ON s-UNITAL RINGS. II
Dedicated to Professor Tominosuke Otsuki on his 60th birthday
Hisa0 TOMINAGA

This is a natural sequel to [11]. The notation and terminology
employed there will be used here, and S,(&) will denote the socle of :R.
In this paper, several results obtained by Yue Chi Ming [13], [14] and
V. Gupta [5] for rings with identity will be carried over to s-unital rings
and, in addition, some of our previous results obtained in [31, [4], [8],
[10] and [11] will be improved.

1. In general, an element ¢ of a multiplicative semigroup S is
called a semi-unit if there exists an element a* (called a semi-inverse of
@) such that &’sz* =a, a*’a=ae* and ae* = a*a. It is known that if
a’a' =a = a"a® for some a’, ¢" & S then @ has a uniquely determined
semi-inverse ¢* and &*b = ba* provided ab = ba (cf. [2, Lemma 1]).
Moreover, if a is a left (or right) m-regular element of a ring of bounded
index » then ¢* is a semi-unit (see [2, Theorem 4]). Needless to say,
in case R contains 1, a left (or right) regular element of R is a unit if
and only if it is a semi-unit,.

The next is contained in [11, Theorem 4].

Theorem 1. If R is left s-unital, then the following conditions are
equivalent :

1) Every irreducible left R-module is s-injective.

2) Every s-unital left R-module M is semisimple; rad(xM) = 0.

3) Every homomorphic image of rR is semisimple.

4) Every left ideal of R is an intersection of maximal left ideals.

If a left s-unital ring R satisfies one of the equivalent conditions in
Theorem 1, then R is called a left V-ring. A left s-unital ring R will
be called a left V'-ring (resp. left p-V'-ring) if every irreducible, singular
left R-module is s-injective (resp. p-injective).

A left ideal | of a ring R is said to be semi-modular if for each
a € R there exists some ¢ € R such that ¢ —ace 1. Obviously, every
modular left ideal in the sense of [6] is semi-modular.

Proposition 1 (cf. [11, Proposition 4]). (1) A left V-ring R isa
left p-V-ring if and only if every maximal left ideal is semi-modular.
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(2) If R is a left V'-ring and every maximal left ideal is semi-
modular, then R is a left p-V'-ring.

(3) R isaleft Voring (vesp. left p-V-ring) if and only if R is a left
V'-ving (vesp. left p-V'-ring) and every minimal left ideal is s-injective (vesp.
p-injective).

Proof. (1) First, assume that every maximal left ideal of R is
semi-modular, Let g: R—> M be an extension of a non-zero R-homomor-
phism f of Re into an irreducible left R-module M. Since m = Ker g
is semi-modular, there exists an element ¢ such that ¢ — ac € . Hence,
(xa)f = (xac)g = xa-cg for all x € R. Conversely, we assume that R
is a left p-V-ring. Let m be a maximal left ideal, and @ an element of
R. Considering the R-homomorphism f: Rea —> R/m defined by xa+——>
xa+m(x = R), we can find an element ¢ & R such that «-- 11 =ac-+m,
which means that m is semi-modular.

(2) This is evident by the proof of (1).

(3) 1If an irreducible left R-module is not singular then it is isomor-
phic to some minimal left ideal. This proves (3).

Recently, in [5], V. Gupta introduced the notion of a left weakly
w-regular ring as a generalization of those of a fully left idempotent ring
and of a strongly w-regular ring ; R is called a left weakly w-regular ring
if for each ¢ = R there exists a natural number »# such that ¢" & (Ra")?,
i.e., a" = ea* with some ¢ € Ra"R.

The right analogues of the above notions will be defined in an
obvious way.

2. Our first lemma contains several easy statements, which will be
used frequently in the subsequent study.

Lemma 1. (1) If a is a left regular element of R and ea=a for
some e € R, then e is a right identity of R. If, in addition, a is right
regular then e is the identity of R.

(2) If R is left unital and every Ra is a left annihilator, then R
is (right unital and) left s-unital.

(3) If R isvight s-unital and (a| is a direct summand of »R, then
a = aa'a for some a' E R,

(4) 1If a proper left ideal | of a left s-unital ring R contains 1(a)
with some a € R, then | is contained in a maximal left ideal.

Proof. (1) Since xe —x < I(e) =0 for all x € R, ¢ is a right
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identity of R. If furthermore (@) = 0 then a@e = ¢ implies that ¢ is
a left identity of R.

(2) In fact, Ra-r(Ra)=10 implies a-r(Ra) S r(R)=0, so
a € l(r(Ra)) = Ra.

(3) Let R=1{(a|Pt with a left ideal t, and e =a. Since
e=1u -+ k with some € (¢| and k€, we obtain ¢ — au = ak =
(a]l Nt=0. Hence, @ = au = au’ € aRa.

(4) Choose e R with ea=a. Since x —xe &€ l(a) for all xER, |
is a modular left ideal. It is well-known that ! is contained in a maximal
left ideal (see, e.g. [6, Proposition L. 3. 2]).

Corollary 1 ([10, Lemma 1 (a)]). If a is a proper ideal of a left
s-unital ving R, then a is contained in a maximal left ideal.

Proof. For any a < R\a, it is easy to see that a + /(@) % R.
Hence, the statement follows from Lemma 1 (4).

A left annihilator in R is called a maximal left annihilator if it is
maximal among the left annihilators different from R.

Theorem 2 (cf. [12, Lemma 2], [13, Theorem 9] and [14, Theorem
21). The following conditions are equivalent :

1) R is a regular ring.

2) Every left R-module is p-injective.

3) Every (a| is p-injective.

4) R is left s-unital and every semisimple homomorphic image of R
is p-injective.

5) R is left s-unital, every \a) is a right annihilator, and every
singular homomorphic image of rR is p-injective.

6) R is s-unital, every Ra is either 1(b) with some bE R or a direct
summand of R, and every singular homorphic image of R is p-injective.

7) R is a semiprime s-unital ring, and every finitely generated left
ideal is either a maximal left annihilator or a direct summand of pR.

Proof. Obviously, 1)=>7). As was noted in the introduction of
[4], 1)=>2)=>3)=>1), and 1)=—4) — 6).

4)=>3) Obviously, R is a left p-V-ring. Let a be an arbitrary
non-zero element of R, and b a non-zero element of Raz. Then there
exists a left subideal [' of A# which is maximal with respect to exclud-
ing b. Since Rb/!' is an irreducible left R-module, there exists an
element ¢ € Rb such that xb+['=xbc+1' for all xR, Let |={x& Ra|
zc€ '}, Then, !!'=1N Rb, Ra/l is R-isomorphic to Rb/l' and b & |,
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namely, [ is a maximal left subideal of Re and excludes 4. Hence, Ra
is semisimple, so that Ra is p-injective.

5)=>1) Let [a&)=#(S) with a subset S of R, and ea =a, Choose
a left ideal t such that [ = /(g) Dt is essential in R, and consider the
R-homomorphism f: Re —> R/l defined by xa——> x+!(x = R). Then
we can find an element ¢ & R such that x + [ = xac + [ for all x € R,
Setting ¢ —ac=u+ k with u€ (a) and k=¥ {forany s& S there
holds se=su-+sk. Since sk=se—sucl(@)Nt=0, it follows k=7(S)=|a).
Hence, a=cea= (ac+u+ k)a = aca + kea € aRa,

6)=—>1) In case Ra is a direct summand of R, by Lemma 1 (3)
we have a=aa'a with some @' R. Next, we consider the case Ra=1I(d).
Let gae=a, and t a left ideal such that | = /() @t is essential in R.
As above, we can find then an element ¢E R such that x+[{=xbc+! for
all x=R. Since e—ebc<!, we set e—ebc=a'a-+%, where a'a€ Ra=1I(b)
and kt. Then, a=aa'a+ak, and a—ad’a=ak= RaNt=0. Hence,
a=ad'a.

7) =>1) First, we shall prove that R is left non-singular. Suppose
Z = Z,(R) contains a non-zero element z. Since Z contains no non-zero
idempotents, Rz can not be a direct summand of R (Lemma 1 (3)), so
that Rz is a maximal left annihilator /() (¢#s~0). Moreover, Rz is
essential in RR. In fact, if not, Rz Rw =0 for some non-zero w € R.
Recalling that Rz D Rw(> Rz) is a direct summand of R, we see that
Rz is also a direct summand of iR, which is impossible again by Lemma
1(8). Hence, ¢ isin Z If Rzs=Z then there exists some z2' &€ Z such
that Rz + Rz' = R, which means Z= R. By [11, Theorem 1], there
exists an element e such that ze = z and z'¢ = z/. Then e is obviously
a right identity of R= Z, which is contradictory. Hence, Rz=Z. But
then (R#)*< Z-Rt=0, which contradicts the semiprimeness of R. Thus,
we have seen Z= 0. Now, assume that Ra is a maximal left annihi-
lator. Since Z =0, there exists a non-zero b R such Re D Rb isa
direct summand of zR. Then Ra is also a direct summand of R, and
hence R is a regular ring by Lemma 1 (3).

Next, we shall prove the following which includes [7, Theorem 2]
and [8, Theorem].

Theorem 3. The following conditions are equivalent :

1) R= rear R\, where R, is the complete ring of linear transforma-
tions of finite rank of a vector space over a division ring.

2) R is a semiprime ving and every left ideal is a left annihilator.

3) R is a semiprime ring and every Ra and every maximal left ideal
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are left annihilators.

4) R is a left s-unital semiprime ving and every maximal left ideal is
a left annihilator.

5) R is a left s-unital, left non-singular ring and every maximal left
ideal is a left annihilaior.

6) R is a regular ring and every maximal left ideal is a left annihi-
lator.

7) R is a right s-unital, left V-ring, and every maximal left ideal is
a left annhilator.

8) R is a left p-V-ring and every maximal left ideal is a left annihi-
lator.

9) R is a fully left idempotent ring and every maximal left ideal is a
left annihilator.

Proof. Obviously, 2)=—>3) and 6)=9)=—=>4). By [6, Theorem IV.
16.3], 1)=2), 6) and 7). By Lemma 1 (2) 3)—>4), and by Proposition
1 (1) and [11, Proposition 6] 7)=>8)=—=9).

4)=5) Assume Z = Z,(R)%0. Take a left ideal t such that
ZDIUZ)Dt isessentialin R Then ¥ C »(Z) = I(Z), sothat E=0,
which means that Z I(Z) is essential in R If Z I(Z)% R then,
by Corollary 1 and the hypothesis, Z @& I(Z) C I(z) for some non-zero
ze€ Z But z€r(Z)Nr{(2)=UZ)N r{I(Z)) =0, a contradiction.
Hence ZP 1(Z) = R, whence it follows r({(Z)) = Z. Again by Corollary 1,
I(Z) is contained in a maximal left ideal /(w) with some non-zero
weEr((Z)=2Z. Since Rw (= R/I!(w)) is a minimal left ideal, Rw = Re
with an idempotent ¢ & Z, a contradiction.

5)=>1) Since no maximal left annihilators are essential in R,
every maximal left ideal is a direct summand of rR. Hence, by
[10, Lemma 1 (b)], rR is completely reducible, and R is a left V-ring.
Accordingly, every left ideal of R is a left annihilator. Now, let R,
be an arbitrary homogeneous component of zR. Then R, is a simple ring
and every left ideal of R, is a left annihilator in R,. Hence, by
[6, Theorem IV.16.3], R, is the complete ring of linear transformations
of finite rank of a vector space over a division ring.

3. The main theme of this section will concern left V'-rings and left
p-V'-rings, and the next will play an important role in our study.

Lemma 2 (cf. (13, Lemma 1]). Let R be a left p-V'-ring. If a left
ideal | of R contains RaR + I{a) with some a € R then | is a direct
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summand of K.

Proof. There exists a left ideal ¥ such that [ is essential in
#R. Assume [Pt~ R  Then, by Lemma 1 (4), [ ¥ is contained in
a maximal left ideal m. Since m is essential in R, the irreducible,
singular left R-module R/m is p-injective. We consider here the R-
homomorphism f: Ra ——> R/m defined by za——> x+m(x<R). Then
there exists some b& R such that x-- m=xgb+ m for all xE R. But,
this yields a contradiction nt = R,

Corollary 2 (cf. [13, Propositions 3 and 6]). Let R be a left p-V'-
ring.

(1) ZR)nJR)=0.

(2) If ais a regular element of R then R has an identity and
RaR = R.

(3) If 1 is an essential left ideal of R then I = 1.

(4) If R is semiprime, then R is fully left idempotent, and is a
semiprimitive, right non-singular ring.

Proof. (1) Let e= Z,(R) N J(R), and @ =ea. By Lemma 2,
the essential left ideal RaR -+ I{2) is a direct summand of R, and hence
R = RaR -+ l(a) = J(R) + 1(a). Let e =u + v with some x»< J(R) and
v& I(a), and #' the quasi-inverse of x. Then O=a¢—uwa=a— (u-+u' —
wu)a = a.

(2) Since R contains an identity by Lemma 1 (1), this is given in
[13, Proposition 3 (ii)], and easily seen by Lemma 2.

(3) Let @ be an arbitrary element of |, and @ =ea, Since R=
[+1R+1(e) by Lemma 2, it follows a=ea = ((-+ 1R+ l(a))a=la+IRa C 1%

(4) If R is not fully left idempotent, there exists some ¢ € R with
(Ra)’ = Ra. Let | be a maximal left subideal of Ra containing (Re)>.
Since R is semiprime, (Ra)? is essential in rRa, so that Ra/! is an
irreducible, singular left R-module. Then there exists some & & Ra with
x+1=xb+1 for all x = Ra. But this implies a contradiction | = Ra.
The latter assertion is given in [11, Proposition 7].

Combining Corollary 2 (4) with [9, Theorem 17], we readily obtain

Corollary 3 (cf. [13, Corollary 8]). If R is a semiprime left Goldie,
left p-V'-ring, then R is a finite divect sum of simple rings.

Incase R is s-unital, we obtain the following characterizations of a
left V'-ring.
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Theorem 4. If R is sunital, then the following conditions are
equivalent :

1) R isa left V'ring.

2) R isaleft p-V'-ring and every singular, s-unital left R-module is
semisimple.

2) Z,(RY N J(R) =0 and every singular, s-unital left R-module is
semisimple.

2"y Z(R) N S(R) =0 and every singular, s-unital left R-module is
semisimple.

3) R is aleft p-V'-ring and every singular homomorphic image of R
is semisimple.

3) Zi(R) N J(R) =0 and every singular homomorphic image of R
is semisimple.

3" Z,(R) N Si(R) = 0 and every singular homomorphic image of rR
is semisimple.

4) R is a left p-V'-ring and every essential left ideal is an intersection
of maximal left ideals.

4"y Z,(R) N J(R) = 0 and every essential left ideal is an intersection
of maximal left ideals.

4"y Z,(R) N S,(R) = 0 and every essential left ideal is an intersection
of maximal left ideals.

Proof. Obviously, 2)=3)=-4), 2)=3")=4'), and 2")—>3")
—>4"). Since Z,(R) contains no non-zero idempotents, there holds
Z,(R) N S/(R) € Z,(R) N J(R). Combining this with Corollary 2 (1), we
see that 2) = 2/) =>2"), 3)==3")==3") and 4)=4')=>4").

1) = 2) By Proposition 1 (2), R is a left p-V'ring. As is noted above,
Z(R) N S,(R)=0. Now, let M be an arbitrary singular, s-unital
left R-module. Given an arbitrary non-zero ¥ € M, there exists an
R-submodule Y of M which is maximal with respect to excluding u.
Obviously, R« + Y is the smallest R-submodule of M properly contain-
ing Y and (Rx -+ Y)/Y is an irreducible, singular left R-module. Hence,
there exists an R-submodule X of M containing Y such that M/Y =
(Ru+Y)Y®X/Y. Then, u& X implies X= Y, namely, M=Ru-+ Y.
This means that Y is a maximal R-submodule of M and rad(zM) = 0.

4")=>1) Let M be an irreducible, singular left R-module, and [
a left ideal of R. By [11, Proposition 3], it suffices to prove that every
non-zero f € Hom (|, M) can be extended to an element of Hom (xR, »M).
We may assume here [ is essential in R. If I’ = Ker f(C ) is not
essential in pR, then I' N f = 0 for some non-zero left ideal t. Since
M=1Nts£0 and 1" NI'=0, I" is R-isomorphic to [""f = M, whence
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it follows " C Z,(R) N Si(R) = 0. This contradiction means that !’ is
essential in pR. Accordingly, there exists a maximal left ideal m
containing I’ but not [. Since !/l' is R-isomorphic to M and 1D INmDIDY,
we have I N m=1[. Now, taking this into mind, one can define an
extensionof f by I+ m——lf(lel, mem),

Corollary 4 (cf. [1, Theorem 1.11). If R is s-unital and left semi-
artinian, then the following conditions are equivalent :

1) R isa left V'-ring.

2) R is left non-singular and every singular, s-unital left R-submodule
is semisimple.

3) R is left non-singular and every singular homomorphic image of
rR is semisimple.

4) R is left non-singular and every essential left ideal is an intersec-
tion of maximal left ideals.

In case R is left non-singular, the proof of Theorem 4 enables us to
see the following

Corollary 5. If R is left s-unital and left non-singular then the
following conditions are equivalent :

1) R isa left V'-ring.

2) Every singular, s-unital left R-module is semisimple.

3) Every singular homomorphic image of rR is semisimple.

4) Every essential left ideal is an intersection of maximal left ideals.

Corollary 6 (cf. [13, Corollary 41). If R is s-unital then the follow-
ing conditions are equivalent :

1) R isa left V-ring.

2) R is a left V'-ring and every minimal left ideal is s-injective.

3) R is a left p-V-ring, every minimal left ideal is s-injective, and
every singular homomorphic image of xR is semisimple.

4) R is a left p-V'-ving, every minimal left ideal is s-injective, and
every singular homomorphic image of &R is semisimple.

5) R isa left p-V'-ring, every minimal left ideal is s-injective, and
every essential left ideal is an intersection of maximal left ideals.

Proof. By Proposition 1 (3), 1)<>2). The equivalence of 2) — 5)
is obvious by Theorem 4.

Theorem 5 (cf. [3, Theorem], [4, Theorem 1], [13, Theorem 2] and
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(14, Theorem 1]). The following conditions are equivalent :
1) R is a strongly regular ring.

2) R isa left duo, left V-ring.

2" R is a left duo, left V'-ring.

3) R is a left duo, left p-V-ring.

3" R isa left duo, left p-V'-ring.

4) R is a reduced ring and every (a| is a left annihilator.
R

5)
p-injective,

6) R is a left s-unital reduced ring and every maximal left ideal is
either p-injective or a left annihilator.

7) R is a left non-singular ring and every (a| is the left annihilator
of a left ideal.

8) R is a left non-singular, left duo ring, and every (a| is closed in
rR.

9) For each a € R there exists one and only one element a' such that
ad'a = a and daa = a'.

10) R is a reduced ring and in any homomorphic image of R each

element is either a zero-divisor or a semi-unit.

is a left s-unital, reduced ring and every maximal left ideal is

Proof. It is easy to see that 1)=>9) and 10). Obviously, 2)=—>2"),
3)=3'), 5)=6), and 1)=7) and 8). By [3, Theorem] and Theorem 2,
1)=2), 3) and 5). By Proposition 1 (2), 2')=>3'), and by [10, Lemma 3],
7) =>4) and 8) =>4).

3)=1) Given ¢ € R, Ra + l(a) is essential in R. In fact, if
(Re+1(a)) Nt=0 for a (left) ideal ¥ then faS RaNt=0 and tC ! (a),
which means =0, Hence, by Lemma 2 we have Ra+ I(g) =R, whence
it follows Ra® = Ra = a.

4)=>1) As is well-known, 7r(a) = r(@®) in the reduced ring R.
Since (¢| and (?| are left annihilators, (a| = I(r((a|)) = I(r(a)) = I(r{a®)
= (a?].

6)=1) Let a= R, and ea=a. We shall prove Ra + /(a) = R,
which will yield ¢ € Rs®. If not, there exists a maximal left ideal
m containing Ra + I(a) (Lemma 1 (4)). In case m is p-injective, con-
sidering the canonical injection 7: Rz —> m, we can find an element
cEm with ¢ =ac. Then, e—cecr(a)=1(a), andso 0=(¢— ce)a=
a — ca. Hence, x — xc € l(a) for all x = R, whence it follows a con-
tradiction m = R. On the other hand, in case m = /(3) with some non-
zero b= R, we have ber(m)CSr(a)=1(a)Sm=1[(h). Thus, »¥ =0,
a contradiction.

9)—1) Let a°=0, as'a=a and ad'aa’=a’. Then, setting a''=
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a' + aa', we have aa'a = a-and a¢"aa" = a". By the uniqueness of a’,
it follows aa’ = 0 and ¢ = 0. Hence R is a reduced ring.

10)=—1) Let a be an arbitrary non-zero element of R. Obviously,
a= U,;r(@") = U;(a") is an ideal, which excludes a. If @& = 0 (resp.
bz = 0) in R = R/a then &"*'d = 0 (resp. a"ba = 0 = a"*'b) for some n,
whence it follows 5=0. Hence, & is a semi-unit. Then, z’c = @ with
some ¢, so that a™*'c = a™ for some m. Hence, recalling that R is
of bounded index 1, ¢ is a semi-unit by [2, Theorem 4].

4. First, we claim that all the results in [5, §3] are still valid for
rings without identity.

Lemma 3 (cf. [5, Propositions 3.1 and 3.3]). Let R be a left weakly
a-regular ring.

(1) The center of R is a w-regular ring.

(2) J(R) is a nil ideal.

(3) Z.(R) is anil ideal.

(4) If ais aleft regular (vesp. regular) element of R then R con-
tains a right identity (vesp. the identily) and R = RaR.

Proof. (1) is an easy consequence of [2, Lemma 1].

(2) Let a= J(R), and a" = ea® with ¢ = Ra"R. Let ¢' be the
quasi-inverse of e. Then 4" = (e -+ ¢ — e'e)a® = 0.

(3) Let e Z,(R), and a" = ea" with ¢ © Ra"R. Since r(e) is
essential in Rz and r(e) N @R =0, it follows a"R=0 and ¢" € R(¢"R)e"
= 0.

(4) Let i(a)=0 (resp. /(a)=r(a)=0), and a" =ea" with e € Ra"R.
By Lemma 1 (1), e is a right identity (resp. the identity) of R and
RaR 2O Re = R.

Corollary 7 (cf. [5, Proposition 3.2]). Let R be a reduced ring.

(1) If R isleft weakly m-regular then R is right weakly mregular,
and conversely.

(2) R is a prime left weakly wregular ring if and only if R is a
simple ring with 1. .

Proof. (1) Let ea® = a* with e & Ra"R. Then (a"e — a")? = 0,
so a"e = a".

(2) Since every non-zero element of a prime reduced ring is regular,
this is a consequence of Lemma 3 (4).

We shall conclude our study with the following
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Theorem 6 (cf. [5, Theorém 3. 4] and [14, Theorem 3]). The
following conditions are equivalent :

1) R is artinian semiprimitive.

2) R is a semiprime left Goldie, left V'-ring, and every essential left
ideal is an ideal.

3) R is a semiprime left Goldie, left p-V'-ring, and every essential
left ideal is an ideal.

4) R is a semiprime left Goldie, left weakly m-regular ring, and
every essential left ideal is an ideal.

5) R is a left s-unital ring with a left regular element and every
maximal left ideal is the left annihilator of an idempotent right ideal.

6) R is a left s-unital ring with a left regular element and the right
annihilator of any maximal left ideal is a non-zero s-injective right ideal.

7) R is a left s-unital ring with a left regular element and the right
annihilator of any maximal left ideal is a non-zero p-injective right ideal.

8) R is a left s-unital ring with a left regular element and the right
annihilator of any maximal left ideal contains a non-nilpotent right ideal.

Proof. Obviously, 1)=2) — 7), 5)=8), and 6) =>7)=-8). We
claim here that if any one of the conditions 2) —8) is satisfied then R has
a right identity (Lemma 1 (1)). Especially, 2)=3). Now, assume one
of the conditions 3) and 4). Given an arbitrary left ideal I, there exists
a left ideal t such that [ ¥ is essential in R. As is well-known, any
essential left ideal of the semiprime left Goldie ring R contains a regular
element. Hence, by Corollary 2 (2) and Lemma 3 (4) we have [Pt = R,
which implies 1). Finally, we shall prove that 8)=>1). Let m be an
arbitrary maximal left ideal, t a non-nilpotent right ideal contained in
r(m), and abs40(a, b=1). Then, m = l(a) = I(d) = I(ad). If m is
essential in ,R then m {7 Re contains a non-zero element xa, and it
follows a contradiction x < I{(ab)=1(a). Hence, m is a direct summand
of xR, sothat R is artinian semiprimitive by [10, Lemma 1 (b)].
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