic to the identity, M is diffeomorphic to S*. This S! action is not
equivalent to any linear S* action on S* since the complement of the
singular and exceptional orbits F(5) U F(2) is not equivariantly diffeomor-
phic to that of any linear action. :

The similar constructions produce arbitrary knots and links in the
orbit spaces when the number of fixed points is greater than 2. - This
implies that any classification of the equivariant diffeomorphism types of
simply connected S!' manifolds leads to the classification of knots and
links in S*® in addition to the classification of the orbit types.

(2) A semifree S' action on the connected sum k(CP?) £ m(— CP?)
# n(S? x §%).

Let S' act on CP?(resp. — CP?) by the equation glz,, z, 2,] =
L2, 21, g2;] (resp. [z, 21, g7'2,]), where g=S" and [z, 2, 2.] € CP2
Let S' act on CP'XCP' by the equation g({z,, z,], [20, 21])=([20, g21],
[z0, z1]), where ([z, 21], [z, 2,]) € CP' X CP'. Now let P, P, +--, P,
be the % copies of CP', andlet @, @,, ---, Q. be the m copies of —CP;
and let R, R,, ---, R, be the n copies of CP'XCP'. Assume that each
of {P, -, Py, @, -+, Qu Ry, ---, B} has the S! action defined as above.
Put @, =[1,0,0] and 5=[0,1,0] in P,(¢=1,---, k), put c¢;=[1,0,0]
and 4,=[0, 1, 0] in Q,j=1, ---, m), and put e,=([1, 0], [1, 0]) and
£~=([1,0],[0,1]) in R(r=1,---,n). The tangent representations of S’
are 1+ at @, and b .(1<i<k), 1+4+¢"' at ¢, and 4,(1<j<m), and
14t at e, and f.(1=<7=<#) under the natural complex structures on the
corresponding tangent spaces. Note that there is an orientation reversing
equivariant diffeomorphism from the representation space 1 + ¢ to the
representation space 1+t ((», v) —> (&, 7), (#,9)=C+C cnd 7 = the
conjugate of v). We can form the equivariant connected sum P, & ---
$2PEQ - £Q,.8R 2 ---#R, insuch a way as P, and P,,, are connected
at b and a;,, 1=<i<k—1), and P, and @, are connected at &, and
¢;, and Q; and Q,., are connected at d; and ¢;., (1 <j<m —1), and
Q. and R, are connected at d, and ¢,, and R, and R,,, are connected
at f. and e, (1<r<n—1). This gives a semifree S' action on the
connected sum ACP? # m (— CP*) % n(S® X $%) (note that S*X §? has an
orientation reversing diffeomorphism).
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Added in proof. R. Fintushel has proved the following result; if
a simply connected closed 4-manifold M admits a non-trivial locally S,
action, then M is homotopy egqivalent to a connected sum of copies of
S%, = CP? and S?%x S? (R. Fintushel, Circle actions on simply connected
4-manifolds, Trans. A. M. S. 230, 1977, 141—171). He informed me
that he and P.S. Pao have obtained the same result in this paper in the
forthcomming paper.



