ON THE RELATION OF REAL COBORDISM
TO KR-THEORY

Dedicated to Professor Tominosuke Otsuki on his 60th birthday
MicHIKAZU FU]JII

Introduction

In the previous paper [6] we have introduced the cobordism theory
with reality. The purpose of this paper is to give an analogue of the
cobordism interpretation for K-theory of Conner-Floyd [4] for theories
with reality.

Throughout this paper, by a real space and a real map we mean a
Hausdorff space with involution and an equivariant map between real
spaces, respectively(cf. [2], [6]). By a real complex we mean a CW-complex
with nice involution (cf. [4], [6]). By real vector bundles over real spaces
we mean real vector bundles in the sense of Atiyah [2].

Let MR* *( )and KR* *( ) be the cobordism theory with reality [6]
and the real K-theory of Atiyah [2], respectively. They are multiplica-
tive generalized cohomology theories in some sense. By making use of
Thom classes in KR-theory, we can get a natural transformation

#r : MR**(X) —> KR**(X)
of the cohomologies. Furthermore we can define a group homomorphism
co: KR**(X)—> MR**(X)

by using the first MR* *-Chern classes for real vector bundles. And then,
it holds a relation
' Pr €y = — id.

Hence we obtain

Theorem 1. For any pair (X, A) of finite real complexes, KR(X, A)
is embedded additively as a direct summand of MR*° (X, A).

Since the transformation g : MR** — KR** is a ring homomor-
phism, we can regard KR*'* as a left MR**-module by defining wa =
vi{w)a for w € MR** and ¢ € KR**. Then we have the following

Theorem 2. For any pair (X, A) of finite real complexes, we have an
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isomorphism
izt MR**(X, A) @ KR** = KR**(X, A).
MR* ¥

In §1 we summarize some basic properties of KR-theory. In §2
we discuss on the relation between MR*-*-theory and KR**-theory by
making use of the transformation /; of cohomology theories and prove
Theorem 1. The proof of Theorem 2 is given in §3 by using MR**- and
KR**-cohomology structures of the Grassmann manifold G, (C") which is
a real space with the reality given by the conjugation.

The author wishes to express his sincere thanks to Professor S. Araki
for kind advices and Professor P. S. Landweber for valuable suggestions.

1. Preliminaries

In this section we summarize some basic properties on KR-theory
which are needed in the later sections.
For any real pair (X, A), we define

KR™™™(X, A) = KR (z"* A\ (X] 4))

for any integers p, g =0, where X7 is the real space of [6], (2.1). "
Then, there is the following Bott isomorphism.

Proposition 1.1 (cf. [2], Theorem 2. 3).

B: KR "X, A) —> KR""~"\(X, A), z+—> bx,

is an isomorphism, where b€ KR(Z')=7Z isa generalor.

By making use of this proposition we can define KR™%X, A) for any
pair (p, q) of integers. And we have

Proposition 1.2. For any integer p, KR™*(,) is a generalized
cohomology theory. The theory KR**(,) is a multiplicative theory.

Let £ be a real vector bundle over a real compact space X and T(§)
the real Thom space (cf. [6]) of £ As in the usual way (cf. [3], Chap.
I, §2.6 or [5], §3) the Thom class of £

T(E) € KR (T (§))

is defined by the exterior algebra of £. And we have

1) According to the definition of Atiyah [2] KR?.9(X,A) = KR(z P9 A (X/A)).
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Proposition 1.3, (i) Let h: y——> & be a real bundle map and
T(h): T(y) —> T(E) the real map of the real Thom spaces induced by h.
Then

y) = T(h)* T(&).
(ii) Under the identification T(E X &) = T (E) /\ T (¢') we have
T(E x &) =TE) NZ(E).
(iii) If 6" is the n-dimensional trivial real vector bundle over a point,
then b, = T(o") I?R(E"'") is a generator (b = b,).

Let the sequence {MU(%), .| k € N} be the real Thom spectrum
of [6], (2.4), and

fam t MU(m) A\ MU () —> MU(n+n)
be the real map of [6], (2. 2).
Proposition 1.5. Let y, = (EG.), p, BU(n)) be the n-dimensional

universal real vector bundle (cf. [6], §1) and i,: X™" C MU(n) the natural
real inclusion. Then, we have

(i) o (@ (men)) = TG A Z(G),

(11) bn = in* (z (Tn))-

Let CP, be the n-dimensional complex projective space and 7, the
canonical complex line bundle over CP,. The space CP, is a real space
and the bundle %, is a real line bundle with the reality induced by the
conjugation.

As in the usual case {(cf. [56], Chap. I, §4) we have

Proposition 1.6. (i) T(y.-1) = CP, as real spaces with base points.

(ii) T(o-)) =1 — 3, in KR(CP,).

Let us consider that the Thom class T(¥) of the n-dimensinal real
vector bundle & belongs to fR""'(T(E)), that is

T(£) € KR™"(T(E),

by the Bott isomorphism B7": KR (T() = KR™"(T(£)). It is convenient
to think so for considerations of cohomology theories. Then
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Proposition 1.7 (Thom Isomorphism Theorem) (cf. [2], Theorem
2.4). For any n-dimensional real vector bundle & over a real compact
space X, the homomorphism

w1 KR”"(X) —> KR*™(T(E)),
defined by T(x) = T(E) - x for x € KR™(X), is an isomorphism.
Furthermore we have the followings.
Proposition 1.8 (cf. [2], p.374). Let u,=8"'(1~%,)€ KR"(CP,).

Then KR**(CP,)is a free KR* *-module with basis 1, wu,, ---, (u.)", with
the relation (u.)"*' = 0. In other words,

KR**(CP,) = KR** [t )/ ((u.)"*") .

Proposition 1.9. It kolds the splitting principle in the KR* *-theory.

Proposition 1.10, There exists a unique function assigning to each
n-dimensional rveal vector bundle £ over a real compact space X an element

o) =1+a, &+ -+ 5.8

where o, () € KR"'(X), such that
1) if a real bundle map f: 7 —>E coversareal map f: X—> Y
of base spaces, then f*a(E) = a(y),
2) if £ and 3 are real vector bundles over X, then
a(EDy) =a(&) a(y),
3) if 7. is the canonical real line bundle over the real space CP,,
then o(9.) = 1+ u, where u, is the element in Proposition 1. 8.

The elements a,(£), i =1, -, n, will be called KR* *-Chern classes
of the n-dimensional real vector bundle E&.

2. The relation between MR-theory and KR-theory

In the previous paper [6] we have defined the real cobordism group
for any finite real complex X with base point as follows:

MR™*(X) = Dir, Lim [X*** A X: MU (k)]x
We now define a natural transformation
1tz 2 MR**(X) —> KR**(X)

in the same way as the definition of the natural transformation
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e MU*(-)—> E*(-)

in Conner-Floyd [5], Chap. I, §5: Let ¢ MR”"’(X) be represented
by f: I P9 AN X—> MU(k). Then, let pula) be the image of (i)
in the composition

k

ERMUR) "> ER(2*7%9 A X)= RR?* »4(X) = ER™(X).

Proposition 2.1. (i) The transformation
fra: MR**(+)—> KR** ()

is a multiplicative transformation of cohomology theories.

(ii) If t(€) = MR™"(T(§)) is the Thom class of an n-dimensional
real vector bundle & over a real compact space [6], §4, then n1x(t(€)) is
the Thom class of & in the KR-theory.

Proposition 2.2. Let & be an n-dimensional real vector bundle over
a finite real complex X, and let ¢, (E) € MR"(X) and .(€) € KR"'(X),
i=1,--, n be the MR**-Chern classes [6] and KR**-Chern classes,
respectively. Then ipci(§) = ai(E).

Proof. To prove this, it suffices to .show that
g 1 MR“'(CP,) —> KR“'(CP,)

maps ¥, into #,, where x, is the element of (6], Theorem 6.2, and «,
is the element of Proposition 1.8. Since the element x, is represented
by the real inclusion j,: CP, € MU (1) = CP (o),

ree(2a) = A7 7" (X))

= BT (Pn-1) by Prop. 1.3, (i), and Prop. 1.6, (i)
=371 — %,) by Prop. 1.6, (ii)
= u,. g.e.d.

If £ % are m, n-dimensional real vector bundles over a finite real
complex X respectively, then ¢,E@7) = ¢,(§) + ¢,(3). Hence there
exists a unique additive homomorphism

¢ : KR(X)— MR"(X)

taking a class of a real vector bundle & into ¢, (§).
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Proposition 2.3. If £ is an n-dimensional trivial real vector bundle
over a finite real complex, then c,(§) =0 for i=>1.

Proof. Since every trivial bundle is induced by a map into a point,
it suffices by the naturality to prove ¢;(6") =0, i =1, for the trivial
real bundle 6" over a point. By [6], Theorem 6.2, we have (x,,)" =0
in MR**(CP,_,). Hence ¢;(6") =0, i =1, :--, n, by the definition of
MR*-*-Chern classes. : q. e. d.

Proposition 2.4. For any connected finite real complex X with base
point, the following diagram is commultative :

~ c -~
ER (X)———> MR (X)

Al e

KR (X) —— KR! (X).

Proof. First we have
¢i(y, — 1) = x, € MR**(CP,)
for the canonical real line bundle 7, over the real space CP,. Hence
o €107 — 1) = pale) = A7 (1 = 7)

is just the computation of the proof of Proposition 2.2. Therefore, by
the naturality we have

pre(E—1)=p"'1—§)

for any real line bundle £ over X.

Every element of fR(X) is of the form & — %k, where & is a k-
dimensional real vector bundle and % is a k-dimensional trivial real
vector bundle over X. In virtue of Proposition 1.9, there is a real space
F and a real map = : F—> X such that

1) =#*: KR**(X)—> KR**(F) is a monomorphism, and
2) =*E splits as a sum of % real line bundles &), -, &.
Then

¥ pip €y (E—Fk)=pre, (& —1)+--+ (&, — 1)
=g (1 - E:) + et 19—1(1 - Ek)
= a* ﬁ—l (k - E)o
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Hence
rtrei(E— k) =gk - &) q.e.d
We now define, for a finite real complex X with base point,

co: KR(X) —> MR (X)

as the composition

~ Co ~
RR (X )eeeeeremeresssoeermeseesseoeese RO (X))
01,11 101.1
K“I’em (21.1/\ X) M‘Rl.x (MU X),
ﬁ [}

KR (S A X)/

where o"! is the suspension isomorphism.

Passing to pairs (X, A), we get an additive homomorphism
co: KR(X, A)—> MR"° (X, A).

Proposition 2.5. For any pair (X, A) of finite real complexes, the
homomorphisms

ILR

Co /
KR (X, A)—> MR (X, A)—— KR(X, A)
have npci{a) = — a for every a € KR(X, A).

Now, as a corollary of this proposition we obtain the following

Theorem 1. For any pair (X, A) of finite real complexes, KR(X, A)
is embedded additively in MR"’(X, A) as a direct summand.

3. A real cobordism interpretation for KR** (X)

Let MR** = MR**(X") and KR** = KR**(2*"). Then, in
virtue of Proposition 2. 5,

iy MPR** —> KR**

is a ring epimorphism. We thus can regard KR** as a left MR**-
module by defining wa = pr(w)a for « € MR** and a € KR*'*.
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For a pair (X, A) of finite real complexes, define

A** (X, A) = MR** (X, A) @*KR*'*.

MR
Then, there is a natural epimorphism

h: MR** (X, A) — A** (X, A)
defined by A(x) = x® 1 for x € MR** (X, A). And it is easily seen
that the epimorphism induces an isomorphism

h: MR**(X, A)/R = 1**(X, A),
where R is the least subgroup of MR**(X, A) generated by all xw — xo'

for x € MR**(X, A) and o, o' € MR** such that sp(w) = rx(ew’).
Since #, is multiplicative, there is a unique homomorphism

Api A%* (X, A) — KR**(X, A)

satisfying the following conditions :
1) e (x Q@ a) = nalx) a

2) commutativity holds in

MR** (X, A) h > 4** (X, A)

~

3 'R

KR** (X, A%

Let define

ot KR**(X, A) —> A**(X, A)

Co h
by the composition KR* *(X, A) —> MR**(X, A)—> A**(X, A). Then

we have
Proposition 3. 1. MpCo= —1.

Now we can state the main theorem of this paper.

Theorem 2. For any pair (X, A) of finite real complexes,
%yt MR**(X, A) @ KR** —> KR**(X, A)

MR*' *

is an isomorphism.

For the proof of Theorem 2 we shall need the cohomology structures
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of the real Thom space of the classifying bundle.

Let G:(C") be the Grassmann manifold of %-planes in the n-dimen-
sional complex space C”, which is a real space with the reality given by.
the conjugation. We have real vector bundles ;3(k-plane, point in it)
and 7; (k-plane, point in the orthogonal {n-k)-plane) over GJ{C’) with
7+ @ 7% trvial. We then have the Chern classes

[ Ct(TE), c: = ¢ ?l’:’) S MRi'i(Gk(Ck»,
o = a.(73), o = a:(70) € KR" (G.(C"),

related by the equations ¢¢ = 1 and ¢s = 1. Therefore ¢; and «, are
the polynomials of degree j in the ¢, and «: given by the formal inver-
sions of ¢ and o, respectively. Then we can obtain the following
proposition in the same way as R. E. Stong [7].

Proposition 3.2 (cf. [7], p.69). Let h** denote the cohomology
functor MR** or KR** and d, the h**-Chern class ¢, or o.. Then
r** (G, (C")) is the quotient of the polynomial algebra over h** on d,, -+, d;,
by the relations imposed by d; =0 for j>n — k.

Proof. The proof is by induction on k. Since G,(C*) = CP,_,, the
proposition being obvious for # = 1 by Proposition 1. 8 and [6], Theorem
6. 2.

Suppose the result holds for all G, (C") with #<Ck, and consider
G.(C"). Let (P(;7), 7, G,(C") be the associated real projective bundle
of 7 and (P(F2), % G..,(C")) the one of 7;.,. A pointin P(;}) is a
pair (V, [x]) of a k-plane V in C" and a line (x]in V. Let [x]1 be
the orthogonal complement of [x] in V. Then we can identify P (7}
with P(¥?.,) by means of the real homeomorphism defined by (V, [x])—>
([x]4, [x]). Let I=I1(}) =1(7i_.) denote the canonical real line bundle
over P= P(7})=P(7:.,) and & = =*;¢_,, » = =x*7Z. Then we have

(i) =*1i=1D¢%

(ii) 77 =1y

(i) EpiDy=2¢"
where 6° is the trivial real bundle over P.

In virtue of Proposition 1.9 and [6], Theorem 6.6, A**(P) is a
free h**(G,_,(C"))-module with basis 1, ¢, .-, ¢, with the relation -

r+1

S (=i id, (¥2-1)=0, where c¢ is the first A**-Chern class d,(!) of
i=0

! and r=n—%. By making use of the inductive assumption and the above
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relations (i), (ii) and (iii) 2* *(P) is the quotient of the polynomial algebra
over h** on d,(&), -, di. (), ¢, di(3), -+, d.(3) by the relations
imposed by d(ED D y) =dE) d(l)d(y) =1. Furthermore h**(P) is
k

a free A-module with basis 1, ¢, .-, ¢*~', with the relation ?jo(— 1)ic*'d;
=0, where A is the quotient of the polynomial algebra over h** on d,,
.-+, d. by the relations imposed by 4;= 0 for j>7r.

On the other hand, looking at P as a bundle over G,(C"), h** (P)
is a free h**(G.(C"))-module with basis 1, c. -, ¢*~!, with the relation

.
S (—1)c*'d;=0. Besides h**(G.(C"))DA. This completes the induction.

i=0

q.e.d.

As a corollary of this proposition we obtain the following

Proposition 3.3. Let h** and d; be as in the previous proposition.
Then h**(G.(C") is a free h**-module with basis e, -+, e. (r = (})),
where e; is a polynomial of the Chern classes d,, -+, d..

Hence, by making use of the Thom isomorphism % we have

Proposition 3.4, Let h** and e, be as in the above proposition.

Then 'Z*'*(T(r},‘)) is a free h* *-module with basis «, -, a. (r = (3)),
where o = " (e:).

Proof of Theorem 2. 1) The case of X = T(;7): Let

A (X) = MR**(X) ® KR**.
MR**
We need to compute the kernel of fz: MR*'*(X)—)K??*'*(X). An
element is in this kernel if and only if the coefficients from MR** used
in expressing this element in terms of the «; all lie in the kernel of
1r: MR** —> KR**  Hence Ker 1z, C Ker b, hence /%, is an isomor-
phism in the diagram

~ h ~
MR*.*(X) ‘>, 1**(X)
R ~ Tir
KR** (X).

2) The general case: Suppose /tz(a) =0 for a € 4**(X, A). Then,
there exists x € MR**(X, A) such that « = h(x) and r,(x) =0 in
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KR**(X, A). Say x =, +~+ x,, where x,_, € MR"" (X, A).

Let put p =14, g=7j. for simplisity. Then pz(x,,) =0 in KR"Y(X, A).
Let x,. be represented by a real map

[ I AN (X A) —> MU (n).

Since 3™ *" ¢ A (X/A) is compact, we have for sufficiently large m
FOmP A (X A) € TG,
Then the suspension ¢" " *(x,,) € MR (3m-rr=a N (X/A)) is in the
image of
£* 2 MR(T (7)) —> MR™ (2" A\ (X] A)).
Hence " """ h(x,,) is in the image of
fro AT E) — A4 QP A (X A)).
Since Ji : ;T*'*(X/A) — > KR** (X/A) maps h(x,,) into zero, so does
fig o A** (X200 A (X]A)) —> KR** (37770 N (X A))

map ¢" """ *h(x,,) into zero. Consider the commutative diagram

*

~ >
A () ——> A5* (Xm0 A (X] A))

”~r FaYa ”~ ”~
MR Cy g Co
v f*

ER**(T(r}) —> ER** (""" A (X] A)).

Since 7t is an isomorphism by the cass 1) and %3¢, = —1, ¢; is an
isomorphim. Therefore there exists e € KR** (T (+™)) with TP (%0
=f*c,(e). Then

—f*e) = 7rCof*(e) = fnf*C () = ra" " h(x,,0) = 0.

Thus we have """ A(x,o) = 0 and A(x,,) =0 in 1**(X/A). Hence
a=hx)=0 in A**(X, A). Thatis

fip: A**(X, A) —> KR**(X, A)
is a monomorphism and the theorem follows. q.e.d.

Recently, S. Araki [1] has discussed on the structure of MR**, in
which he has introduced notations MR*, MR*** and MR**. Now, by
using these notations, let put
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MR* = X MR"", MR***(X, A) = 3 MR™*"(X, A),
.

p

KR* =3, KR®", KR**(X, A) =3 KR"“*(X, A).
» p

Then MR***(X, A) and KR***(X, A) are MR*- and KR*-modules,
respectively. Furthermore, MR**(X, A) is a graded MR*-module with
grading MR***(X, A), k € Z, and KR**(X, A) is a graded KR*-module
with grading KR***(X, A), ke Z.

By a suggestion of P. S. Landweber we obtain the following

Proposition 3.5. For any pair (X, A) of finite real complexes, we
have isomorphisms

(i) 7ig: MR**(X, A) @ KR* = KR***(X, A) for any integer k,

ar¥
(ii) 7p: MR**(X, A) @ KR* = KR** (X, A).
MR*

Proof. Let h* denote MR* or KR*. Then 17*(T(r2‘)) is a free
h*-module with basis «,, -+, «r, where a; is as in Proposition 3. 4.
Therefore, the proof of (i) for k2 =0 is quite similar to the proof of
Theorem 2.

For a non-zero interger. 2, we have

MR***(X, A) = MR* (2" N (X] A))
KR** (X, A) = KR* (3" A (X] A)),

and the proposition follows from the case of % = 0. q. e. d.
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