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Introduction. In this paper we consider S'-actions on a closed
manifold X whose cohomology ring is generated by elements of degree 2.

We adopt this notation: G=S' is the circle group. A4 is the field
of rational numbers @ or the ring of integers Z. X is always a closed
(topological) manifold. We use sheaf-theoretic cohomology, and assume
that H*(X; A) is generated by elements of degree 2; thatis, H*(X; 4)
=A[ay, «-, 2]/ (D1, ***, Pn), Where py, -+-, pr are homogeneous polynomials,
and deg «;=2 (f=1,--,n). If G acts on X, XX.E; is the bundle
associated to a universal principal S*bundle E;,——>B;. The equivariant
cohomology ring of X is defined by H}(X; A)=H*(XXcEq: A).

The natural projection 7: XXgE;—>B; makes HI(X; @) into an
algebra over H*(B;; ). Let R be the quotient field of H*(B;; @ and
A the localization of H¥(X; Q) as an H*(B;; @-module at the zero
ideal. Under more general situation Wu-Yi Hsiang proved in [5] the
fundamental fixed theorem: the ideal of relations between a set of
generators for A has a finite number of zeros in 1-1 correspondence with
the connected components of the fixed point set F. In our case H(X: Q)
=Q[t, %y, ***, %.1/J, where J=(p,—tf1, ", pn—1fn), and f; is a homo-
geneous polynomial such that deg f,=deg p, —1 (i=1, .-, m). In §2,
we show that the zero points of J and the connected components of F
correspond bijectively. If m=n, the multiplicity of a zero point of J equals
to the dimension of the cohomology ring over @ of the corresponding
component (Theorem 2. 6). This result generalizes [4] Theorem 3. 1.
P. Tomter [7] also implies such a result.

In §3, we show that the bundle lifting is closely related to the zero
points of J.

In §4, we consider the case in which X is a complex flag manifold
U(n)] T". We give some examples of S'-actions on X. For n=3, we
show a list of all possible fixed point sets.

S'-actions on the connected sum CP(3)#CP(3) gives another exam-
ples in our case. In §5, we consider the case in which X=CP(3)4CP(3),
and show a list of all possible fixed point sets.
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1. In this section we give some algebraic preliminaries.

Let 9N=(p,, -+, p.) be a homogeneous ideal of the polynomial ring
Q[x,, --+, x,] such that the radical V9 =(x,, -+, x.). Let J be a homo-
geneous ideal of the polynomial ring Q[#, x,, ---, x,] generated by the
following » forms:

P1_tf1, "t Pn_tfn-

Lemma 1.1. [ is an unmixed ideal, and the number of the zero points
(in the projective space) of J is at most T1}., deg p;.

proof. If t€y J, then v J =(¢, x,, -+, %), but this is impossile.
Hence we have ¢& Vv J. Then ¢ is not algebraic in Q[%, x,, ---, x.1/J
over @ Since v U =(xy, -+, x,), it is clear that Q[¢ x,, -, x.1/J is a
finitely generated module over @[#]. It follows that the projective dimen-
sion of J is zero, and J is unmixed ([8], Ch. VII, Lemma 2). Since
the number of the zero points of J is finite, a theorm of Bezout (cf. [6])
implies that there are zero points of J in the number at most IT}-, deg p..

g.e.d

Let EP=(1,&”, .-, &) be the zero point of J (j=1, ---, k), and
assume £=@"*. Let I, be the homogeneous ideal generated by the
coefficients of g(¢, x,+&"¢, ---, x,+EPt) (g = J) with respect to ¢, and
my=dime@Q[x,, -+, 2,1/, (j =1, ---, k). Let g, be the homogeneous ideal
such that gE&gq, is equivalent to g(¢, x,+ &%, ---, x,+EPHeL[t]. Then
g, is a primary ideal. The w-resultant R(x) of n forms p,—if, (i=1,
.-+, 1) is decomposed as follows :

Rw)=c- 1%, (u+EPuy+ -+ EPu,)%

where u, u,, ---, #, are indeterminates, ¢ a constant and p; the multi-
plicity of £’[6]. Then we have the following

Theorem 1.2. The following conditions are equivalent ;

(1) Zrmy=TIL, deg p..

(2) J=MN\-.q; (a reduced primary decomposition).

() my=p, (j=1, -, k).

Proof. (3)=(1) is immediate from Bezout’s theorem. To prove

(2)=(3), let *: Q[¢ x,, -, x,]—>Q[y, -+, x.] denotes a homomorphism
defined by

af(xh ) xﬂ)=f(1, Xy, 0y xﬂ)



ON THE FIXED POINT SET OF S%-ACTINS 3

for every fEQ[4, x,, -+, x,]. Then we see that dimeQ[xy, ---, x.1/%,=p;
[6]. (3) follows from the equalities :

dimQQ[xI: "7 xn] /aqj=dimQQ[xl) Sty xn:l /al:![t]
=dimeQ [y, -+, %1/ Li=m; .

Finally, suppose that (1) holds. Since Vv J =Nj., (x,—E¢, -, x,
—EP¢) by the assumption, and J is unmixed by (1.1), we have the
reduced primary decomposition J= N%.,g, where g, =(x,—&”"¢, -, x,
—E”t). By the definition of ¢, we see N%.,¢,DJ, and 4, =(x,— &P,
e 2,—EP), and hence gq,Dg, (=1, ---, k). Then we have “g,D%, this
implies that

2 amy=2241 dim,@ [x1, +==, 24] /aQJ

=3 dimeQ[xy, -+, x41/%g,= 2510,

=TI1i-; deg p: .
It follows that “g,=%, (j=1,---, k). Since t&+v/ ] this implies that
q:ij (.i:]-) "ty k)' qd. e. d.

We say a commutative graded algebra A=A, --- P A. over @
satisfies duality if A,=@ and the multiplication A,/Q A,_-—>A,=Q
is a duality pairing (0="i<m).

Remark. For a graded algebra Q[x,, ---, x.1/20 where A=(p,, ---, p»)
and deg x,=1 (=1, -+, n), the following conditions are equivalent :

D VA =(xy, -, %a).

(2) {pi, -, pa} is a prime sequence.

(3) Q[x,, -+, x,]/2 satisfies duality.

If one of the conditions of (1.2) is satisfied, we have the following

Proposition 1.3. Q[x,, ---, x,1/I, satisfies duality (j=1,---, k).

PTOOf. Let ‘/)=®§=1 4);: Q[t, X1, xn]/]—> ®’§=1Q[xh ctt xn]/IJ
R Q[¢], where ¢;: Q[E, %y, -+, 2.1 [J——>Q[%y, -+, %21/ [;Q Q[£] is defined
by

PAO=F, 2, +EPL, -, 2, +EDY)

for every fEQ[E, %, -, x). If &(f)=0, ¢(f)=0(j=1, -, k). Then
feni. g;=J. Thus we have the following exact sequence :

0—> Q[t; X1, 0, xn]/]-—) ®§=1Q[xl; ttt xn]/IJ® Q[t]-
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Since @Q[xy, :«-, x,1/¥ satisfies duality it is only necessary to show that
¢ is surjective in high degrees [2]. We show that for each homogeneous
polynomial f=@[x,, ---, x,], there exists g=@Q[¥ x,, -+, x.] such that
¢(g)=t"f (mod I)), and ¢,(g)=0 (mod I,, for hs~j) for sufficiently
large N which is not depend on f and g. Since V' I, =(x;, ---, %), if
deg f is sufficiently large, then f=0 (mod I;), and we can take g=0.
So we suppose that, if deg f>1 there is g=@Q[¢, %y, ++-, x.] satisfying
the above condition. Let deg f=1I we define g=@QI[¢, x,, -, x.] by

2= (@, —EDE, -, £ —EPE) Ty Ficny—ELD)"°

where (k) is such that &&),54£¢),, and N, a sufficiently large number.
Then we have ¢,(g)=0 (mod Z,) for h5~j, and

(&)= f+ o fFicny+ ER—Eit) )
_ct(fc ])\’0 f+ Z(L I)No tlfz

where ¢, ¢; (i=1, ---, (k—1)N,—1) are constants, and deg f;>>I. Now
we complete the proof by the induction on deg f. q.e.d.

2. Let G be the circle group S'and X a closed (topological) mani-
fold with a S%action. We assume the following : '
2.1)  H*X;MN=Ad[as, -, cta]/(p1, =+, pa) (4=Q or Z)
where dega;=2(i=1,--,#) and p; is a homogeneous polynomial of
ay, -, (=1,+--, m). Then we have the following

Lemma 2.2, HI(X; A)=A[t, x,, -x.1]],

where J=(p1—1tf1, *+*, pu—1tfn) and [;E AL, %y, -+, %.] is a homogeneus
polynomial such that deg fi=deg p,—1 (i=1, ---, m).

Proof. Let £: XXE;x(C'/G——> XX E; be the associated complex
line bundle of the principal S'-bundle XX E; —> XX E;. Consider the
Gysin sequence
—> HUX; 4) 2 HI(X; A) — H" (X 4) — HI'(X; 4) —>
where U{ is the cup product of the Euler class of £ Since H**(X;A)
=0, X is totally non-homologous to zero in XX,E; —> B,;, and hence
HFP(X;A)=0, so the given exact sequence reduces to
(2.3) 0 —> HY(X; A) —=> HEX; 4) 2> H"(X:4)—> 0,
where i:X —> XXsE; is the inclusion of a fiber. For each =1, ---, #,
let x,=H%(X; A) be such that i*(x;)=q;. Then H(X;A) is generated
by %y, +-,x, and {. By (2.3), the ideal J of relations contains m rela-
tions py—1#fy, *-*, pn—1tfm, where deg fi=deg p;—1 (i=1,---,m). If f=
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ft, 1, -, 2)E ], then £(0, ay, -+, a)=i*(f)=0, and
f(O: xl: A xn)=g1p1+ "'+gmpm
for some gy, *++, gnE A[xy, ->*, x,]. We have

S —g&1p1— - —gubPu=th
for some h& A4 x,, -+, x,], and hence
f=tgifi+-tgnfuth) (mod J)

Deviding by ¢ we have
& it tgafutheE].
It is shown by the induction with respect to deg f that
& fit gt h=k(p1—tf1)+ L kn(Pn—tfa)
for some k,, .-+, knEA[t, x4, -+, ,]. Thus we have
F=G(pr—tf))+ -+ Gl pm—tfm),
where G;=g;+tk, (i=1, ---, m). g.e.d,

Let F=X? be the fixed point set of the S'-action on X, and let
F,, ---, F, be connected components of F. There is an exact sequence
(2.4 0—> HA(X; Q) 5> H}(F;Q —> H*(X/G, F;Q —>0
where ¢ is the inclusion of FX¢Es into XX ¢Es[2]. For each i=1, -, n
we set

b

P*(x:) = 225-1 (bey + ci5b),

where b, H*F;;Q) and ¢, = Q(j=1, -, k). Since dimH*(X/G;Q)
and dimoH*(F ;@) are finite, there is an integer N such that HY(X/G,
F;Q)=0 for ¢g>N. It follows that H*(Fy;Q) is generated by b, ---,
b.;, and that (cyy, =+, €ay) = (€11, *+-, ) if j551. We denote by I, the
ideal generated in Q[x;, ---, x,] by the coefficients of f(¢, x; + cist, -,
%.+ coyt) (FEJ) with respect to £. We define ¢, similarly as in § 1.

Proposition 2. 5.

(1) HYFy;Q=Qlxy, -zl L (=1, k).

(2) J=N5.q, is the reduced primary decomposition, where v ¢,
= (2 — cugd, -+, % — Cagl).

Proof. By the definition of I, it is obvious that I, is contained in
the ideal of relations. Let f be a relation. Since (cyy, -+, cns) 5= (c1z, -+,
cu) if j5=1, there is an integer i(/) such that cuy; 5= ciay, for each
I15~j. Weset
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ng(xl_cljt, 0y Xy Cagt) * Hz#("i(z)—cicz)tt)v

where N is an integer such that H%F; Q) =0 for ¢ =2N. Then we
have ¢*(g(t, x1, <+, ,)) = 0, and hence g € J. The coefficient of the
highest degree with respect to ¢ in the polynomial g(# x, + ¢y b, -+, x. +
c.) is a multiple of f by some non-zero constant. Thus we have fE I,.
This complete the proof of (1).

Since dimoQ[xy, -+, 2.1/ ;= dimeH*(Fy ; Q)<< oo, wehave /], =
(%4, ***, x,) and hence P is primary. It follows that I,[f] is also primary
and V' I,[¢] = (%), -*-, %,). By the definition of g,, it follows that g, is
primary with radical (x, — ¢y f, -+, x,— ¢.;2). On the other hand we have
J=nN%.,¢q, since ¢* is a monomorphism.

By (1.2) and (2. 5) we obtain the following

Theorem 2.6. Let X be a closed manifold with a S'-action, and
assume that H*(X ; Q) == Q[x,, -, %.) /D1, -+, p.) where deg x;: = 2 and
pi is a homogeneous polynomials (i =1, ---, n). Then, thereisal—1
correspondence between the zero points of J and the connected components
of the fixed point set F, in such a way that, the multiplicity of a zero point
of J equals to the dimension of the cohomology ring over @ of the corre-
sponding component of F.

3. In this section we assume that the cohomology ring of X satisfies
(2.1) with 4= 2Z.

Let p: E—> X be the principal T"-bundle induced from a universal
principal 7"bundle over B by /= p; X -- X p, where p;: X—> B,
denotes the map such that 2.*() =a:;(i =1, --,#). There is a bundle
lifting ®: G X E—> E of the given S'action on X [3]. For each
g€ p(Fy) and s G thereis t=(t, -+, t,) € T" such that P(s, g)=g. ¢.
The correspondence s —> ¢ defines a continuos homomorphism #,: G
—> T". Since Hom(G, T") = Z" has the discrete topology, #, do not
depend on the choices of g € p7'(F;). Thus, foreach j=1, ---, k, we
have a homomorphism k;: G—> T". Weset A; = (ay,, '+, @,;) Where
hys) = (s, -, s"™) & T" forevery s G(j =1, -, k).

Let #: E X T,.C‘ —> X be complex line bundle, where (¢,, ---, 2,E T*
actson C' by the multiplication of #(i=1, ---, #). Similarly, we define
E, : (EXcE;) X C'/T"—> X X ¢E;. By the definition of p it is easy to
see that the Euler class of 7; is «; (i=1,:-,,n). Let x,€Hi(X;Q) be
the Euler class of &. Since 7; is the induced bundle i*(£;), where i: X
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C XX ¢E; we have i*(x;)=a. Let v be the canonical line bundle
over B;. Then we have

E|Fy X Bo = pt(=) @ pF(p:| Fy)
where p,:FyX Bp—> By and p,: F; X B; — F, are projections, and

=¥ denotes a;; times tensor product of =(i=1, -, n: j=1, --- k). It
follows that

d*(x) = 25.1(biy + ast),

where ¢: F X B; C X X ¢E;, and b, is the Euler class of 7,|F,. By
(2. 2) we see that H¥(X;Z) is generated by x,, ---, x, and {. From (2. 6),
we have the following :

Propesition 3.1. Under the above notations, the zero points of the
ideal J of relations are (1, ayq, =+, @n1), -+, (1, @iy **+, @) .

The system of vectors A, :--, A, is determined up to the translations
by integral vectors. That is, if #': G X E—— E is another bundle
lifting of the given S'-action on X with corresponding coordinates Aj,
..., A, there is an integral vector (b,, ---, b,) such that

@' (s, g) = s, g) - (s, =+, s™)
for every s€ G and every g€ E [3]. This implies that A;=A,+(b,, -+,
bn) (j = 1) T k) .

Let p be a prime. We consider the restricted Z,action on X,
where Z,C S'. Since Ezp can be taken to coincide with E;, thereis a

commutative diagram :

X X 5 Eo 2, X x .E,

I

Bz,, A I B

where ¢ : X X sza —> X X ¢E; is a principal S-bundle. Let v:(X X
ZpE") X C'/G —> X X ¢E; be the complex line bundle associated with g¢,
where S! acts on C! by the multiplication. Then v ==z*(z,) and hence
the Euler class of v equals to zero mod p. Hence the Gysin sequence
associated with v reduces to .

*
0—> HYX:2,) LoHL(X; Z,)—> HY X 2,)—> 0
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Now we suppose that H*(X ; Z) has no p-torsion. Then X is totally
non-homologous to zero in X XsE; and hence H§(X; Z,) = 0. Thus
we have ¢*: Hy"X ; Z,)=H 2,(X ; Z,). Then it is clear that Hz"(X ;
Zy) = Z,[1, %y, ++, %,]1/J for odd p, where x, means mod p reduction of
wEHUX; Z). If p=2, wereplace ¢t by 2. Let F!, Fyj=1, -, h)
be the fixed point set of the Z,-action on X and its connected components
respectively, and ¢': F! X ;,Eq —> X X z,Ee the inclusion map. There
is an exact sequence:

(¢)*
3.2) 0—>H§p(X; Z,,)——>H’z“p(F’ ;) Zy)—>H*(X/Z, F'; Z,)—>0
where (¢)* is epimorphic in high degrees [2]. Since H™(F';Z,) =0
[2], we set
@N*(x) = { Zi;l (bi’j -+ afjtz (p : odd)
Y1 (Bey + ait?) (p=2)

where ¢ (resp. #?) means g*(f). Let I; be the homogeneous ideal genera-
ted by the coefficients of g(f, x; + aif, -+, x. + ay,t) (g =) with respect to
t if p=2, we replace ¢ by # similarly as in the above). By the similar
argument as in the proof of (2.5), we have the following

Theorem 3.3. If H*(X; Z)=Z[ay, -, a.1/(p1, ***, pn) has no
p-torsion, then

HYFj; Z,) = Zy[x,, -+, 2]/ (7 =1, h).

Remark. By a slightly delicate argument as in (2. 2) we see that
Zp[s: t; xl! ) xn]/(szy pl—tfh "% pm_t,fm) (p : Odd)
Zz[t, xl’ % xﬂ]/(pl—tzfl’ ) pm_ thm) (p = 2)-

Moreover we have the following proposition corresponding [2], Ch.
VII, Proposition 5. 3.

H3(X;Z) = {

Proposition 3.4. Under the condition of (3.3), two components F;
and F; of F are conlained in the same component of F' if and only if
(@i, *++, @ut) = (ay3, *++, @uy) (mod p).

Proof. Suppose that F; is the component of F' which contains F;.
Then there is a commutative diagram:



ON THE FIXED POINT SET OF S'-ACTINS 9

*

¢
HAX; 2) . — H(F.: Z)

.
wi(x; 2) P w71 2) > HA(R: 2)

where the vertical maps denotes the mod p reductions. We have ¢.*(x;)
=b; +at and (P)*(x)) = by + ant (I=1, ---, n). It follows that a, = a;,
mod p (I=1,---,n). This implies that (ay, -, a..)=(ay;, *-*, a.;) (mod p)
if F; and F, are comtained in the same component of F’. The converse
follows by (3. 3). q.e.d.

4. Let X be a complex flag manifold U(n)/ T", where U(#n) is the
n-th unitary group and 7" is a maximal torus. We denote by p: U(n)
—— X the natural projection. Then p is a principal T™bundle. Let
7.2 Uln) X T,,C‘ —> X be the complex line bundle as in §3 (i=1, ---, z).
We see that

H* (X; Z) = Z[aly "t an]/("l: *ty o'n)

where ;=0 (a,, -+, ;) is the i-th fundamental symmetric function, and
ay is the Euler class of %,(f=1, ---, #) [1]. There are following examples
of complex analytic S'-actions on X.

Let A= (a, '+, a,) be an integral vector, and let %,: G—— 7" be
the homomorphism defined by

/ s“ 0 \
ha(s) =

\ 0 sty
for every s&G. Then we have an S'-action @,: G x U(n) —> U(n) by
taking @,(s, g) = ha(s) - g for every sE G anc every g& U(n). Since
@, commutes with the right action of 7" on U(n), there is an S'-action
@,: GXX—> X on X, suchthat @, is a bundle lifting of ®,. Then
we have

ED - DE, = ("D - D™

where E;:(U(n) X ¢Eg) X C'/T"—> X X-¢<E; denotes the complex line
bundle defined similarly as in §3 (i = 1, ---, #). This implies that, for
each i=1,:, n
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G'i(xh T xn) = CI(EI @ o @ En)
= 7o (1 D - D)
= 7*(ai(a;t, -+, a.t))

= tiﬂi(ah Tt an)

where ¢; denotes the i-th chern class of corresponding bundles. Accord-
ing to the proof of (2. 2), we see Hi(X;Z)=Z[t, x,, -, x.]/J where

] = (o'l—ta'l(ala Y a'l)) R Gn_tnfrn(db "ty an))-

Let S(») be the symmetric group of permutations of # symbols. Then
the zero point set of J is {(1, .y, **-, Geeny) | @ € S(m)}.
Now let
@y == a"x < an‘+1 = ere = a"|+"2 < e
<< A,

=eee =g
+1 Ayt n IRal™})

m=—1 1 "=

where #; 4 -+ -+ n,, = n. It is easily seen that the fixed point set is a
disjoint union of n!/(n,! X --- X#,!) copies of U(n,)] T X x Uln.)] T™™.

Now we consider the fixed point set of S'-actions on U(3)/T:. In
this case J has three homogeneous generators x; = x, -+ x5 — #fi, %1%, +
Xp%3+x32,— ¥, and xx,x;—12f; where f,, f, and f; are suitable homo-
geneous polynomials of degree 0, 1 and 2 respectively. Let A4; = (ay,,
@y, ay) (7=1, *--, k) be the zero points of °J. By the remark following
(3.1) we assume that A4,=(0,0,0). Then after suitable substitution we
may assume that J posseses three generators

1= X1 T X, + X3

g = %" + 2%, + %" — Hax, + Bx,)

g3 = x,° — Hax,® + bx1x, + #cx, + dx,))
where «, 8,4, b, ¢ and d are constants. Then we have

I = (x,+ %525, 22202227, axy+Px,, cx+dx,, ax, +bxx,).
Consider the matrix
a
m= | F )
V¢ d

There are following cases :
i) Assume that M is non-singular. Then we have I, = (x,, x5, x3),
and hence H*(F,; @ = Q. Thus we have F, ~ pt".

1) X~¢ Y means that H¥X; Q) and H*Y ; Q) are isomorphic.
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ii) Assume that rk M=1. Then without loss of generality we may
suppose that x;—yx, is contained in I; for some y € @. It follows that

A+r+x’ =2+ 220+ 0" — (0 + 2+ 7x) (4 —7x)E L.
Since 1-+7+72>>0, this is equivalent to x,>€ [;,, and hence
H* (Fy; Q) == Qx), x5, 231/ (%, + x5 + %3, X, — 723, £5°)
= Q[x]/(x%).
Thus we have F;~ (S2.
iii) Assume that M = 0. Since x,® + xx, + x,> = 0 has no root

other than (0, 0), this implies that F is connected. Hence F,=F=X.
Since dimeH*(F; Q) = dim H*(X; @) = 6, we obtain

Theorem 4.1. There are the following possibilities of the fixed point
set of non-trivial S-actions on U(3)/ T®.

(1) F~o8%+ S%+ §? (disjoint union).

(2) F~¢S*+ S?+ 2 points.

(3) F~¢S®+ 4 points.

(4) F ~y6 points.

Remark. We have shown the examples for (1) and (4). For the
type of (2) or (3), we do not know whether corresponding S'-actions exist
or not. But there are examples of J which satisfy the corresponding
algebraic conditions for (2) or (3). For instance, let

J = (x1+ %+ x5, 2%+ 212, + 2,7 — 12x; 4+ 1), x,°—ix,%),

then the zero points of *J are (0,0,0), (0,1, —1), (1,1, —2) and (1, —1, 0)
where corresponding multiplicities are 2, 2,1 and 1 respectively. Simi-
larly, if we set

J= x4+ 2+ x5, 17+ 1% + x5 — ¢ (6%, + x3), x.° — ¢ (5x,% + 2x,%,)),

it is easy to see that the zero points of *J are (0,0, 0), (0,1, —1), (1, —
2,1), (2, —3,1) and (5,0, —5) with multiplicties 2,1, 1,1 and 1.

5. Slactions on the connected sum X=CP(3) £ CP(3) gives another
examples in our case. Since H*(X; Z) = Z[a,, a;1/ (12, a® — a®),
by (2. 2) we may assume that J has two generators

{ g1 = 0% — Haxy + 8%,)
g = %,° — x,° — Hax,* + bx,? + H{(exy + dx,))

where «, 8,4, b, ¢ and d are integers. Let F, be the connected compo-
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nent of F which corresponds to the zero point (0, 0) of */, and consider

the matrix
3
w=(27)
c d /.

There are three possibilities for the rank of M.

i) M is non-singular; that is, rk M = 2. In this case we have
I = (x1, %,), and hence H*(F;; @)= Q. Thus we have F, ~, pt.

ii) rk M= 1. In this case we may suppose that ¢ =c=0 with-
out loss of generality.

If a0, I, = (x;, x,%), hence H*(Fy; @ = Q [x, x,]/(x;, x,%) =
QLx]/(x?), i.e. F, ~¢ S2.

If @a=0, I, = (x5, %,°), hence H*(Fy; Q)= Q[x;, x,]/(x,, 2,°) =
QLx]/(x%), i.e. F, ~ (CP(2).

iii) M = 0; thatis, tk M= 0.

If a=b=0. Then [ =(xx, x,°—x,°), and hence F,=F=X,

If ab5~0. Then I, = (ax,’+ bx,’, x,%,), and hence dimH*(F;; Q)
=4,

If a=0, 6540 (or 250, 5=0). Then I, = (x,% x.*)(resp. I, =(x>2,
%,°)), and hence dimH*(F;; Q) = 4.

Similarly as (4. 1) we obtain the following

Theorem 5.1. There are the following possibilities of the fixed point
set of non-trivial S'-actions on CP(3) & CP(3).

(1) F~ (F, + 2 points,
where H*(Fy; Q) == Q[xy, x,]/(x1%,, ax,*-+bx,%) for some O0a, b= Q

(2) F~,CP(2) + CP(2).

(3) F~4CP(2) + S? + pt.

(4) F~4CP(2) + 3 points.

(5) F~goS%+ 8%+ S2

(6) F~yS8%+ S%+ 2 points.

(7) F~, 8%+ 4 points.

(8) F~,6 points.

Proof. Since dimoH*(F; Q) = dimeH*(X; Q) =6 [2], it suffices to
show that, if a component F; of F has cohomological dimension 4 over
Q, it follows that F is in the case (1). Suppose that dim,H*(F;; Q)
= 4. Then we have

J = (x5, 2° — x,° — t(ax,® + bx,%))
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for some a, b= @, and there is another component F, of F. Let (@), a,)
be the zero point of */ which corresponds to F,. Since (g, a,) 7= (0, 0)
is a root of the equations

{ xx, =0

22— 2} —ax® — b2t =0
we see that, only one of a,, @, equals to zero. Let a, =0, then ,70,
and a,° + ba,” = 0 implies that & = —a, 5 0. It is easy to see that
I,=(x,, x,), and there is another component F; of F. Let (b, b,) be the
zero point of “J which corresponds to F;. As above, we see that 5,=0
and a = b, %0. Thecase a, = 0 is similar. qg.e.d.

Now we construct examples of S'-actions on CP(3) £ CP(3).

Let S’ be the unit sphere in C*!, and let p,:S" —— CP(3) be the
natural projection. We set D® = {p,(2y, 25, 23, 24) | (21, 25, 23, 2) € T,
|24]2=1/2}, and define the diffeomorphism g:p,”' @D°) X S' —>
p.71(@D°) X S* by g(z1, 2., 23, 24, 5)
= (sz2,/(V 2 Zd), SEz/(ﬁ AR stl(ﬁ Zy), s/(V' 2 2)
for every (zy, 25, 23, 25) € p,(0D%) and every s € S', which induces the
orientation reversing diffeomorphism g:8D°® —— 6D°. Then we may
consider CP(3)#CP(3) to be the attaching space (CP(3) — Int D°)
U; (CP(3)—Int D°) which is covered by the attaching space E, =
(ST —p," 1 (IntD%)) X S'U, (S — 5, '(Int D)) x S*. Let
Su f2:(ST— p, 7 (Int D)) x S' —> S° x S* be the map defined by

52 322 Sz;

iz, 23, 23, 24, 8)= (Vll—lhlz’ Vi—lz®’ Vi—|z |2’ 2, V1— 124]23)

821 322 323 —_—
= / -— 2 )
Sz, 22, 23, 24 s) (1/1-— 122’ V1= |z,]%° vi— AR Vi-lz]|® s 24‘
respectively for every (zi, 2,, 23, ;) € S"'—p,* (IntD°) and every s € S\

It is easy to see that f; and f, defines a diffeomorphism f: E, —>
S°x S3. Now define T?-actions on the two copies of (S”"—p,~! (IntDf)) x S*

by
(21, 23, 23, 24, s) - (t, ) = (4 21, h2zy, tiza, 12y, 1sS)
and

(21, 23, 23, 21, ) (b, t) =(t:21, 1222, t223, th2y, tis)

for every (23, 2s 23, 2, S) € (S” — p,7' (IntDf)) X S' and every (4, %)
& T? respectively. Then it is clear that f induces the T*-action on
S5 x 8§ defined by
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(21, 25, 23, 24, 25) - (1, t2)
= (t1t2—121, tltz‘lzz, tltz_lzsy tzy, t225)

for every (z;, z,, z;) € S°, every (z,, z;) € S* and every (4, £,) € T
By the TZ%-action, p:S°x S®——> X is a principal T?%bundle, and plays
the role of the bundle p defined in §3 for the suitable generators in
HYX; Z).

Let @; be an integer (i=1, -, 5), and let ¢,: GXS*X S*—> S$* x §*
be the SZaction on S° X S* defined by

DS, 21, 23, 23, 24 Z5)

18 I 18 113 [ 7
= (s'z), §°2, $°23, S 'z; § 2)

for every s& G and every (21, 2, 23, 24, 25) € S° X §®. Since @,
commutes with the TZactionon S°® X S3, there is the induced S'-action
on X. Wedenoteby &, &: (S° X S§% X ¢E;) X C'/T*—> X X 4E; the
complex line bundle defined similarly as in §3. Then we see that the
bundle (&, @ =* (= ) P (£, @ =* (= ")) has everywhere non-zero cross-
section, and hence the Euler class
GERT YD ERTET D)) =0, e (n—al)(n—ad) ]
where H}(X; Z)= Z[t, x,, x,1/J. Similarly we have (x; — x, — a;f)
(x,—xy—ap 1) (x,—x,—az; t)=J. Thuswesee J= ((x;,—a,?) (x,—a, b),
(x,—x,—a, t) (x;—x,—ay t) (x, —x, —a; t)). There are following types:
i) Suppose that ¢, =a,=a;=a,—as. Then &, induces the trivial
action on X.

ii) Suppose that g, =a,=a; ¥ a,—as. Then the fixed point set F
consists of disjoint union of two copies of CP(2). The corresponding zero
points of °J are (a,, a;—ea;) and (e,-+as, as) respectively.

iii) Suppose that @¢,=a,=a,—a;5a;. Then we have F~S5*xS*+2
points, and corresponding zero points of °J-are (a;, as), (@, a;—as) and
(a;+as, as) respectively.

iv) Suppose that @, = @, ¥ @, = a, — as. Then we have F=~ S+
S%+ 8%, and corresponding zero points are {(a,, @,—a,), (a, + a5, as) and
(as, a,— as).

v) Suppose that a,=a,5a, and a,5a;+a; (i=1,3). Then we have
F~ 8% + S? + 2 points, and corresponding zero points are (a,, @5 —a,),
(a,+as, as), (ai, a,—a;) and (@;+as, as) respectively.

vi) Suppose that @,, @, a; are mutually distinct and @, =a, + a..
Then we have F = S? -+ 4 points, and corresponding zero points are (a,,
as), (a, a;—ay), (@, a,—as), (@a.+as, as;) and (@s+as, as) respectively.
vii) Suppose that a,, a,, @; are mutually distinct and e,5%a;+a; (=1,
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2,3). Then F consists of 6 isolated points. The corresponding zero
points are (@, a,—a,), (ay, a,—a,), (a,, a,—as), (a,+as, as), (a,+as, as) and
(a3~ as, as).

Thus we have shown the examples except (3) and (4). A similar
construction shows that there are some examples for (3) where the
attaching map g above is changed. But, we can not construct the
examples for (4) in this manner,

6. Concluding remarks. Let %A = (p,, ---, p.) C Q[x,, ---x,] be a
homogeneous ideal such that /9 = (x;, ---, x,), and J a homogeneous
ideal of Q[¢ x,, -+, x,] which has a generator system p, —if,, -, p. — tfa
for some f,, -, f. € Q[f, x,, ---, x.] and satisfies the conditions of (1. 2).
Let £9,---, €% be the zero points of J with multiplicities m,, -, m,.
There are several cases where &7 m; (j=1, ---, k) determine J uniquely
up to certain equivalence.

i) Let n=3, and p,=a,(i=1,2,3). Then it is shown that, for
a fixed {(E, my) | 7 =1, -, k}, corresponding J is determined uniquely.

ii) Let n=4o0r5, and p;=¢,(1=1,---,n). Weput P={(1,a,,
oty @yon) | T E S(n)} for a fixed integral vector (ay, ---, @,), where S(n)
denotes the symmetric group of permutations of # symbols. Then the
ideal J above, whose zero point set is P with constant multiplicities,
is determined uniquely.

iii) Let #»=2, p,=xx, and p,=x,"—x,°. Then easy calculation
shows that, if /' is another ideal whose zero points and their multipli-
cities are that of J and satisfies the above conditions, then either /=]
or J' is mapped onto J by the permutation (x;, x,) — (x,, x,).

Let A = (py, -+, p.) C Z [x,, ---, x,] be a homogeneous ideal such
that v/ 9 = (x4, ---, ), and J (resp. J) a homogeneous ideal generated
by p,—tf; (=1, -, »n) in Z[{, x,, -, x.] (resp. Q[f, x;, -+, x.]). Itis
not difficult to show that, if Z[x,, ---, x,]/9 is a free Abelian, then
JNZt, xy,, 2] =J.

It follows that, if X =U(3)/ T*® or X= CP(3)¢ CP(3), then equi-
variant cohomology rings H& (X;Z) (and hence H*(F; Q)) are deter-
mined by 4, and dimoH*(Fy; @) (7 =1, -, k).
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