ON RINGS SATISFYING SOME POLYNOMIAL
IDENTITIES

ARIF KAYA

Throughout, A will represent a ring with the center C. For x, y
€A and a positive integer %k, we define inductively [x, ylo==x, [x,y]:
=[x, 3] (=2y—yx), [x,y)e=[1x,3]e-, 5].

M. S. Putcha and A. Yaqub have made a remark in [8] that any
semisimple ring A is commutative if xy’x=yx®y for every pair of
elements x and y in 4, and they gave an example of a non-commutative,
non-semisimple ring satisfying the above identity. We have extended the
result to semiprime rings in [7]. On the other hand, H.E.Bell [2] has
proved that if for each x, yE A there exist positive integers m, n such
that xy=y™x", then A is commutative. Now, let D be a division ring,
and A= {(a)ED) | ay=0(E<j)}. If k>2 then A, is a non-com-
mutative nilpotent ring of index %. For any positive integers m, n, A,
does not satisfy the identity xy—y"x"=0, but [xy—y™x",2z]=0. Or,
more generally, A; does not satisfy xy’x— (yx)"(xy)"=0, but [xy*x—
(yx)™(xy)", 21 =0. Therefore, it is natural to investigate the structure of
rings satisfying the last identity. The purpose of this note is prove the
following

Theorem. Suppose A satisfies one of the following polynomial
identities :

Py) [xy)*—2™y", 2] =[(xy)"—x"y", y]1=0, where n>1.

(Py) [(xy)—y"«", x]=[(xy)"—y"x", y]=0, where n>1.

P,) [(x+y)—ax"—y", x1=0, where n>1.

(Py)  [xy*x—(yx)"(xy)", 21=0, where m, n>1,

Ps) [xy*—y™x", 2] =0, where m,n=>1.

(Pe) [[x,y]lz—z"[x, y]", w] =0, where m, n=>1.
Then the prime radical of A coincides with the set of all nilpotent elements
and includes the commutator ideal of A.

We begin with

Lemma 1. (1) Let A be a prime ring, and ¢ in C. If ac=0 then
either a=0 or ¢=0.
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(2) Any reduced prime ring is an integral domain.
(3) Let A be a semiprime ring. If a°=0 and ax*a=0 for any xE
A, then a=0.

Proof. It is enough to prove (3) only. For any x, yEA we have
0=a(x+ay)’a=axaya, whence it follows that (¢A4)*=0. Thus a=0.

Lemma 2. Let A be a division ring, and k a non- negatwe integer.
If there exist integers n>>m=1 such that

[x, y1i—[x, y]i"E C forall x,yEA,
then [x,ylreC. If furthermore (m,n)=1, then A is commutative.

Proof. Assume there exist some @, b€ A such that [aq, b]7&C. Let
d=[a, b];, and ¢ an arbitrary element of C. Then c¢d=/[ca, b], and
(c"—c™d™=(cd)"—(cd)"—c"(d"—d™)&C. Hence, ¢"—c™ must be 0, which
means that C is a finite field. On the other hand, A is finite dimensional
over C by Kaplansky’s theorem [6]. This amounts to saying that A is
a finite field, a contradiction. In case (m, #)=1, we readily obtain [x, y]:
eC. Hence, the latter assertion is a consequence of [4, Theorem].

Lemma 3. If a division ring A satisfies one of the polynomial identi-
ties (P1)—{(Ps), then A is commutative.

Proof. According to [3, Lemma 1], in order to prove the lemma
for (P,)—(P,), it is enough to show that [«%, ']=0 for any non-zero x, y
£ A with some positive integers s, £
(P,) Setting ¢, =x[x""", y"], we have
c1=x"y"—(xy)"+x {(yx)"—y"x" 27,
so that [¢y, x]=[cy, ¥]=0, and similarly for ¢,=x*[x**"", "] there holds
[cs, ¥y1=0. By a brief computation, one obtains 2¢,—c,x "=x"c;x™"+
xex ' —cx =0, If [x%"° y"]=x"%, is non-zero, then x "=¢;"(2c,)
commutes with y, thatis, [z, y]=0.
(P,) Setting c,=x"'[x"*", "], we have
a1=x"y"—(y2)"+ 2" {{xy)"—y"5"} %,
so that [c;, x]=[c;, y]=0, and similarly for c,=x"*[¥***", y*] there
holds [c;, ¥]=0. One obtains also 2¢;—c,x "=x"cx "+x"'c1x— 2 "=0.
If [x***Y y*] =x%, is non-zero, then x "=¢;'(2¢;) commutes with y,
namely, [x*, y]=0.
(P;) By Kaplansky’s theorem [6], A is finite dimensional over C.
Since [4", y]—[x, y*]=[x"+y"—(x+y)", x+y]=0, for any c=C we have
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(c"—o)a™, y]1=T[c"x™, y]1—clx, y"]1=[{cx)", y]—[cx, "1 =0. If [x" y]17~0,
then ¢"—c=0 for all c&€C. Obviously, C is then finite, and A is also
finite. Hence A is commutative, which is a contradiction.

(P) If m=n=1, then [xy, yx]=xy’x—yx’y&C. Since [x,y],=
[(1+x)y, y(1+x)]—[xy, yx]=C, A is commutative by [4, Theorem]. In
below, we assume m-+n>>2. In general, [x,y]*—[x, y]""=[x, y] 1%
[x, y]—(1-[x, y1)"([x, y]-1)*=C, and hence by Lemma 2 we have [z, y1°,
[z, y]**“e(C. Especially, in case m+#» is odd, A is commutative by
Lemma 2. Henceforth, we may restrict our attention to the case m-»
is even. According to [3, Lemma 1], it suffices to show that x*C for
all x=A. Assume there exists an @ such that 4°&C. Then d=/[a, b]
#0 for some b. Recalling that (da)®=[a, ba]?*=C, one obtains (ad)’=
(ad)*(ad) '=a(da)*d(ad)'=(da)*=C. 1f both m and = are even, then
& =[{ad’a—(da)™ad)"} +(da)"(ad)]Jd*=C, a contradiction. Finally, we
consider the case m=2k-+1 and n=2k+1, where s=h+k>0. Since
ad*a—(da)"(ad)*=C, we get ’d*+(ad)*d’d’= {1+ (ad)*} a’d’=C. It fol-
lows then 1+4(ad)®*=0, and hence (ed)”*=1. Similarly, noting that
(ca)*& C and cd={[ca, b] for any non-zero c=C, we obtain (c’ad)*=1.
Hence, c*=c*(ad)*=(c%ad)*=1. This implies that C is finite. Again
by Kaplansky’s theorem [6], A will be seen to be commutative. This is
a contradiction.

(Ps) Since x—x", y*—3y™, y—y™ "E(, if either n>>1 or #=1 and
m=*2 then A is commutative by Lemma 2. If n=1 and m=2 then
xy’—y?x=C, and A is commutative by [4, Theorem].

(Ps) Since [x,y]—[x,y]"'eC, if n>>1 then A is commutative by
Lemma 2. Next, if m=n=1 then [x,y],=[x,yly—y[x,y]JEC, and A
is commutative by [4, Theorem]. Finally, if m>1 and n=1 then
(c—c™[x,y]=C for all ceC. If A is not commutative, Kaplansky’s
theorem [6] will yield a contradiction.

Proof of Theovem. To our end, it suffices to prove that if A is
prime and satisfies one of the polynomial identities (P;)—(P;) then A is
commutative. According to Amitsur’s theorem [1], any integral domain
satisfying a polynomial identity (with coefficients +=1) has the division
ring of quotients satisfying the same polynomial identity. Thus, by
the validity of Lemma 3, our proof will be completed by showing that a
prime ring A satisfying one of the identities (P;)—(P;) is an integral
domain. To this end, we assume that there exists a non-zero element a
with a*=0 (see Lemma 1 (2)).

(P,) and (P,) To be easily seen, (ax)* commutes with ¢ for any x&



20 A, KAYA

A. Thus, O=alax)"=(ax)"a=(ax)"*', whence it follows a contradiction
a=0 ([5, Lemma 1.1]).

(P;) Obviously, (ax)"'a=(a+ax)"—(ax)"=(a+ax)"—a"—(ax)" com-
mutes with ax for all x€A, that is, 0=(ax)"'a(ax)x=(ax)(ax)" 'ax=
(ax)"*'. Again by [5, Lemma 1.1], we have a contradiction a=0.

(P,) For any x= A we have ax’a=ax’a—(xa)™(ax)"=C. Since
a(ax’a)=0, it follows that a=0 by Lemma 1 (1) and (3).

(P;) For any x€ A, a(ra)=a(xe)’—(xa)"a"=C. By Lemma 1 (1),
a-a(xa)*=0 implies that a(xa)’*=0. Hence (ax)’=a(xa)’x=0, and a=0
by [5, Lemma 1.1].

" (Py) Obviously, (ax)’a=[ax, alxa—(xa)"[ax,a]’=C. By Lemma 1
(1), a(ax)’a=0 implies that (ax)’a=0, so that (ax)*=0. Hence, a=0
by [5, Lemma 1.1].

Acknowledgement. The author is indebted to Prof. H. Tominaga
for shortening the proofs and eliminating some errors.
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