A CLASSIFICATION OF FREE EXTENSIONS OF RINGS OF AUTOMORPHISM TYPE AND DERIVATION TYPE

KAZUO KISHIMOTO

Introduction. Let B be a ring with the identity 1. In the previous paper [3], the author has studied on a semigroup and a group of some B-ring isomorphism classes of free quadratic extensions of B. In the present paper, as a natural sequel of [3], we shall continue our study on a semigroup and a group of some isomorphism classes of free extensions on which a cyclic group G of order n acts as a group of automorphisms. In case H is the dual Hopf B-algebra of the group algebra BG over a commutative ring B, A. Nakajima [4] has proved that the isomorphism classes of strongly Galois H-objects and those of p-cyclic Galois objects (in the category of commutative B algebras) form abelian groups. More precisely, the former is isomorphic to $U(B)/U(B)^n$ and the latter is isomorphic so B/B^p , where $B^p = \{b^r(=b^p - b) \mid b \in B\}$.

In this paper, §0 is devoted to notations and terminologies for the subsequent study. In §1, we shall show that some isomorphism classes of free extensions of ρ -automorphism type on which G acts form an abelian semigroup with the identity, and determine the structure of the semigroup under the assumption that n is invertible in B and the center Z of B contains a primitive n-th root ζ of 1. As a consequence, we can see that if B is commutative then the semigroup is isomorphic to B'U(B). In §2, we assume that B is an algebra over a prime field GF(p). In this case, we shall show that some isomorphism classes of p-cyclic extensions of D-derivation type on which G acts form an abelian group, and determine the structure of the group. Especially, if B is commutative then the group is isomorphic to $(B, +)/B^p$.

0. Notations and terminologies. Let ρ and D be an automorphism and a derivation of B, respectively. We use the following conventions:

```
Z= the center of B. B_1=B^p=\{b\in B\mid \rho(b)=b\},\ Z_1=Z\cap B_1. B(\rho^n)=\{b\in B\mid cb=b\rho^n\ (c)\ \text{ for all }\ c\in B\},\ B_1(\rho^n)=B_1\cap B(\rho^n). LN_p(B;\ n)=\{LN_p(b;\ n)=\rho^{n-1}(b)\rho^{n-2}(b)\cdots\rho(b)\ b\mid b\in B\}. \widetilde{b}=b_lb_r^{-1},\ \text{ the inner automorphism effected by }\ b\in U(B). LN_p(B;\ n)=\{LN_p(B;\ n)=\rho^{n-1}(b)\rho^{n-2}(b)\cdots\rho(b)\ b\mid b\in B\}.
```

$$B_0 = B^{\mathfrak{p}} = \{ b \in B \mid D(b) = 0 \}, \ Z_0 = Z \cap B_0.$$

 $B(D^{\mathfrak{p}}) = \{ b \in B \mid I_b = D^{\mathfrak{p}} (= D^{\mathfrak{p}} - D) \}.$

If B contains a primitive n-th root ζ of 1, $\Gamma(n) = \{n, \zeta, 1 - \zeta^i (i = 1, 2, \dots, n - 1)\}.$

Now, let $B[X; \rho]$ (resp. B[X; D]) will represent the ring of all polynomials $\sum_i X^i b_i(b_i \in B)$ in an indeterminate X whose multiplication is defined by $bX = X\rho(b)$ (resp. bX = Xb + D(b)) for any $b \in B$. If $b \in B_1(\rho^n)$ then $(X^n - b) B[X; \rho]$ is a two-sided ideal of $B[X; \rho]$, and conversely. When this is the case, the ring extension $B[X; \rho]/(X^n - b)$ $B[X; \rho]$ of B is called an n-binomial extension of ρ -automorphism type. While, in case B is an algebra over GF(p), $(X^p - X - b) B[X; D]$ is a two-sided ideal of B[X; D] if and only if $b \in B_0(D^p)$. When this is the case, the ring extension $B[X; D]/(X^p - X - b) B[X; D]$ of B becomes a G-cyclic extension with respect to a cyclic group G of order P (see [1]), and we shall call it a G-cyclic extension of D-derivation type. For future reference, we put

$$\Omega_{\rho}(B) = \{ B[X; \rho] / (X^{n} - b) B[X; \rho] \mid b \in B_{1}(\rho^{n}) \},
\Omega_{D}(B) = \{ B[X; D] / (X^{p} - X - b) B[X; D] \mid b \in B_{0}(D^{p}) \}.$$

Finally a ring extension A/B is called a *separable extension* if the A-A-homomorphism $a \otimes a' \rightarrow aa'$ of $A \otimes_B A$ onto A splits. As is well known, every G-Galois extension is separable.

1. A classification of *n*-binomial extensions of ρ -automorphism type with respect to a cyclic group G of order n. In this section, we assume that $U(Z_1) \supseteq \Gamma(n)$, $\rho^n = \tilde{u}^{-1}$ with some $u \in U(B_1)$, and G is a cyclic group of order n with a generator σ . If $A = B[X; \rho]/(X^n - b)B[X; \rho] \in \Omega_{\rho}(B)$ then we write $A = A_b$ and $X + (X^n - b)B[X; \rho] = x_b$. Noting that $x_b^n = b \in B$, A_b can be regarded as a left BG-module via $\sigma(\sum_{i=0}^{n-1} x_b^i b_i) = \sum_{i=0}^{n-1} (x_b \zeta)^i b_i$. In all that follows, we understand each $A_b \in \Omega_{\rho}(B)$ is a BG-module in the above sense. Given $A \in \Omega_{\rho}(B)$, the BG-ring isomorphism class of A in $\Omega_{\rho}(B)$ will be denoted by A > 0. It is obvious that any BG-ring isomorphism $A_b \longrightarrow A_c$ is right B-linear. We set here

$$P_{\rho}(B) = \{ \langle A \rangle \mid A \in \mathcal{Q}_{\rho}(B) \}.$$

Now, we shall begin our study with the following

Lemma 1.1. If A_b , $A_c \in \mathcal{Q}_{\rho}(B)$, then the following are equivalent: (1) $\langle A_b \rangle = \langle A_c \rangle$.

- (2) There exists a BG-ring isomorphism ϕ of A_b into A_c such that $\phi(x_b) = x_c \alpha$ with $\alpha \in U(Z)$.
 - (3) $b = cLN_{\rho}(\beta; n)$ for some $\beta \in U(Z)$.
- Proof. (1) \rightarrow (2). Let ϕ be a BG-ring isomorphism of A_b into A_c , and $\phi(x_b) = \sum_{i=0}^{n-1} x_c^i b_i (b_i \in B)$. Then $\sum_{i=0}^{n-1} x_c^i \zeta b_i = \phi \sigma(x_b) = \sigma \phi(x_b) = \sum_{i=0}^{n-1} x_c^i \zeta^i b_i$ implies $\phi(x_b) = x_c b_1$. Noting that $x_c \rho(d) b_1 = d(x_c b_1) = d \phi(x_b) = \phi(dx_b) = \phi(x_b \rho(d)) = x_c b_1 \rho(d)$ and $\phi^{-1}(x_c) = x_b b_1'$ with some $b_1' \in B$, we can easily see $b_1 \in U(Z)$.
- (2) \rightarrow (3). This is obvious by $b = (x_b)^n = \phi(x_b^n) = (x_c \alpha)^n = x_c^n L N_\rho(\alpha; n)$ = $c L N_\rho(\alpha; n)$.
- (3) \rightarrow (1). Let ϕ be the mapping of A_b into A_c defined by $\sum_{i=0}^{n-1} x_c^i b_i \rightarrow \sum_{i=0}^{n-1} (x_c \beta)^i b_i$. Then $\phi(b) = \phi(x_b^n) = (x_c \beta)^n = cLN_p(\beta; n) = b$ and ϕ is a B-ring isomorphism. Morever, $\sigma\phi(x_b) = \sigma(x_c\beta) = x_c\zeta\beta = \phi\sigma(x_b)$ shows that ϕ is a BG-ring isomorphism.

Lemma 1.2. $B_1(\rho^n)$ coincides with uZ_1 .

Proof. Obviously $uZ_1 \subseteq B_1(\rho^n)$. Conversely, if b is an element of $B_1(\rho^n)$ then $cb = b\rho^n(c) = bu^{-1}cu$ for all $c \in B$. Hence $bu^{-1} \in Z \cap B_1 = Z_1$.

- **Theorem 1.1.** (1) $P_{\rho}(B)$ is an abelian semigroup with the identity $\langle A_u \rangle$ under the composition * defined by $\langle A_b \rangle * \langle A_b \rangle * \langle A_b \rangle = \langle A_{bcu^{-1}} \rangle$. Moreover, $\langle A_b \rangle$ is an element of $U(P_{\rho}(B))$ if and only if $b \in U(B)$.
- (2) $P_{\rho}(B)$ is isomorphic to the factor semigroup $Z_1/LN_{\rho}(U(Z); n)$. In particular, $U(P_{\rho}(B))$ is isomorphic to $U(Z_1)/LN_{\rho}(U(Z); n)$.
- *Proof.* (1) Since $\langle A_b \rangle = \langle A_z \rangle$ if and only if $b = cLN_\rho(\alpha; n)$ with some $\alpha \in U(Z)$ (Lemma 1.1), the assertion is evident by Lemma 1.2.
- (2) By Lemma 1.2, the mapping $f: z \to \langle A_{uz} \rangle$ ($z \in Z_1$) is a semigroup epimorphism of Z_1 onto $P_{\rho}(B)$. Then $Z_1/LN_{\rho}(U(Z); n)$ is isomorphic to $P_{\rho}(B)$ by Lemma 1.1, and the rest is obvious.

Proposition 1.1. If $A_b \in \mathcal{Q}_p(B)$ then the following are equivalent:

- (1) A_b/B is a separable extension.
- (2) A_b/B is a strongly G-cyclic extension.
- (3) b is invertible in B.

Proof. Since $(2) \rightarrow (1)$ is known and $(3) \rightarrow (2)$ is evident by $\sigma(x_b) = x_b \zeta$ (see [2]), it remains only to prove $(1) \rightarrow (3)$. Now, we write $A = A_b$

and $x = x_b$, and consider a separable coordinate system for A/B: $\{\sum_{i=0}^{n-1} x^i a_{ik} ; \sum_{i=0}^{n-1} x^i b_{ik} | k = 1, 2, \dots, m\}$. Then,

$$(1) 1 = \sum_{k=1}^{m} \left(\left(\sum_{i=0}^{n-1} x^i a_{ik} \right) \left(\sum_{j=0}^{n-1} x^j b_{jk} \right) \right)$$

and for any $x \in A$

$$(2) x\left(\sum_{k=1}^{m}\left(\left(\sum_{i=0}^{n-1}x^{i}a_{ik}\right)\otimes\left(\sum_{j=0}^{n-1}x^{j}b_{jk}\right)\right) = \left(\sum_{k=1}^{m}\left(\left(\sum_{i=0}^{n-1}x^{i}a_{ik}\right)\otimes\left(\sum_{j=0}^{n-1}x^{j}b_{jk}\right)x\right).$$

By a direct computation, (1) yields

$$1 = \sum_{k=1}^{m} \left(\sum_{l=0}^{2n-2} x^{l} \left(\sum_{i+j=n} \rho^{j} (a_{ik}) b_{ik} \right) \right),$$

Hence, we have

$$(3) 1 = \sum_{k=1}^{m} a_{0k} b_{0k} + \sum_{k=1}^{m} b \left(\sum_{i+j=n} \rho^{j}(a_{ik}) b_{jk} \right).$$

We put $A \otimes_B A = (x \otimes 1)B \oplus M$ as a B-module. Then, by (2) we have $x (\sum_{k=1}^m ((\sum_{i=0}^{n-1} x^i a_{ik}) \otimes (\sum_{j=0}^{n-1} x^j b_{jk}))) = \sum_{k=1}^m ((\sum_{i=0}^{n-1} x^{i+1} a_{ik}) \otimes (\sum_{j=0}^{n-1} x^j b_{jk})) = \sum_{k=1}^m ((x \otimes 1) a_{ik} b_{0k}) + f$ with some $f \in M$, and $(\sum_{k=1}^m ((\sum_{i=0}^{n-1} x^i a_{ik}) \otimes (\sum_{j=0}^{n-1} x^j b_{jk}))) x = \sum_{k=1}^m ((x \otimes 1) a_{ik} b \rho (b_{n-1k})) + g$ with some $g \in M$, Comparing the coefficients of $x \otimes 1$ of the both above, we have

$$(4) \quad \sum_{k=1}^{m} a_{0k}b_{0k} = \sum_{k=1}^{m} a_{1k}b\rho(b_{n-1k}) = \sum_{k=1}^{m} b\rho^{n}(a_{1k})\rho(b_{n-1k}).$$

Now, by (3) and (4), $1 = \sum_{k=0}^{m} a_{0k}b_{0k} + \sum_{k=1}^{m} b\left(\sum_{i+j-n} \rho^{j}(a_{ik})b_{jk}\right) = \sum_{k=1}^{m} b\rho^{n}(a_{1k})\rho(b_{n-1k}) + \sum_{k=1}^{m} b\left(\sum_{i+j-n} \rho^{j}(a_{ik})b_{jk}\right) = b\left(\sum_{k=1}^{m} (\rho^{n}(a_{1k})\rho(b_{n-1k}) + \sum_{i+j-n} \rho^{j}(a_{ik})b_{jk}\right)$, namely, b has a right inverse. Since $bc = \rho^{-n}(c)b$ for any $c \in B$, we see that $b \in U(B)$.

Now, let A/B be a strongly G-cyclic extension with $A_B \oplus > B_B$. Then, A is BG-ring isomorphic to $\langle A_b \rangle \in \mathcal{Q}_{\rho'}(B)$ for some automorphism ρ' and $b \in U(B)$ ([2]). Thus, if A/B is a strongly G-cyclic extension of ρ -automorphism type and $A_B \oplus > B_B$, then A is BG-ring isomorphic to some A_b with $\langle A_b \rangle \in U(P_{\rho}(B))$. Conversely, if $\langle A_b \rangle$ is in $U(P_{\rho}(B))$, then Prop. 1.1 and Th. 1.1 show that C/B is a strongly G-cyclic extension of ρ -automorphism type for any $C \in \langle A_b \rangle$. Summarizing those above, we obtain the following

Corollary 1.1. $U(P_{\rho}(B)) = \{ \langle A \rangle \in P_{\rho}(B) \mid A/B \text{ is separable} \}$ represents the set of all BG-ring isomorphism classes of strongly G-cyclic extensions A of ρ -automorphism type with $A_B \bigoplus B_B$.

The next is also an easy consequence of Th. 1.1.

Corollary 1.2. If the restriction $\rho \mid Z$ of ρ to Z coincides with the identity, $P_{\rho}(B) \simeq Z/U(Z)^n \simeq P_1(B) \simeq P_1(Z)$. In particular, (1) if ρ is inner then $P_{\rho}(B) \simeq P_1(B)$, and (2) if B is commutative then $P_1(B) \simeq B/U(B)^n$.

If η is a ring isomorphism of B onto a ring B' with the center Z', then there exists a unique automorphism ρ' of B' with $\eta \rho = \rho' \eta$. Obviously, $\rho'^n = \widetilde{\eta(u)}^{-1}$, $\eta(u) \in U(B^{\rho'}) \cap B'(\rho'^n)$, $\eta(Z_1) = Z^{\rho'}$ and $\eta(LN_{\rho}(U(Z);n)) = LN_{\rho'}(U(Z');n)$. Accordingly, if $\overline{\rho}$ is the conjugate class of ρ in the group $\mathfrak A$ of all ring automorphisms of B and $\rho^* \in \overline{\rho}$ then $\rho^{*n} = \widetilde{u}^*$ with some $u^* \in U(B^{\rho^*}) \cap B(\rho^{*n})$. Now, the next is obvious.

Theorem 1.2. (1) if η is a ring isomorphism of B onto a ring B' then there exists a unique automorphism ρ' of B' such that $\eta \rho' = \rho \eta$ and $P_{\rho}(B) \simeq P_{\rho'}(B')$. In particular, $P_1(B) \simeq P_1(B')$.

(2)
$$P_{\rho}(B) \simeq P_{\rho} * (B)$$
 for any $\rho^* \in \overline{\rho}$.

2. Aclassification of G-cyclic extensions of D-derivation type. In this section, we assume that B is an alegebra over GF(p), D a derivation of B such that $D^{\mathfrak{p}} = I_{\mathfrak{u}}$ with some $u \in B_0(D^{\mathfrak{p}})$, and that G is a cyclic group of order p with a generator σ .

If $A = B[X; D]/(X^p - X - b) B[X; D] \in \Omega_D(B)$ then we write $A = A_b$ and $X + (X^p - X - b) B[X; D] = x_b$. As was mentioned in §0, A_b/B is a cyclic extension via $\sigma(x_b) = x_b + 1$. In all that follows, A_b will be understood as a left BG-module via $\sigma(\sum_{i=0}^{n-1} x_b^i b_i) = \sum_{i=0}^{n-1} (x_b + 1)^i b_i$. While, if C/B is a G-cyclic extension with $C_B \oplus B_B$, then C is BG-ring isomorphic to $A_b \in \mathcal{Q}_{D'}(B)$ with some derivation D' of B. Thus, the set $P_D(B)$ of all BG-ring isomorphism classes A > 0 of $A \in \mathcal{Q}_D(B)$ may be regarded as the set of all BG-ring isomorphim classes of G-cyclic extensions A of D-derivation type with $A_B \oplus B_B$.

Given $b \in B$, we put $J_0^D(b) = 1$ and $J_i^D(b) = D(J_{i-1}^D(b)) + J_{i-1}^D(b)b$ for $i \ge 1$. Then, in B[X; D] there holds

$$(X+b)^n = \sum_{i=0}^n X^i \binom{n}{i} \mathcal{L}_{n-i}^D(b)$$

(see [1]). From this we have

$$(X+b)^p=X^p+J_p^D(b).$$

Lemma 2.1. (1) If D=0 then $\Delta_p^D(b)=b^p$ for all $b\in B$. (2) Δ_p^D is an endomorphism of $(Z_1, +)$.

Proof: It suffices to prove (2). Let $w, z \in Z$. Since w(X + z) =

Xw + D(w) + wz = Xw + zw + D(w) = (X + z)w + D(w), one will easily see that $X^p + \mathcal{J}_p^D(z+w) = (X+(z+w))^p = ((X+z)+w)^p = (X+z)^p + \mathcal{J}_p^D(w) = X^p + \mathcal{J}_p^D(z) + \mathcal{J}_p^D(w)$. Hence \mathcal{J}_k^D is a homomorphism of (Z, +) into (B, +). Next, we shall show that $\mathcal{J}_k^D(z) \in Z$. To our end, recalling that $\mathcal{J}_{k+1}^D(z) = \mathcal{J}_k^D(z)z + D(\mathcal{J}_k^D(z))$, it suffices to prove that if $\mathcal{J}_k^D(z)$ is in Z then $D(\mathcal{J}_k^D(z))$ also in Z. In fact, this is an easy combination of $D(c\mathcal{J}_k^D(z)) = D(\mathcal{J}_k^D(z)c)$ and $D(c)\mathcal{J}_k^D(z) = \mathcal{J}_k^D(z)D(c)$ ($c \in B$).

Now, corresponding to Lemma 1.1, we shall prove the following

Lemma 2.2. If A_b , $A_c \in \mathcal{Q}_D(B)$, then the following are equivalent:

- $(1) \langle A_b \rangle = \langle A_c \rangle.$
- (2) There exists a BG-ring isomorphism ϕ of A_b into A_a such that $\phi(x_b) = x_a + \alpha$ with some $\alpha \in Z$.
 - (3) $b = c + \Delta_p^D(\beta) \beta$ for some $\beta \in \mathbb{Z}$.
- Proof. (1) \rightarrow (2). Let ϕ be a BG-ring isomorphism of A_b into A_c , and $\phi(x_b) = \sum_{i=0}^{p-1} x_c^i b_i$ ($b_i \in B$). Then, $\sum_{i=0}^{p-1} (x_c + 1)^i b_i = \sigma \phi(x_b) = \phi \sigma(x_b)$ $= \phi(x_b + 1) = \sum_{i=0}^{p-1} x_c^i b_i + 1$ implies $\phi(x_b) = x_c + b_0$. Noting here that $x_c + d + D(d) + db_0 = d(x_c + b_0) = d\phi(x_b) = \phi(dx_b d + D(d)) = x_c d + b_0 d + D(d)$ for all $d \in B$, we can see $b_0 \in Z$.
- (2) \rightarrow (3). To be easily seen, $b=x_b^{\mathfrak{p}}=\phi(x_b^{\mathfrak{p}})=(x_c+\alpha)^{\mathfrak{p}}=x_c^{\mathfrak{p}}+\mathcal{A}_p^p(\alpha)-\alpha=c+\mathcal{A}_p^p(\alpha)-\alpha$.
- (3) \rightarrow (1). Let ϕ be the mapping of A_b into A_c defined by $\sum_{i=0}^{n-1} x_b^i b_i$ $\rightarrow \sum_{i=0}^{n-1} (x_c + \beta)^i b_i$. Then $\phi(b) = \phi(x_b^p) = (x_c + \beta)^p = c + \Delta_p^p(\beta) \beta = b$ and ϕ is a B-ring isomorphism. Moreover, $\sigma\phi(x_b) = \sigma(x_c + \beta) = x_c + 1 + \beta = \phi\sigma(x_b)$ shows that ϕ is a BG-ring isomorphism.

Lemma 2.3. $B_0(D^p)$ coincides with $u + Z_0$.

Proof. Obviously, $u + Z_0 \subseteq B_0(D^p)$. Conversely, if b is an element of $B_0(D^p)$ then $I_b(c) = D^p(c) = I_u(c)$ for all $c \in B$. Hence, $u - b \in Z \cap B_0 = Z_0$.

Combining Lemma 2.2 with Lemma 2.3, we obtain the following

Theorem 2.1. (1) $P_D(B)$ is an abelian group with the identity $\langle A_u \rangle$ under the composition * defined by $\langle A_b \rangle * \langle A_c \rangle = \langle A_{b+c-u} \rangle$.

- (2) $P_D(B)$ is isomorphic to the factor abelian group $Z_0/A^D(Z)$ where $A^D(Z) = \{A_D^D(\alpha) \alpha \mid \alpha \in Z\} \cap Z_0$.
- *Proof.* (1) Since $\langle A_b \rangle = \langle A_c \rangle$ if and only if $b = c + \Delta_p^p(\beta) \beta$ with some $\beta \in Z$ (Lemma 2.2), the assertion is evident by Lemma 2.3.

(2) By Lemma 2.3, the mapping $f: z \to \langle A_{u+z} \rangle$ $(z \in Z_0)$ is a group epimorphism of Z_0 onto $P_D(B)$. Then $Z_0/\Delta^D(Z)$ is isomorphic to $P_D(B)$ by Lemma 2.2.

Recall here that if D=0 then $\mathcal{L}^{\nu}(Z)=Z^{\nu}$ (Lemma 2.1), the next will be an immediate consequence of Th. 2.1.

Corollary 2.1. If D|Z=0 then $P_D(B) \simeq Z/Z^{\mathfrak{p}} \simeq P_0(B) \simeq P_0(Z)$. In particular, (1) if D is inner then $P_D(B) \simeq P_0(B)$ and (2) if B is commutative then $P_0(B) \simeq B/B^{\mathfrak{p}}$.

If η is a ring isomorphism of B onto a ring B' with the center Z', then there exists a unique derivation D' of B' with $\eta D = D'\eta$. Obviously, $D'^{\mathfrak{p}} = I_{\eta(u)}$, $\eta(u) \in B'^{\mathfrak{p}'} \cap B'(D'^{\mathfrak{p}})$, $\eta(Z_0) = Z'^{\mathfrak{p}'}$ and $\eta(J^{\mathfrak{p}}(Z)) = J''(Z')$. Accordingly, if \overline{E} is the similar class of E in the additive group \mathfrak{D} of all derivations of B, where E and E^* in \mathfrak{D} are similar if there exists a ring automorphism η of B with $\eta E = E^*\eta$, and if $E^{\mathfrak{p}} = I_{\mathfrak{p}}$ with $v \in B^E \cap B(E^{\mathfrak{p}})$ then for each $E^* \in \overline{E}$ we have $E^{*\mathfrak{p}} = I_{\mathfrak{p}}^*$ with some $v^* \in B^{E^*} \cap B(E^{*\mathfrak{p}})$. Now, the next is obvious.

Theorem 2.2. (1) If η is a ring isomorphism of B onto a ring B' then there exists a unique derivation D' of B' such that $\eta D = D'\eta$ and $P_D(B) \simeq P_{D'}(B')$. In particular, $P_0(B) \simeq P_0(B')$.

(2) $P_{D}(B) \simeq P_{D}*(B)$ for any $D^* \in \overline{D}$.

REFERENCES

- [1] К. Кізнімото: On abelian extensions of rings I, Math. J. Okayama Univ. 14 (1970), 159—174.
- [2] K. Kishimoto: On abelian extensions of rings II, Math. J. Okayama Univ. 15 (1971), 57-70.
- [3] K. Kishimoto: A classification of free quadratic extensions of rings, Math. J. Okayama Univ. 18 (1976), 139—148.
- [4] A. NAKAJIMA: On a group of cyclic extensions over commutative rings, Math. J. Okayama Univ. 15 (1972), 163—172.

DEPARTMENT OF MATHEMATICS
SHINSHU UNIVERSITY

(Received May 30, 1975)