ON THE FIXED POINT SET OF S^1 -ACTIONS ON THE COMPLEX FLAG MANIFOLDS

Dedicated to Professor Ken'iti Koseki on his 60th birthday

KENJI HOKAMA and SUSUMU KÔNO

Introduction. In this paper we consider S^1 -actions on a closed manifold X whose cohomology ring is generated by elements of degree 2.

We adopt this notation: $G=S^1$ is the circle group. Λ is the field of rational numbers Q or the ring of integers Z. X is always a closed (topological) manifold. We use sheaf-theoretic cohomology, and assume that $H^*(X;\Lambda)$ is generated by elements of degree 2; that is, $H^*(X;\Lambda) \cong \Lambda[\alpha_1,\cdots,\alpha_n]/(p_1,\cdots,p_m)$, where p_1,\cdots,p_m are homogeneous polynomials, and deg $\alpha_i=2$ $(i=1,\cdots,n)$. If G acts on X, $X\times_G E_G$ is the bundle associated to a universal principal S^1 -bundle $E_G\longrightarrow B_G$. The equivariant cohomology ring of X is defined by $H^*_G(X;\Lambda)=H^*(X\times_G E_G:\Lambda)$.

The natural projection $\pi: X \times_G E_G \longrightarrow B_G$ makes $H_G^*(X;Q)$ into an algebra over $H^*(B_G;Q)$. Let R be the quotient field of $H^*(B_G;Q)$ and A the localization of $H_G^*(X;Q)$ as an $H^*(B_G;Q)$ -module at the zero ideal. Under more general situation Wu-Yi Hsiang proved in [5] the fundamental fixed theorem: the ideal of relations between a set of generators for A has a finite number of zeros in 1-1 correspondence with the connected components of the fixed point set F. In our case $H_G^*(X;Q) \cong Q[t,x_1,\cdots,x_n]/J$, where $J=(p_1-tf_1,\cdots,p_m-tf_m)$, and f_i is a homogeneous polynomial such that $\deg f_i=\deg p_i-1$ $(i=1,\cdots,m)$. In §2, we show that the zero points of J and the connected components of F correspond bijectively. If m=n, the multiplicity of a zero point of J equals to the dimension of the cohomology ring over Q of the corresponding component (Theorem 2.6). This result generalizes [4] Theorem 3.1. P. Tomter [7] also implies such a result.

In $\S 3$, we show that the bundle lifting is closely related to the zero points of J.

In §4, we consider the case in which X is a complex flag manifold $U(n)/T^n$. We give some examples of S^1 -actions on X. For n=3, we show a list of all possible fixed point sets.

 S^1 -actions on the connected sum CP(3) # CP(3) gives another examples in our case. In §5, we consider the case in which X = CP(3) # CP(3), and show a list of all possible fixed point sets.

1. In this section we give some algebraic preliminaries.

Let $\mathfrak{N}=(p_1, \dots, p_n)$ be a homogeneous ideal of the polynomial ring $Q[x_1, \dots, x_n]$ such that the radical $\sqrt{\mathfrak{N}}=(x_1, \dots, x_n)$. Let J be a homogeneous ideal of the polynomial ring $Q[t, x_1, \dots, x_n]$ generated by the following n forms:

$$p_1-tf_1, \dots, p_n-tf_n$$
.

Lemma 1.1. J is an unmixed ideal, and the number of the zero points (in the projective space) of J is at most $\Pi_{i-1}^n \deg p_i$.

proof. If $t \in \sqrt{J}$, then $\sqrt{J} = (t, x_1, \dots, x_n)$, but this is impossile. Hence we have $t \notin \sqrt{J}$. Then t is not algebraic in $Q[t, x_1, \dots, x_n]/J$ over Q. Since $\sqrt{\mathfrak{A}} = (x_1, \dots, x_n)$, it is clear that $Q[t, x_1, \dots, x_n]/J$ is a finitely generated module over Q[t]. It follows that the projective dimension of J is zero, and J is unmixed ([8], Ch. VII, Lemma 2). Since the number of the zero points of J is finite, a theorm of Bezout (cf. [6]) implies that there are zero points of J in the number at most $\prod_{i=1}^n \deg p_i$. q. e. d.

Let $\xi^{(j)} = (1, \xi_1^{(j)}, \dots, \xi_n^{(j)})$ be the zero point of $J(j=1, \dots, k)$, and assume $\xi^{(j)} \in Q^{n+1}$. Let I_j be the homogeneous ideal generated by the coefficients of $g(t, x_1 + \xi_1^{(j)}t, \dots, x_n + \xi_n^{(j)}t)$ ($g \in J$) with respect to t, and $m_j = \dim_Q Q[x_1, \dots, x_n]/I_j$ ($j=1, \dots, k$). Let q_j be the homogeneous ideal such that $g \in q_j$ is equivalent to $g(t, x_1 + \xi_1^{(j)}t, \dots, x_n + \xi_n^{(j)}t) \in I_j[t]$. Then q_j is a primary ideal. The u-resultant R(u) of n forms $p_i - tf_i$ ($i=1, \dots, n$) is decomposed as follows:

$$R(u) = c \cdot \prod_{i=1}^{k} (u + \xi_1^{(j)} u_1 + \dots + \xi_n^{(j)} u_n)^{\rho_j}$$

where u, u_1, \dots, u_n are indeterminates, c a constant and ρ_j the multiplicity of $\xi^{(j)}[6]$. Then we have the following

Theorem 1.2. The following conditions are equivalent;

- (1) $\sum_{j=1}^{k} m_j = \prod_{i=1}^{n} \deg p_i$.
- (2) $J = \bigcap_{j=1}^{k} q_j$ (a reduced primary decomposition).
- (3) $m_j = \rho_j$ $(j=1, \dots, k)$.

Proof. (3) \Longrightarrow (1) is immediate from Bezout's theorem. To prove (2) \Longrightarrow (3), let $^a: Q[t, x_1, \dots, x_n] \longrightarrow Q[x_1, \dots, x_n]$ denotes a homomorphism defined by

$$^{a}f(x_{1}, \dots, x_{n}) = f(1, x_{1}, \dots, x_{n})$$

for every $f \in Q[t, x_1, \dots, x_n]$. Then we see that $\dim_Q Q[x_1, \dots, x_n]/^a q_j = \rho_j$ [6]. (3) follows from the equalities:

$$\dim_{Q} Q[x_{1}, \dots, x_{n}]/^{a}q_{j} = \dim_{Q} Q[x_{1}, \dots, x_{n}]/^{a}I_{j}[t]$$

$$= \dim_{Q} Q[x_{1}, \dots, x_{n}]/I_{j} = m_{j}.$$

Finally, suppose that (1) holds. Since $\sqrt{J}=\bigcap_{j=1}^k (x_1-\xi_1^{(j)}t,\cdots,x_n-\xi_n^{(j)}t)$ by the assumption, and J is unmixed by (1.1), we have the reduced primary decomposition $J=\bigcap_{j=1}^k \overline{q}_j$ where $\sqrt{\overline{q}_j}=(x_1-\xi_1^{(j)}t,\cdots,x_n-\xi_n^{(j)}t)$. By the definition of q_j we see $\bigcap_{j=1}^k q_j \supset J$, and $\sqrt{q_j}=(x_1-\xi_1^{(j)}t,\cdots,x_n-\xi_n^{(j)}t)$, and hence $q_j \supset \overline{q}_j$ ($j=1,\cdots,k$). Then we have ${}^aq_j \supset {}^a\overline{q}_j$, this implies that

$$\sum_{j=1}^{k} m_{j} = \sum_{j=1}^{k} \dim_{Q} Q[x_{1}, \dots, x_{n}] / {}^{\alpha}q_{j}$$

$$\leq \sum_{j=1}^{k} \dim_{Q} Q[x_{1}, \dots, x_{n}] / {}^{\alpha}\bar{q}_{j} = \sum_{j=1}^{k} \rho_{j}$$

$$= \prod_{i=1}^{n} \deg p_{i}.$$

It follows that ${}^aq_j = {}^a\overline{q}_j$ $(j=1, \dots, k)$. Since $t \notin \sqrt{J}$ this implies that $q_j = \overline{q}_j$ $(j=1, \dots, k)$.

We say a commutative graded algebra $A = A_0 \oplus \cdots \oplus A_m$ over Q satisfies duality if $A_m \cong Q$ and the multiplication $A_i \otimes A_{m-i} \longrightarrow A_m \cong Q$ is a duality pairing $(0 \leq i \leq m)$.

Remark. For a graded algebra $Q[x_1, \dots, x_n]/\mathfrak{A}$ where $\mathfrak{A} = (p_1, \dots, p_n)$ and deg $x_i = 1$ $(i = 1, \dots, n)$, the following conditions are equivalent:

- (1) $\sqrt{91} = (x_1, \dots, x_n).$
- (2) $\{p_1, \dots, p_n\}$ is a prime sequence.
- (3) $Q[x_1, \dots, x_n]/\mathfrak{A}$ satisfies duality.

If one of the conditions of (1.2) is satisfied, we have the following

Proposition 1.3. $Q[x_1, \dots, x_n]/I_j$ satisfies duality $(j=1, \dots, k)$.

Proof. Let $\phi = \bigoplus_{j=1}^k \phi_j$: $Q[t, x_1, \dots, x_n]/J \longrightarrow \bigoplus_{j=1}^k Q[x_1, \dots, x_n]/I_j \otimes Q[t]$, where ϕ_j : $Q[t, x_1, \dots, x_n]/J \longrightarrow Q[x_1, \dots, x_n]/I_j \otimes Q[t]$ is defined by

$$\phi_{j}(f) = f(t, x_{1} + \xi_{1}^{(j)}t, \dots, x_{n} + \xi_{n}^{(j)}t)$$

for every $f \in Q[t, x_1, \dots, x_n]$. If $\phi(f) = 0$, $\phi_j(f) = 0$ $(j = 1, \dots, k)$. Then $f \in \bigcap_{j=1}^k q_j = J$. Thus we have the following exact sequence:

$$0 \longrightarrow Q[t, x_1, \dots, x_n]/J \longrightarrow \bigoplus_{j=1}^k Q[x_1, \dots, x_n]/I_j \otimes Q[t].$$

Since $Q[x_1, \dots, x_n]/\mathfrak{A}$ satisfies duality it is only necessary to show that ϕ is surjective in high degrees [2]. We show that for each homogeneous polynomial $f \in Q[x_1, \dots, x_n]$, there exists $g \in Q[t, x_1, \dots, x_n]$ such that $\phi_J(g) = t^N f \pmod{I_J}$, and $\phi_h(g) = 0 \pmod{I_h}$, for $h \neq j$ for sufficiently large N which is not depend on f and g. Since $\sqrt{I_j} = (x_1, \dots, x_n)$, if deg f is sufficiently large, then $f = 0 \pmod{I_J}$, and we can take g = 0. So we suppose that, if deg f > l there is $g \in Q[t, x_1, \dots, x_n]$ satisfying the above condition. Let deg f = l, we define $g \in Q[t, x_1, \dots, x_n]$ by

$$g = f(x_1 - \xi_1^{(j)}t, \dots, x_n - \xi_n^{(j)}t) \cdot \prod_{h \neq j} (x_{i(h)} - \xi_{i(h)}^{(h)})^{N_0}$$

where i(h) is such that $\xi_{i(h)}^{(h)} \neq \xi_{i(h)}^{(f)}$, and N_0 a sufficiently large number. Then we have $\phi_h(g) = 0 \pmod{I_h}$ for $h \neq j$, and

$$\phi_{j}(g) = f \cdot \prod_{h \neq j} (x_{i(h)} + (\xi_{i(h)}^{(j)} - \xi_{i(h)}^{(h)}) t)^{N_{0}}$$

$$= ct^{(h-1)N_{0}} \cdot f + \sum_{i=1}^{(h-1)N_{0}-1} c_{i} t^{i} f_{i}$$

where c, c_i $(i=1, \dots, (k-1)N_0-1)$ are constants, and $\deg f_i > l$. Now we complete the proof by the induction on $\deg f$. q. e. d.

- 2. Let G be the circle group S^1 and X a closed (topological) manifold with a S^1 -action. We assume the following:
- (2.1) $H^*(X;\Lambda) \cong \Lambda[\alpha_1, \dots, \alpha_n]/(p_1, \dots, p_n)$ ($\Lambda = Q$ or Z) where $\deg \alpha_i = 2$ ($i = 1, \dots, n$) and p_i is a homogeneous polynomial of $\alpha_1, \dots, \alpha_n$ ($i = 1, \dots, m$). Then we have the following

Lemma 2.2. $H_{\sigma}^*(X; \Lambda) \cong \Lambda[t, x_1, \dots x_n]/J$, where $J=(p_1-tf_1, \dots, p_m-tf_m)$ and $f_i \in \Lambda[t, x_1, \dots, x_n]$ is a homogeneus polynomial such that $\deg f_i = \deg p_i - 1$ $(i=1, \dots, m)$.

Proof. Let $\xi: X \times E_G \times C^1/G \longrightarrow X \times_G E_G$ be the associated complex line bundle of the principal S^1 -bundle $X \times E_G \longrightarrow X \times_G E_G$. Consider the Gysin sequence

 $\longrightarrow H^q_G(X;\Lambda) \xrightarrow{\cup t} H^{q+2}_G(X;\Lambda) \longrightarrow H^{q+2}_G(X;\Lambda) \longrightarrow H^{q+1}_G(X;\Lambda) \longrightarrow$ where $\cup t$ is the cup product of the Euler class of ξ . Since $H^{odd}(X;\Lambda)$ = 0, X is totally non-homologous to zero in $X \times_{\sigma} E_{\sigma} \longrightarrow B_{\sigma}$, and hence $H^{odd}_G(X;\Lambda)$ =0, so the given exact sequence reduces to

(2.3) $0 \longrightarrow H_{\sigma}^{2q}(X;\Lambda) \xrightarrow{\cup t} H_{\sigma}^{2q+2}(X;\Lambda) \xrightarrow{t*} H^{2q+2}(X;\Lambda) \longrightarrow 0$, where $i:X \longrightarrow X \times_{\sigma} E_{\sigma}$ is the inclusion of a fiber. For each $i=1, \dots, n$, let $x_i \in H_{\sigma}^2(X;\Lambda)$ be such that $i^*(x_i) = \alpha_i$. Then $H_{\sigma}^*(X;\Lambda)$ is generated by x_1, \dots, x_n and t. By (2.3), the ideal J of relations contains m relations $p_1 - tf_1, \dots, p_m - tf_m$, where $\deg f_i = \deg p_i - 1$ $(i=1, \dots, m)$. If f = 1

$$f(t, x_1, \dots, x_n) \in J$$
, then $f(0, \alpha_1, \dots, \alpha_n) = i^*(f) = 0$, and $f(0, x_1, \dots, x_n) = g_1 p_1 + \dots + g_m p_m$

for some $g_1, \dots, g_m \in \Lambda[x_1, \dots, x_n]$. We have

$$f-g_1p_1-\cdots-g_mp_m=th$$

for some $h \in \Lambda[t, x_1, \dots, x_n]$, and hence

$$f = t(g_1 f_1 + \dots + g_m f_m + h) \pmod{J}$$

Deviding by t we have

$$g_1 f_1 + \cdots + g_m f_m + h \in J$$
.

It is shown by the induction with respect to $\deg f$ that

$$g_1 f_1 + \cdots + g_m f_m + h = k_1 (p_1 - tf_1) + \cdots + k_m (p_m - tf_m)$$

for some $k_1, \dots, k_m \in \Lambda[t, x_1, \dots, x_n]$. Thus we have

$$f = G_1(p_1 - tf_1) + \cdots + G_m(p_m - tf_m),$$

where
$$G_i=g_i+tk_i$$
 $(i=1, \dots, m)$.

q. e. d.

Let $F = X^{\sigma}$ be the fixed point set of the S^1 -action on X, and let F_1, \dots, F_k be connected components of F. There is an exact sequence (2.4) $0 \longrightarrow H_{\sigma}^*(X;Q) \xrightarrow{\phi*} H_{\sigma}^*(F;Q) \longrightarrow H^*(X/G,F;Q) \longrightarrow 0$ where ϕ is the inclusion of $F \times_{\sigma} E_{\sigma}$ into $X \times_{\sigma} E_{\sigma}[2]$. For each $i = 1, \dots, n$, we set

$$\phi^*(x_i) = \sum_{i=1}^k (b_{ii} + c_{ii}t).$$

where $b_{ij} \in H^2(F_j; Q)$ and $c_{ij} \in Q(j=1, \dots, k)$. Since $\dim_Q H^*(X/G; Q)$ and $\dim_Q H^*(F; Q)$ are finite, there is an integer N such that $H^q(X/G, F; Q) = 0$ for q > N. It follows that $H^*(F_j; Q)$ is generated by b_{1j}, \dots, b_{nj} , and that $(c_{1j}, \dots, c_{nj}) = (c_{1l}, \dots, c_{nl})$ if $j \neq l$. We denote by I_j the ideal generated in $Q[x_1, \dots, x_n]$ by the coefficients of $f(t, x_1 + c_{1j}t, \dots, x_n + c_{nj}t)$ ($f \in J$) with respect to t. We define q_j similarly as in § 1.

Proposition 2. 5.

- (1) $H^*(F_j; Q) \cong Q[x_1, \dots, x_n]/I_j$ $(j=1, \dots, k).$
- (2) $J = \bigcap_{j=1}^k q_j$ is the reduced primary decomposition, where $\sqrt{q_j} = (x_1 c_{1j}t, \dots, x_n c_{nj}t)$.

Proof. By the definition of I_j , it is obvious that I_j is contained in the ideal of relations. Let f be a relation. Since $(c_{1j}, \dots, c_{nj}) \neq (c_{1l}, \dots, c_{nl})$ if $j \neq l$, there is an integer i(l) such that $c_{i(l)j} \neq c_{i(l)l}$, for each $l \neq j$. We set

$$g = f(x_1 - c_{1j}t, \dots, x_n - c_{nj}t) \cdot \prod_{l \neq j} (x_{i(l)} - c_{i(l)l}t)^{\vee}$$

where N is an integer such that $H^q(F; Q) = 0$ for $q \ge 2N$. Then we have $\phi^*(g(t, x_1, \dots, x_n)) = 0$, and hence $g \in J$. The coefficient of the highest degree with respect to t in the polynomial $g(t, x_1 + c_{1,j}t, \dots, x_n + c_{n,j}t)$ is a multiple of f by some non-zero constant. Thus we have $f \in I_j$. This complete the proof of (1).

Since $\dim_Q Q[x_1, \dots, x_n]/I_j = \dim_Q H^*(F_j; Q) < \infty$, we have $\sqrt{I_j} = (x_1, \dots, x_n)$ and hence I^j is primary. It follows that $I_j[t]$ is also primary and $\sqrt{I_j[t]} = (x_1, \dots, x_n)$. By the definition of q_j , it follows that q_j is primary with radical $(x_1 - c_{1j}t, \dots, x_n - c_{nj}t)$. On the other hand we have $J = \bigcap_{j=1}^k q_j$, since ϕ^* is a monomorphism.

By (1.2) and (2.5) we obtain the following

Theorem 2.6. Let X be a closed manifold with a S^1 -action, and assume that $H^*(X;Q) \cong Q[x_1, \dots, x_n]/(p_1, \dots, p_n)$ where $\deg x_i = 2$ and p_i is a homogeneous polynomials $(i = 1, \dots, n)$. Then, there is a 1-1 correspondence between the zero points of J and the connected components of the fixed point set F, in such a way that, the multiplicity of a zero point of J equals to the dimension of the cohomology ring over Q of the corresponding component of F.

3. In this section we assume that the cohomology ring of X satisfies (2.1) with A = Z.

Let $p: E \longrightarrow X$ be the principal T^n -bundle induced from a universal principal T^n -bundle over B_0^n by $\mu = \mu_1 \times \cdots \times \mu_n$ where $\mu_i: X \longrightarrow B_0$ denotes the map such that $\mu_i^*(t) = \alpha_i (i = 1, \cdots, n)$. There is a bundle lifting $\Phi: G \times E \longrightarrow E$ of the given S^1 -action on X [3]. For each $g \in p^{-1}(F_j)$ and $s \in G$ there is $t = (t_1, \cdots, t_n) \in T^n$ such that $\Phi(s, g) = g.t.$ The correspondence $s \longrightarrow t$ defines a continuous homomorphism $h_g: G \longrightarrow T^n$. Since $\operatorname{Hom}(G, T^n) = Z^n$ has the discrete topology, h_g do not depend on the choices of $g \in p^{-1}(F_j)$. Thus, for each $j = 1, \cdots, k$, we have a homomorphism $h_j: G \longrightarrow T^n$. We set $A_j = (a_{1j}, \cdots, a_{nj})$ where $h_j(s) = (s^{a_{1j}}, \cdots, s^{a_{nj}}) \in T^n$ for every $s \in G(j = 1, \cdots, k)$.

Let $\eta_i : E \times_{T^n} C^1 \longrightarrow X$ be complex line bundle, where $(t_1, \dots, t_n \in T^n)$ acts on C^1 by the multiplication of $t_i (i=1, \dots, n)$. Similarly, we define $\xi_i : (E \times_G E_G) \times C^1 / T^n \longrightarrow X \times_G E_G$. By the definition of p it is easy to see that the Euler class of η_i is α_i $(i=1, \dots, n)$. Let $x_i \in H^2_G(X; Q)$ be the Euler class of ξ_i . Since η_i is the induced bundle $i^*(\xi_i)$, where i: X

 $\subset X \times_G E_G$, we have $i^*(x_i) = \alpha_i$. Let τ be the canonical line bundle over B_G . Then we have

$$\xi_i | F_j \times B_G = p_1^*(\tau^{a_{ij}}) \bigotimes p_2^*(\eta_i | F_i)$$

where $p_1: F_j \times B_G \longrightarrow B_{\theta}$ and $p_2: F_j \times B_{\theta} \longrightarrow F_j$ are projections, and $\tau^{a_{ij}}$ denotes a_{ij} times tensor product of $\tau(i=1, \dots, n: j=1, \dots, k)$. It follows that

$$\phi^*(x_i) = \sum_{j=1}^k (b_{ij} + a_{ij}t),$$

where $\phi: F \times B_G \subset X \times_G E_G$, and b_i , is the Euler class of $\eta_i | F_j$. By (2.2) we see that $H_G^*(X; Z)$ is generated by x_1, \dots, x_n and t. From (2.6), we have the following:

Proposition 3.1. Under the above notations, the zero points of the ideal J of relations are $(1, a_{11}, \dots, a_{n1}), \dots, (1, a_{1k}, \dots, a_{nk})$.

The system of vectors A_1, \dots, A_k is determined up to the translations by integral vectors. That is, if $\phi': G \times E \longrightarrow E$ is another bundle lifting of the given S^1 -action on X with corresponding coordinates A'_1, \dots, A'_k , there is an integral vector (b_1, \dots, b_n) such that

$$\psi'(s,g)=\psi(s,g)\cdot(s^{b_1},\cdots,s^{b_n})$$

for every $s \in G$ and every $g \in E$ [3]. This implies that $A'_j = A_j + (b_1, \dots, b_n)$ $(j = 1, \dots, k)$.

Let p be a prime. We consider the restricted Z_p -action on X, where $Z_p \subset S^1$. Since E_{Z_p} can be taken to coincide with E_G , there is a commutative diagram:

$$X \times_{Z_p} E_G \longrightarrow X \times_G E_G$$

$$\downarrow \qquad \qquad \downarrow \pi$$

$$B_{Z_p} \longrightarrow B_G$$

where $q: X \times_{Z_p} E_G \longrightarrow X \times_G E_G$ is a principal S^1 -bundle. Let $\nu: (X \times_{Z_p} E_G) \times C^1/G \longrightarrow X \times_G E_G$ be the complex line bundle associated with q, where S^1 acts on C^1 by the multiplication. Then $\nu = \pi^*(\tau_p)$ and hence the Euler class of ν equals to zero mod p. Hence the Gysin sequence associated with ν reduces to

$$0 \longrightarrow H^q_{\mathcal{C}}(X; Z_p) \xrightarrow{q^*} H^q_{Z_p}(X; Z_p) \longrightarrow H^{q-1}_{\mathcal{C}}(X; Z_p) \longrightarrow 0$$

Now we suppose that $H^*(X;Z)$ has no p-torsion. Then X is totally non-homologous to zero in $X\times_{\mathcal{G}}E_{\mathcal{G}}$, and hence $H^{odd}_{\mathcal{G}}(X;Z_p)=0$. Thus we have $q^*:H^{even}_{\mathcal{G}}(X;Z_p)\cong H^{even}_{\mathcal{Z}_p}(X;Z_p)$. Then it is clear that $H^{even}_{\mathcal{Z}_p}(X;Z_p)\cong Z_p[t,x_1,\cdots,x_n]/J$ for odd p, where x_i means mod p reduction of $x_i\in H^2_{\mathcal{G}}(X;Z)$. If p=2, we replace t by t^2 . Let F', $F'_{\mathcal{G}}(j=1,\cdots,h)$ be the fixed point set of the Z_p -action on X and its connected components respectively, and $\phi':F'\times_{Z_p}E_{\mathcal{G}}\longrightarrow X\times_{Z_p}E_{\mathcal{G}}$ the inclusion map. There is an exact sequence:

$$(3.2) 0 \longrightarrow H_{Z_p}^*(X; Z_p) \xrightarrow{(\phi')^*} H_{Z_p}^*(F'; Z_p) \longrightarrow H^*(X/Z_p, F'; Z_p) \longrightarrow 0$$

where $(\phi')^*$ is epimorphic in high degrees [2]. Since $H^{odd}(F'; Z_p) = 0$ [2], we set

$$(\phi')^*(x_i) = \begin{cases} \sum_{j=1}^h (b'_{ij} + a'_{ij}t) & (p : \text{odd}) \\ \sum_{j=1}^h (b'_{ij} + a'_{ij}t^2) & (p = 2) \end{cases}$$

where t (resp. t^2) means $\overline{q}^*(t)$. Let I_j' be the homogeneous ideal generated by the coefficients of $g(t, x_1 + a_1't, \dots, x_n + a_n't)$ ($g \in I$) with respect to t (if p=2, we replace t by t^2 similarly as in the above). By the similar argument as in the proof of (2.5), we have the following

Theorem 3.3. If $H^*(X; Z) \cong Z[\alpha_1, \dots, \alpha_n]/(p_1, \dots, p_m)$ has no p-torsion, then

$$H^*(F_j'; Z_p) \cong Z_p[x_1, \dots, x_n]/I_j'$$
 $(j = 1, \dots, h).$

Remark. By a slightly delicate argument as in (2.2) we see that

$$H_{Z_p}^*(X; Z_p) \cong \begin{cases} Z_p[s, t, x_1, \dots, x_n]/(s^2, p_1 - tf_1, \dots, p_m - tf_m) & (p : odd) \\ Z_2[t, x_1, \dots, x_n]/(p_1 - t^2f_1, \dots, p_m - t^2f_m) & (p = 2). \end{cases}$$

Moreover we have the following proposition corresponding [2], Ch. VII, Proposition 5.3.

Proposition 3.4. Under the condition of (3.3), two components F_i and F_j of F are contained in the same component of F' if and only if $(a_{1i}, \dots, a_{ni}) \equiv (a_{1j}, \dots, a_{nj}) \pmod{p}$.

Proof. Suppose that F'_1 is the component of F' which contains F_i . Then there is a commutative diagram:

$$H^{2}_{\sigma}(X; Z) \xrightarrow{\phi_{j}^{*}} H^{2}_{\sigma}(F_{i}; Z)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{2}_{Z_{p}}(X; Z_{p}) \xrightarrow{(\phi_{1}^{\prime})^{*}} H^{2}_{Z_{p}}(F_{1}^{\prime}; Z_{p}) \rightarrow H^{2}_{Z_{p}}(F_{i}; Z_{p})$$

where the vertical maps denotes the mod p reductions. We have $\phi_i^*(x_l) = b_{ll} + a_{ll}t$ and $(\phi_1')^*(x_l) = b_{l1}' + a_{l1}'t$ $(l=1, \dots, n)$. It follows that $a_{ll} \equiv a_{l1}'$ mod p $(l=1, \dots, n)$. This implies that $(a_{1l}, \dots, a_{nl}) \equiv (a_{1l}, \dots, a_{nl})$ (mod p) if F_i and F_j are comtained in the same component of F'. The converse follows by (3.3).

4. Let X be a complex flag manifold $U(n)/T^n$, where U(n) is the *n*-th unitary group and T^n is a maximal torus. We denote by $p:U(n)\longrightarrow X$ the natural projection. Then p is a principal T^n -bundle. Let $\eta_i:U(n)\times_{T^n}C^1\longrightarrow X$ be the complex line bundle as in §3 $(i=1,\cdots,n)$. We see that

$$H^*(X; Z) \cong Z[\alpha_1, \dots, \alpha_n]/(\sigma_1, \dots, \sigma_n)$$

where $\sigma_i = \sigma_i (\alpha_1, \dots, \alpha_n)$ is the *i*-th fundamental symmetric function, and α_i is the Euler class of $\eta_i (i=1, \dots, n)$ [1]. There are following examples of complex analytic S^1 -actions on X.

Let $A = (a_1, \dots, a_n)$ be an integral vector, and let $h_A : G \longrightarrow T^n$ be the homomorphism defined by

$$h_{A}(s) = \begin{pmatrix} s^{a_{1}} & & 0 \\ & \cdot & \\ & & 0 \end{pmatrix}$$

for every $s \in G$. Then we have an S^1 -action $\psi_A: G \times U(n) \longrightarrow U(n)$ by taking $\psi_A(s,g) = h_A(s) \cdot g$ for every $s \in G$ and every $g \in U(n)$. Since ψ_A commutes with the right action of T^n on U(n), there is an S^1 -action $\overline{\psi}_A: G \times X \longrightarrow X$ on X, such that Φ_A is a bundle lifting of $\overline{\Phi}_A$. Then we have

$$\xi_1 \oplus \cdots \oplus \xi_n = \pi^* (\tau^{a_1} \oplus \cdots \oplus \tau^{a_n})$$

where ξ_i : $(U(n) \times_{\sigma} E_{\sigma}) \times C^1 / T^n \longrightarrow X \times_{\sigma} E_{\sigma}$ denotes the complex line bundle defined similarly as in §3 $(i = 1, \dots, n)$. This implies that, for each $i = 1, \dots, n$

$$\sigma_i(x_1, \dots, x_n) = c_i(\xi_1 \oplus \dots \oplus \xi_n)$$

$$= \pi^*(c_i (\tau^{a_1} \oplus \dots \oplus \tau^{a_n}))$$

$$= \pi^*(\sigma_i(a_1t, \dots, a_nt))$$

$$= t^i\sigma_i(a_1, \dots, a_n)$$

where c_i denotes the *i*-th chern class of corresponding bundles. According to the proof of (2.2), we see $H_G^*(X; Z) \cong Z[t, x_1, \dots, x_n]/J$ where

$$J=(\sigma_1-t\sigma_1(a_1,\,\cdots,\,a_n),\,\cdots,\,\sigma_n-t^n\sigma_n(a_1,\,\cdots,\,a_n)).$$

Let S(n) be the symmetric group of permutations of n symbols. Then the zero point set of J is $\{(1, a_{\pi(1)}, \dots, a_{\pi(n)}) \mid \pi \in S(n)\}$.

Now let

$$a_1 = \cdots = a_{n_1} < a_{n_1+1} = \cdots = a_{n_1+n_2} < \cdots$$

 $< a_{n_1+\dots+n_{m-1}+1} = \cdots = a_{n_1+\dots+n_{m-1}+n_m},$

where $n_1 + \cdots + n_m = n$. It is easily seen that the fixed point set is a disjoint union of $n!/(n_1! \times \cdots \times n_m!)$ copies of $U(n_1)/T^{n_1} \times \cdots \times U(n_m)/T^{n_m}$.

Now we consider the fixed point set of S^1 -actions on $U(3)/T^3$. In this case J has three homogeneous generators $x_1 + x_2 + x_3 - tf_1$, $x_1x_2 + x_2x_3 + x_3x_1 - tf_2$ and $x_1x_2x_3 - tf_3$ where f_1 , f_2 and f_3 are suitable homogeneous polynomials of degree 0, 1 and 2 respectively. Let $A_J = (a_{1J}, a_{2J}, a_{3J})$ $(j=1, \dots, k)$ be the zero points of aJ . By the remark following (3.1) we assume that $A_1 = (0, 0, 0)$. Then after suitable substitution we may assume that J posseses three generators

$$\begin{cases} g_1 = x_1 + x_2 + x_3 \\ g_2 = x_1^2 + x_1x_2 + x_2^2 - t(\alpha x_1 + \beta x_2) \\ g_3 = x_1^3 - t(ax_1^2 + bx_1x_2 + t(cx_2 + dx_2)) \end{cases}$$

where α , β , a, b, c and d are constants. Then we have

$$I_1 = (x_1 + x_2 + x_3, x_1^2 + x_1x_2 + x_2^2, \alpha x_1 + \beta x_2, cx_1 + dx_2, ax_1^2 + bx_1x_2).$$

Consider the matrix

$$M = \left(\begin{array}{cc} \alpha & \beta \\ c & d \end{array}\right)$$

There are following cases:

i) Assume that M is non-singular. Then we have $I_1=(x_1, x_2, x_3)$, and hence $H^*(F_1; Q)\cong Q$. Thus we have $F_1\sim_Q \operatorname{pt}^{10}$.

¹⁾ $X \sim_Q Y$ means that $H^*(X; Q)$ and $H^*(Y; Q)$ are isomorphic.

ii) Assume that rk M=1. Then without loss of generality we may suppose that $x_1-\gamma x_2$ is contained in I_1 for some $\gamma \in Q$. It follows that

$$(1+\gamma+\gamma^2)x_2^2=x_1^2+x_1x_2+x_2^2-(x_1+x_2+\gamma x_2)\ (x_1-\gamma x_2)\in I_1.$$

Since $1+\gamma+\gamma^2>0$, this is equivalent to $x_2^2 \in I_1$, and hence

$$H^* (F_1; Q) \cong Q[x_1, x_2, x_3]/(x_1 + x_2 + x_3, x_1 - \gamma x_2, x_2^2)$$

$$\cong Q[x]/(x^2).$$

Thus we have $F_1 \sim {}_{\varrho}S^2$.

iii) Assume that M=0. Since $x_1^2+x_1x_2+x_2^2=0$ has no root other than (0, 0), this implies that F is connected. Hence $F_1=F=X$. Since $\dim_{\mathcal{O}} H^*(F; \mathcal{Q})=\dim_{\mathcal{O}} H^*(X; \mathcal{Q})=6$, we obtain

Theorem 4.1. There are the following possibilities of the fixed point set of non-trivial S^1 -actions on $U(3)/T^3$.

- (1) $F \sim_0 S^2 + S^2 + S^2$ (disjoint union).
- (2) $F \sim_q S^2 + S^2 + 2$ points.
- (3) $F \sim_Q S^2 + 4$ points.
- (4) $F \sim_0 6$ points.

Remark. We have shown the examples for (1) and (4). For the type of (2) or (3), we do not know whether corresponding S^1 -actions exist or not. But there are examples of J which satisfy the corresponding algebraic conditions for (2) or (3). For instance, let

$$J=(x_1+x_2+x_3, \ x_1^2+x_1x_2+x_2^2-t(2x_1+x_2), \ x_1^3-tx_1^2),$$

then the zero points of J are (0,0,0), (0,1,-1), (1,1,-2) and (1,-1,0) where corresponding multiplicities are 2, 2, 1 and 1 respectively. Similarly, if we set

$$J = (x_1 + x_2 + x_3, x_1^2 + x_1x_2 + x_2^2 - t (5x_1 + x_2), x_1^3 - t (5x_1^2 + 2x_1x_2)),$$
 it is easy to see that the zero points of aJ are $(0, 0, 0)$, $(0, 1, -1)$, $(1, -2, 1)$, $(2, -3, 1)$ and $(5, 0, -5)$ with multiplicaties 2, 1, 1, 1 and 1.

5. S^1 -actions on the connected sum $X = CP(3) \sharp CP(3)$ gives another examples in our case. Since $H^*(X; Z) \cong Z[\alpha_1, \alpha_2] / (\alpha_1\alpha_2, \alpha_1^3 - \alpha_2^3)$, by (2. 2) we may assume that J has two generators

$$\begin{cases} g_1 = x_1x_2 - t(\alpha x_1 + \beta x_2) \\ g_2 = x_1^3 - x_2^3 - t(\alpha x_1^2 + bx_2^2 + t((cx_1 + dx_2))) \end{cases}$$

where α , β , a, b, c and d are integers. Let F_1 be the connected compo-

nent of F which corresponds to the zero point (0, 0) of ${}^{a}J$, and consider the matrix

$$M = \left(\begin{array}{cc} \alpha & \beta \\ c & d \end{array}\right).$$

There are three possibilities for the rank of M.

- i) M is non-singular; that is, rk M=2. In this case we have $I_1=(x_1,\ x_2)$, and hence $H^*(F_1;\ Q)\cong Q$. Thus we have $F_1\sim_Q$ pt.
- ii) rk M=1. In this case we may suppose that $\alpha = c = 0$ without loss of generality.

If $a \neq 0$, $I_1 = (x_2, x_1^2)$, hence $H^*(F_1; Q) \cong Q[x_1, x_2]/(x_2, x_1^2) \cong Q[x_1, x_2]/(x_2, x_1^2)$ $Q[x]/(x^2)$, i. e. $F_1 \sim_Q S^2$.

If a = 0, $I_1 = (x_2, x_1^3)$, hence $H^*(F_1; Q) \cong Q[x_1, x_2]/(x_2, x_1^3) \cong$ $Q[x]/(x^3)$, i. e. $F_1 \sim {}_{Q}CP(2)$.

iii) M = 0; that is, rk M = 0.

If a = b = 0. Then $I_1 = (x_1x_2, x_1^3 - x_2^3)$, and hence $F_1 = F = X$.

Then $I_1 = (ax_1^2 + bx_2^2, x_1x_2)$, and hence $\dim_0 H^*(F_1; Q)$ If $ab \neq 0$.

If a=0, $b\neq 0$ (or $a\neq 0$, b=0). Then $I_1=(x_2^2, x_1^3)$ (resp. $I_1=(x_1^2, x_1^3)$) (x_2^3)), and hence $\dim_Q H^*(F_1; Q) = 4$.

Similarly as (4.1) we obtain the following

Theorem 5.1. There are the following possibilities of the fixed point set of non-trivial S^1 -actions on $CP(3) \not\equiv CP(3)$.

- (1) $F \sim {}_{Q}F_{1} + 2$ points,
- where $H^*(F_1; Q) \cong Q[x_1, x_2]/(x_1x_2, ax_1^2 + bx_2^2)$ for some $0 \neq a, b \in Q$
 - (2) $F \sim_Q CP(2) + CP(2)$.
 - (3) $F \sim_Q CP(2) + S^2 + pt$.
 - (4) $F \sim_Q CP(2) + 3$ points.
 - (5) $F \sim_Q S^2 + S^2 + S^2$.
 - (6) $F \sim_0 S^2 + S^2 + 2$ points.
 - (7) $F \sim_0 S^2 + 4$ points.
 - (8) $F \sim_0 6$ points.

Proof. Since $\dim_{\mathcal{Q}} H^*(F; \mathcal{Q}) = \dim_{\mathcal{Q}} H^*(X; \mathcal{Q}) = 6$ [2], it suffices to show that, if a component F_1 of F has cohomological dimension 4 over Q, it follows that F is in the case (1). Suppose that $\dim_{\mathbb{Q}} H^*(F_1; \mathbb{Q})$ = 4.Then we have

$$J = (x_1x_2, x_1^3 - x_2^3 - t(ax_1^2 + bx_2^2))$$

for some $a, b \in Q$, and there is another component F_2 of F. Let (a_1, a_2) be the zero point of aJ which corresponds to F_2 . Since $(a_1, a_2) \neq (0, 0)$ is a root of the equations

$$\begin{cases} x_1 x_2 = 0 \\ x_1^3 - x_2^3 - a x_1^2 - b x_2^2 = 0 \end{cases}$$

we see that, only one of a_1 , a_2 equals to zero. Let $a_1 = 0$, then $a_2 \neq 0$, and $a_2^3 + ba_2^2 = 0$ implies that $b = -a_2 \neq 0$. It is easy to see that $I_1 = (x_1, x_2)$, and there is another component F_3 of F. Let (b_1, b_2) be the zero point of aJ which corresponds to F_3 . As above, we see that $b_2 = 0$ and $a = b_1 \neq 0$. The case $a_2 = 0$ is similar.

Now we construct examples of S^1 -actions on CP(3) # CP(3).

Let S^7 be the unit sphere in C^4 , and let $p_1: S^7 \longrightarrow CP(3)$ be the natural projection. We set $D^6 = \{p_1(z_1, z_2, z_3, z_4) \mid (z_1, z_2, z_3, z_4) \in S^7, |z_4|^2 \ge 1/2\}$, and define the diffeomorphism $g: p_1^{-1}(\partial D^6) \times S^1 \longrightarrow p_1^{-1}(\partial D^6) \times S^1$ by $g(z_1, z_2, z_3, z_4, s)$

$$= (s\bar{z}_1/(\sqrt{2} \ \bar{z}_4), \ s\bar{z}_2/(\sqrt{2} \ \bar{z}_4), \ s\bar{z}_3/(\sqrt{2} \ \bar{z}_4), \ s/(\sqrt{2} \ \bar{z}_4))$$

for every $(z_1, z_2, z_3, z_4) \in p_1^{-1}(\partial D^6)$ and every $s \in S^1$, which induces the orientation reversing diffeomorphism $g: \partial D^6 \longrightarrow \partial D^6$. Then we may consider $CP(3) \sharp CP(3)$ to be the attaching space $(CP(3) - \operatorname{Int} D^6) \cup_{\overline{g}} (CP(3) - \operatorname{Int} D^6)$ which is covered by the attaching space $E_1 = (S^7 - p_1^{-1} (\operatorname{Int} D^6)) \times S^1 \cup_{\overline{g}} (S^7 - p_1^{-1} (\operatorname{Int} D^6)) \times S^1$. Let $f_1, f_2: (S^7 - p_1^{-1} (\operatorname{Int} D^6)) \times S^1 \longrightarrow S^5 \times S^3$ be the map defined by

$$f_{1}(z_{1}, z_{2}, z_{3}, z_{4}, s) = \left(\frac{\bar{s}z_{1}}{\sqrt{1 - |z_{4}|^{2}}}, \frac{\bar{s}z_{2}}{\sqrt{1 - |z_{4}|^{2}}}, \frac{\bar{s}z_{3}}{\sqrt{1 - |z_{4}|^{2}}}, z_{4}, \sqrt{1 - |z_{4}|^{2}}s\right)$$

$$f_{2}(z_{1}, z_{2}, z_{3}, z_{4}, s) = \left(\frac{s\bar{z}_{1}}{\sqrt{1 - |z_{4}|^{2}}}, \frac{s\bar{z}_{2}}{\sqrt{1 - |z_{4}|^{2}}}, \frac{s\bar{z}_{3}}{\sqrt{1 - |z_{4}|^{2}}}, \sqrt{1 - |z_{4}|^{2}}s, z_{4}\right)$$

respectively for every $(z_1, z_2, z_3, z_4) \in S^7 - p_1^{-1}$ (Int D^6) and every $s \in S^1$. It is easy to see that f_1 and f_2 defines a diffeomorphism $f: E_1 \longrightarrow S^5 \times S^3$. Now define T^2 -actions on the two copies of $(S^7 - p_1^{-1} (\operatorname{Int} D^6)) \times S^1$ by

$$(z_1, z_2, z_3, z_4, s) \cdot (t_1, t_2) = (t_1 z_1, t_1 z_2, t_1 z_3, t_1 z_4, t_2 s)$$

and

$$(z_1, z_2, z_3, z_4, s) \cdot (t_1, t_2) = (t_2z_1, t_2z_2, t_2z_3, t_2z_4, t_1s)$$

for every $(z_1, z_2, z_3, z_4, s) \in (S^7 - p_1^{-1}(\operatorname{Int}D^6)) \times S^1$ and every $(t_1, t_2) \in T^2$ respectively. Then it is clear that f induces the T^2 -action on $S^5 \times S^3$ defined by

$$(z_1, z_2, z_3, z_4, z_5) \cdot (t_1, t_2)$$

= $(t_1t_2^{-1}z_1, t_1t_2^{-1}z_2, t_1t_2^{-1}z_3, t_1z_4, t_2z_5)$

for every $(z_1, z_2, z_3) \in S^5$, every $(z_4, z_5) \in S^3$ and every $(t_1, t_2) \in T^2$. By the T^2 -action, $p: S^5 \times S^3 \longrightarrow X$ is a principal T^2 -bundle, and plays the role of the bundle p defined in §3 for the suitable generators in $H^2(X; Z)$.

Let a_i be an integer $(i=1, \dots, 5)$, and let $\psi_A: G \times S^5 \times S^3 \longrightarrow S^5 \times S^3$ be the S^2 -action on $S^5 \times S^3$ defined by

$$\psi_{A}(s, z_{1}, z_{2}, z_{3}, z_{4}, z_{5})
= (s^{a_{1}}z_{1}, s^{a_{2}}z_{2}, s^{a_{3}}z_{3}, s^{a_{4}}z_{5}, s^{a_{5}}z_{5})$$

for every $s \in G$ and every $(z_1, z_2, z_3, z_4, z_5) \in S^5 \times S^3$. Since \emptyset_A commutes with the T^2 -action on $S^5 \times S^3$, there is the induced S^1 -action on X. We denote by $\xi_1, \xi_2 : (S^5 \times S^3 \times_G E_G) \times C^1/T^2 \longrightarrow X \times_G E_G$ the complex line bundle defined similarly as in §3. Then we see that the bundle $(\xi_1 \otimes \pi^* (\tau^{-a_4})) \oplus (\xi_2 \otimes \pi^* (\tau^{-a_5}))$ has everywhere non-zero cross-section, and hence the Euler class

 $c_2((\xi_1 \otimes \pi^* (\tau^{-a_4})) \oplus (\xi_2 \otimes \pi^* (\tau^{-a_5}))) = 0$, i. e. $(x_1 - a_4t) (x_2 - a_5t) \in J$ where $H_\sigma^*(X; Z) = Z[t, x_1, x_2]/J$. Similarly we have $(x_1 - x_2 - a_1t) (x_1 - x_2 - a_2t) (x_1 - x_2 - a_3t) \in J$. Thus we see $J = ((x_1 - a_4t) (x_2 - a_4t), (x_1 - x_2 - a_1t) (x_1 - x_2 - a_2t) (x_1 - x_2 - a_3t)$. There are following types:

- i) Suppose that $a_1 = a_2 = a_3 = a_4 a_5$. Then ψ_A induces the trivial action on X.
- ii) Suppose that $a_1 = a_2 = a_3 \neq a_4 a_5$. Then the fixed point set F consists of disjoint union of two copies of CP(2). The corresponding zero points of aJ are $(a_4, a_4 a_1)$ and $(a_1 + a_5, a_5)$ respectively.
- iii) Suppose that $a_1=a_2=a_4-a_5\neq a_3$. Then we have $F\approx S^2\times S^2+2$ points, and corresponding zero points of aJ are (a_4, a_5) , (a_4, a_4-a_3) and (a_3+a_5, a_5) respectively.
- iv) Suppose that $a_1 = a_2 \neq a_3 = a_4 a_5$. Then we have $F \approx S^2 + S^2 + S^2 + S^2$, and corresponding zero points are $(a_4, a_4 a_1)$, $(a_1 + a_5, a_5)$ and $(a_4, a_4 a_3)$.
- v) Suppose that $a_1=a_2\neq a_3$ and $a_4\neq a_i+a_5$ (i=1,3). Then we have $F\approx S^2+S^2+2$ points, and corresponding zero points are (a_4, a_4-a_1) , (a_1+a_5, a_5) , (a_4, a_4-a_3) and (a_3+a_5, a_5) respectively.
- vi) Suppose that a_1 , a_2 , a_3 are mutually distinct and $a_4 = a_1 + a_5$. Then we have $F \approx S^2 + 4$ points, and corresponding zero points are (a_4, a_5) , $(a_4, a_4 a_2)$, $(a_4, a_4 a_3)$, $(a_2 + a_5, a_5)$ and $(a_3 + a_5, a_5)$ respectively.
- vii) Suppose that a_1, a_2, a_3 are mutually distinct and $a_i \neq a_i + a_5$ (i = 1,

2, 3). Then F consists of 6 isolated points. The corresponding zero points are (a_4, a_4-a_1) , (a_4, a_4-a_2) , (a_4, a_4-a_3) , (a_1+a_5, a_5) , (a_2+a_5, a_5) and (a_3+a_5, a_5) .

Thus we have shown the examples except (3) and (4). A similar construction shows that there are some examples for (3) where the attaching map g above is changed. But, we can not construct the examples for (4) in this manner.

- 6. Concluding remarks. Let $\mathfrak{A} = (p_1, \cdots, p_n) \subset Q[x_1, \cdots x_n]$ be a homogeneous ideal such that $\sqrt{\mathfrak{A}} = (x_1, \cdots, x_n)$, and J a homogeneous ideal of $Q[t, x_1, \cdots, x_n]$ which has a generator system $p_1 tf_1, \cdots, p_n tf_n$ for some $f_1, \cdots, f_n \in Q[t, x_1, \cdots, x_n]$ and satisfies the conditions of (1.2). Let $\xi^{(1)}, \cdots, \xi^{(k)}$ be the zero points of J with multiplicities m_1, \cdots, m_k . There are several cases where $\xi^{(j)}, m_j$ $(j=1, \cdots, k)$ determine J uniquely up to certain equivalence.
- i) Let n=3, and $p_i=\sigma_i$ (i=1,2,3). Then it is shown that, for a fixed $\{(\xi^{(j)},m_j)\mid j=1,\cdots,k\}$, corresponding J is determined uniquely.
- ii) Let n=4 or 5, and $p_i=\sigma_i$ $(i=1,\cdots,n)$. We put $P=\{(1,a_{\pi(1)},\cdots,a_{\pi(n)})\mid \pi\in S(n)\}$ for a fixed integral vector (a_1,\cdots,a_n) , where S(n) denotes the symmetric group of permutations of n symbols. Then the ideal J above, whose zero point set is P with constant multiplicities, is determined uniquely.
- iii) Let n=2, $p_1=x_1x_2$ and $p_2=x_1^3-x_2^3$. Then easy calculation shows that, if J' is another ideal whose zero points and their multiplicities are that of J and satisfies the above conditions, then either J'=J or J' is mapped onto J by the permutation $(x_1, x_2) \longrightarrow (x_2, x_1)$.

Let $\mathfrak{A} = (p_1, \dots, p_n) \subset Z[x_1, \dots, x_n]$ be a homogeneous ideal such that $\sqrt{\mathfrak{A}} = (x_1, \dots, x_n)$, and J (resp. \overline{J}) a homogeneous ideal generated by $p_j - tf_J(j = 1, \dots, n)$ in $Z[t, x_1, \dots, x_n]$ (resp. $Q[t, x_1, \dots, x_n]$). It is not difficult to show that, if $Z[x_1, \dots, x_n]/\mathfrak{A}$ is a free Abelian, then $\overline{J} \cap Z[t, x_1, \dots, x_n] = J$.

It follows that, if $X = U(3)/T^3$ or $X = CP(3) \sharp CP(3)$, then equivariant cohomology rings $H_G^*(X; Z)$ (and hence $H^*(F; Q)$) are determined by A_J and $\dim_Q H^*(F_J; Q)$ $(j = 1, \dots, k)$.

REFERENCES

- [1] A.Borel: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. cf Math. 57 (1953), 115—207.
- [2] G. E. Bredon: Introduction to Compact Transformation Groups, Academic Press., 1972.

- [3] A. HATTORI and T. YOSIDA: Lifting compact group actions in fiber bundles, Japanese J. Math. 2 (1976), 13—25.
- [4] K. HOKAMA: On the fixed point set of S^1 -actions on $CP^m \times CP^n$, Math. J. Okayama Univ. 17 (1975), 181—186.
- [5] W.Y. HSIANG: On some fundamental theorems in cohomology theory of topological transformation groups, Taita J. Math. 2 (1970), 61—87.
- [6] W. KRULL: Idealtheorie, Chelsea Publishing Company, 1948.
- [7] P. TOMTER: Transformation groups on cohomology product of spheres, Ivent. Math. 23 (1974), 79-88.
- [8] O. ZARISKI and P. SAMUEL: Commutative Algebra II, D. Van Nostrand Company, 1960.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received June 20, 1977)